Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Phenotyping
2.2.1. Analysis of Micronutrients with Microwave Digest and ICP-MS Analysis
2.2.2. Protein Content
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duc, G. Faba bean (Vicia faba L.). Field Crops Res. 1997, 53, 99–109. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for food and feed. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Feedipedia. Faba bean (Vicia faba). 2018. Available online: https://www.feedipedia.org/node/4926 (accessed on 21 January 2020).
- Robinson, G.H.J.; Balk, J.; Domoney, C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr. Bull. 2019, 44, 202–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed protein of lentils: Current status, progress, and food applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://faostat.fao.org (accessed on 2 March 2020).
- Stein, A.J. Global impacts of human mineral malnutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food. Nutr. Bull. 2011, 32, S31–S40. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Connorton, J.M.; Balk, J. Iron biofortification of staple crops: Lessons and challenges in plant genetics. Plant Cell Physiol. 2019, 60, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47, S88–S105. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Guzmán-Maldonado, S.H.; Martínez, O.; Acosta-Gallegos, J.A.; Guevara-Lara, F.; Paredes-López, O. Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci. 2003, 43, 1029–1035. [Google Scholar] [CrossRef]
- Grusak, M.A.; Cakmak, I. Methods to improve the crop-delivery of minerals to humans and livestock. In Plant Nutritional Genomics; Broadley, M.R., White, P.J., Eds.; Blackwell: Oxford, UK, 2005; pp. 265–286. [Google Scholar]
- Amarakoon, D.; Thavarajah, D.; McPhee, K.; Thavarajah, P. Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. J. Food Comps. Anal. 2012, 27, 8–13. [Google Scholar] [CrossRef]
- Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci. 2014, 54, 1698–1708. [Google Scholar] [CrossRef]
- Jha, A.B.; Warkentin, T.D. Biofortification of pulse crops: Status and future perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloch, F.S.; Karaköy, T.; Demirbaş, A.; Toklu, F.; Özkan, H.; Hatipoğlu, R. Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turk. J. Agric. Forest. 2014, 38, 591–602. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Pesce, G.R.; Anastasi, U.; Tuttobene, R.; Mauromicale, G. Variation in seed mineral elements profile and yield in field bean (Vicia faba L. var. minor) genotypes. Ital. J. Agron. 2016, 11, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, F.; Barker, A.V.; Hashemi, M.; Zandvakili, O.R.; Park, Y. Nutrient accumulation in faba bean varieties. Commun. Soil Sci. Plant Anal. 2018, 49, 2064–2073. [Google Scholar] [CrossRef]
- CEM, MARS 6TH Research Note. Microwave Digestion of Feed Grains. Available online: https://cem.com/media/contenttype/media/literature/MetNote_MARS6_Feed_Grain_3.pdf (accessed on 30 March 2020).
- R Core TeamR. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 20 March 2020).
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
- Khazaei, H.; Podder, R.; Caron, C.T.; Kundu, S.S.; Diapari, M.; Vandenberg, A.; Bett, K.E. Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Food Standards Agency (FSA). McCance and Widdowson’s the Composition of Foods, 6th ed.; Royal Society of Chemistry: Cambridge, UK, 2002. [Google Scholar]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [Green Version]
- Blair, M.W.; Astudillo, C.; Grusak, M.; Graham, R.; Beebe, S. Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol. Breed. 2009, 23, 197–207. [Google Scholar] [CrossRef]
- McClean, P.E.; Mafi Moghaddam, S.; Lopéz-Millán, A.F.; Brick, M.A.; Kelly, J.D.; Miklas, P.N.; Osorno, J.; Porch, T.G.; Urrea, C.A.; Soltani, A.; et al. Phenotypic diversity for seed mineral concentration in North American dry bean germplasm of Middle American ancestry. Crop Sci. 2017, 57, 3129–3144. [Google Scholar] [CrossRef] [Green Version]
- Raboy, V. Accumulation and storage of phosphate and minerals. In Cellular and Molecular Biology of Plant Seed Development; Larkins, B.A., Vasil, I.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 441–447. [Google Scholar]
- Zhou, J.R.; Erdman, J.W., Jr. Phytic acid in health and disease. Crit. Rev. Food Sci. Nutr. 1995, 35, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Shunmugam, A.S.K.; Bock, C.; Arganosa, G.C.; Georges, F.; Gray, G.R.; Warkentin, T.D. Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (Pisum sativum L.) mutants. Plants 2015, 4, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afinah, S.; Yazid, A.M.; Anis Shobirin, M.H.; Shuhaimi, M. Phytase: Application in food industry. Int. Food Res. J. 2010, 17, 13–21. [Google Scholar]
- Multari, S.; Stewart, D.; Russell, W.R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.A. In vitro digestibility of the testa in tannin-free field beans (Vicia faba L.). J. Agric. Sci. 1976, 86, 561–566. [Google Scholar] [CrossRef]
- Griffiths, D.W. The inhibition of digestive enzymes by extracts of field bean (Vicia faba). J. Sci. Food Agric. 1979, 30, 458–462. [Google Scholar] [CrossRef]
- Keatinge, J.D.H.; Yang, R.-Y.; Hughes, D.A.J.; Easdown, W.J.; Holmer, R. The importance of vegetables in ensuring both food and nutritional security in attainment of the Millennium Development Goals. Food Secur. 2011, 3, 491–501. [Google Scholar] [CrossRef]
Genotype | Flower Color | Breeder/Origin |
---|---|---|
Snowbird | White | Limagrain, The Netherlands |
CDC Snowdrop | White | Crop Development Centre (CDC), Canada |
219-16 | White | Crop Development Centre (CDC), Canada |
667-5 | White | Crop Development Centre (CDC), Canada |
795-2 | White | Crop Development Centre (CDC), Canada |
826-18 | White | Crop Development Centre (CDC), Canada |
707-1-1 | White | Crop Development Centre (CDC), Canada |
751-2 | White | Crop Development Centre (CDC), Canada |
656/657-3 | White | Crop Development Centre (CDC), Canada |
NPZ 14.7310 | White | Norddeutsche Pflanzenzucht (NPZ), Germany |
NPZ 14.7330 | White | Norddeutsche Pflanzenzucht (NPZ), Germany |
NPZ 14.7340 | White | Norddeutsche Pflanzenzucht (NPZ), Germany |
CDC Fatima | Spotted | Crop Development Centre (CDC), Canada |
Fabelle | Spotted | Norddeutsche Pflanzenzucht (NPZ), Germany |
186-4 | Spotted | Crop Development Centre (CDC), Canada |
551-4 | Spotted | Crop Development Centre (CDC), Canada |
688-8 | Spotted | Crop Development Centre (CDC), Canada |
1007-1 | Spotted | Crop Development Centre (CDC), Canada |
700-19 | Spotted | Crop Development Centre (CDC), Canada |
766-3 | Spotted | Crop Development Centre (CDC), Canada |
Boxer | Spotted | Lantmännen SW Seed Hadmersleben, Sweden |
Laura | Spotted | Lantmännen SW Seed Hadmersleben, Sweden |
Trumpet | Spotted | Norddeutsche Pflanzenzucht (NPZ), Germany |
Tiffany | Spotted | Norddeutsche Pflanzenzucht (NPZ), Germany |
RLS 57301 | Spotted | Norddeutsche Pflanzenzucht (NPZ), Germany |
Site/Location | |||||||
---|---|---|---|---|---|---|---|
Morden | Roblin | Rosthern | S.O.V. 2 | ||||
Element (ppm DW 1) | Mean ± SD | Mean ± SD | Mean ± SD | H2 | Genotype | E (Site-Year) | G × E |
B | 12.32 ± 1.42 | 10.35 ± 0.98 | 11.73 ± 1.26 | 0.58 | * | *** | ** |
Na | 21.85 ± 7.38 | 163.74 ± 55.41 | 47.33 ± 22.54 | 0.51 | *** | *** | *** |
Mg | 1478 ± 91 | 1232 ± 67 | 1292 ± 91 | 0.91 | *** | *** | ns |
Al | 2.24 ± 0.46 | 1.91 ± 0.49 | 5.05 ± 0.91 | 0.35 | ns | *** | *** |
P | 6055 ± 305 | 4961 ± 329 | 4339 ± 214 | 0.54 | *** | *** | *** |
S | 1828 ± 136 | 1833 ± 82 | 2047 ± 125 | 0.81 | *** | *** | *** |
K | 12055 ± 504 | 11049 ± 507 | 10842 ± 343 | 0.86 | *** | *** | *** |
Ca | 1030 ± 175 | 955 ± 125 | 928 ± 157 | 0.90 | *** | ** | * |
Mn | 13.38 ± 0.83 | 13.03 ± 1.02 | 15.87 ± 1.79 | 0.87 | *** | *** | ** |
Fe | 50.87 ± 4.09 | 48.57 ± 3.59 | 52.54 ± 3.15 | 0.77 | *** | *** | *** |
Co | 0.438 ± 0.283 | 0.316 ± 0.044 | 0.495 ± 0.066 | 0.65 | ** | *** | ns |
Ni | 3.55 ± 0.45 | 2.79 ± 0.26 | 3.85 ± 0.30 | 0.71 | *** | *** | ** |
Cu | 9.08 ± 0.86 | 8.00 ± 0.69 | 7.53 ± 0.51 | 0.31 | ** | *** | *** |
Zn | 46.13 ± 3.16 | 33.77 ± 2.53 | 45.50 ± 3.09 | 0.52 | *** | *** | * |
Se | 0.238 ± 0.036 | 0.169 ± 0.027 | 0.233 ± 0.068 | 0.50 | ns | *** | *** |
Mo | 3.04 ± 0.72 | 3.70 ± 1.03 | 0.60 ± 0.22 | 0.48 | ** | *** | *** |
Cd | 0.027 ± 0.012 | 0.006 ± 0.004 | 0.024 ± 0.013 | 0.47 | *** | *** | *** |
Ba | 1.18 ± 0.27 | 1.16 ± 0.28 | 3.04 ± 0.56 | 0.39 | *** | *** | ** |
Protein content (%) | 28.43 ± 0.56 | 29.68 ± 0.61 | 28.55 ± 0.66 | 0.81 | *** | * | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazaei, H.; Vandenberg, A. Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy 2020, 10, 511. https://doi.org/10.3390/agronomy10040511
Khazaei H, Vandenberg A. Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy. 2020; 10(4):511. https://doi.org/10.3390/agronomy10040511
Chicago/Turabian StyleKhazaei, Hamid, and Albert Vandenberg. 2020. "Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents" Agronomy 10, no. 4: 511. https://doi.org/10.3390/agronomy10040511
APA StyleKhazaei, H., & Vandenberg, A. (2020). Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy, 10(4), 511. https://doi.org/10.3390/agronomy10040511