Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds
Abstract
:1. Introduction
2. Benefits of Decision Support Systems (DSS) in Weed Management
3. Limitations of Decision Supports Systems (DSS) in Weed Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adebayo, S.; Ogunti, E.O.; Akingbade, F.K.; Oladimeji, O. A review of decision support system using mobile applications in the provision of day to day information about farm status for improved crop yield. Per. Eng. Nat. Sci. 2018, 6, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Sonka, S.T.; Bauer, M.E.; Cherry, E.T. Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Seem, R.C.; Russo, J.M. Simple decision aids for practical control of pests. Plant Dis. 1984, 68, 656–660. [Google Scholar] [CrossRef]
- Travis, J.W.; Latin, R.X. Development, implementation and adoption of expert systems. Annu. Rev. Phytopathol. 1991, 29, 343–360. [Google Scholar] [CrossRef]
- Oerke, E.C.; Dehne, H.W. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Zhuang, X.; Xu, L.; Chen, S.; Li, M. Research progress on microbial herbicides. Crop Prot. 2003, 22, 247–252. [Google Scholar] [CrossRef]
- Cox, C. Ten reasons not to use pesticides. J. Pest. Ref. 2006, 26, 10–12. [Google Scholar]
- Meksawat, S.; Pornprom, T. Allelopathic effect of itchgrass (Rottboellia cochinchinensis) on seed germination and plant growth. Weed Biol. Manag. 2010, 10, 16–24. [Google Scholar] [CrossRef]
- Pot, V.; Benoit, P.; Le Menn, M.; Eklo, O.M.; Sveistrup, T.; Kvaerner, J. Metribuzin transport in undisturbed soil cores under controlled water potential conditions: Experiments and modeling to evaluate the risk of leaching in a sandy loam soil profile. Pest Manag. Sci. 2011, 67, 397–407. [Google Scholar] [CrossRef]
- Owombo, P.T.; Aregbesola, O.Z.; Adeloye, K.A. Eco-Friendliness of weed management methods in organic farming: The need for extension education. J. Agric. Sustain. 2014, 6, 179–199. [Google Scholar]
- Parsons, D.J.; Benjamin, L.R.; Clarke, J.; Ginsburg, D.; Mayes, A.; Milne, A.E.; Wilkinson, D.J. Weed Manager—A model-based decision support system for weed management in arable crops. Comput. Electron. Agric. 2009, 65, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Sønderskov, M.; Rydahl, P.; Bøjer, O.M.; Jensen, J.E.; Kudsk, P. Crop protection online—Weeds: A case study for agricultural decision support systems. In Real-World Decision Support Systems; Papathanasiou, J., Ploskas, N., Linden, I., Eds.; Springer: Cham, Switzerland, 2016; Volume 37, pp. 303–320. [Google Scholar]
- Cousens, R.; Doyle, C.J.; Wilson, B.J.; Cussans, G.W. Modelling the economics of controlling Avena fatua in winter wheat. Pestic. Sci. 1986, 17, 1–12. [Google Scholar] [CrossRef]
- Doyle, C.J.; Cousens, R.; Moss, S.R. A model of the economics of controlling Alopecurus myosuroides Huds. in winter wheat. Crop Prot. 1986, 5, 143–150. [Google Scholar] [CrossRef]
- Coble, H.D.; Mortensen, D.A. The threshold concept and its application to weed science. Weed Technol. 1992, 6, 191–195. [Google Scholar] [CrossRef]
- Berti, A.; Bravin, F.; Zanin, G. Application of decision-support software for postemergence weed control. Weed Sci. 2003, 51, 618–627. [Google Scholar] [CrossRef]
- Nesser, C.; Dille, J.A.; Krishnan, G.; Mortensen, D.A.; Rawlinson, J.T.; Martin, A.R.; Bills, L.B. WeedSOFT(R): A weed management decision support system. Weed Sci. 2004, 52, 115–122. [Google Scholar] [CrossRef]
- Bennett, A.C.; Price, A.J.; Sturgill, M.C.; Buol, G.S.; Wilkerson, G.G. HADSS (TM), pocket HERB (TM), and WebHADSS (TM): Decision aids for field crops. Weed Technol. 2003, 17, 412–420. [Google Scholar] [CrossRef]
- Been, T.H.; Berti, A.; Evans, N.; Gouache, D.; Gutsche, V.; Jensen, J.; Kapsa, J.; Levay, N.; Munier-Jolain, N.; Nibouche, S.; et al. Review of New Technologies Critical to Effective Implementation of Decision Support Systems (DSS’s) and Farm Management Systems (FMS’s); Aarhus University: Aarhus, Denmark, 2009. [Google Scholar]
- Haage, I.; Bastiaans, L.; Kempenaar, C. Exploring options for improved low dose application based on the MLHD-technology. In Proceedings of the 12th EWRS Symposium, Wageningen, The Netherlands, 24–27 June 2002; pp. 200–201. [Google Scholar]
- Kempenaar, C.; Groeneveld, R.; Uffing, A.; Van Der Weide, R.Y.; Wevers, J. New insights and developments in the MLHD-concept of weed control. In Proceedings of the 12th EWRS, Wageningen, The Netherlands, 24–27 June 2002; pp. 98–99. [Google Scholar]
- Rydahl, P.; Bojer, O.M.; Jorgensen, R.N.; Dyrmann, M.; Andersen, P.; Jensen, N.P.; Sorensen, M. Spatial variability of optimized herbicide mixtures and dosages. In Proceedings of the 14th International Conference on Precision Agriculture, International Society of Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Rydahl, P. A web-based decision support system for integrated management of weeds in cereals and sugarbeet. EPPO Bull. 2003, 33, 455–460. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Noe, E.; Langvad, A.M.; Jensen, J.E.; Ørum, J.E.; Rydahl, P. Decision support systems: Barriers and farmers’ need for support. EPPO Bull. 2007, 37, 374–377. [Google Scholar]
- Holsapple, C.W.; Whinston, A.B. Decision Support Systems: A Knowledge Based Approach; West Publishing: Eagan, MN, USA, 1996; pp. 1–29. [Google Scholar]
- Shaw, D.R. Translation of remote sensing data into weed management decisions. Weed Sci. 2005, 53, 264–273. [Google Scholar] [CrossRef]
- Rankins, A.; Shaw, D.R.; Byrd, J.D. HERB and MSUHERB field validation for soybean (Glycine max) weed control in Mississippi. Weed Technol. 1998, 12, 88–96. [Google Scholar] [CrossRef]
- Cardina, J.; Johnson, G.A.; Sparrow, D.H. The nature and consequence of weed spatial distribution. Weed Sci. 1997, 45, 364–373. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Fountas, S.; Blackmore, S.; Gylling, M.; Pedersen, J.L. Adoption and perspectives of precision farming in Denmark. Acta Agric. Scand. B Soil Plant Sci. 2004, 54, 2–6. [Google Scholar] [CrossRef]
- Streibig, J.C.; Kudsk, P.; Jensen, J.E. A general joint action model for herbicide mixtures. Pest. Sci. 1998, 53, 21–28. [Google Scholar] [CrossRef]
- Berti, A.; Zanin, G. GESTINF: A decision model for post-emergence weed management in soybean (Glycine max (L.) Merr.). Crop Prot. 1997, 16, 109–116. [Google Scholar] [CrossRef]
- Rydahl, P. Optimizing mixtures of herbicides within a decision support system. In Brighton Crop Protection Conference Weeds; BCPC: Farnham, UK, 1999; pp. 761–766. [Google Scholar]
- Bouma, E. Weather and Crop Protection; Roodbont Publishers: Zutphen, The Netherlands, 2008. [Google Scholar]
- Rossi, V.; Meriggi, P.; Caffi, T.; Giosué, S.; Bettati, T. A web-based decision support system for managing durum wheat crops. In Decision Support Systems Advances in; Devlin, G., Ed.; Intech: Vukovar, Croatia, 2010; pp. 1–26. [Google Scholar]
- Jensen, H.G.; Jacobsen, L.B.; Pedersen, S.M.; Tavella, E. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 2012, 13, 661–677. [Google Scholar] [CrossRef]
- Gutjahr, C.; Gerhards, R. Decision rules for site-specific weed management. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 223–239. [Google Scholar]
- Kitchen, N.R. Emerging technologies for real-time and integrated agriculture decisions. Comput. Electron. Agric. 2008, 61, 1–3. [Google Scholar] [CrossRef]
- Barnes, E.M.; Baker, M.G.; Pinter, P.J.; Jones, D.D. Integration of remote sensing and crop models to provide decision support for precision crop management. In Proceedings of the First International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 1–3 January 1998; Volume 1, pp. 211–213. [Google Scholar]
- Heermann, D.F.; Hoeting, J.; Thompson, S.E.; Duke, H.R.; Westfall, D.G.; Buchleiter, G.W.; Westra, P.; Peairs, F.B.; Fleming, K. Interdisciplinary irrigated precision farming research. Precis. Agric. 2002, 3, 47–61. [Google Scholar] [CrossRef]
- Parker, C.G.; Campion, S.; Kure, H. Improving the uptake of decision support systems in agriculture. In Proceedings of the First European Conference for Information Technology in Agriculture, Copenhagen, Denmark, 15–18 June 1997; Thysen, I., Kristensen, A.R., Eds.; EFITA: Copenhagen, Denmark; The Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1997; pp. 129–134. [Google Scholar]
- Lowenberg-DeBoer, J. Risk management potential of precision farming technologies. J. Agric. Appl. Econ. 1999, 31, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, C.J.; Carter, P.G.; Morris, D.K.; Ross, K.; Erickson, B. The real applications of remote sensing to agriculture. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; Volume 1, pp. 1–5. [Google Scholar]
- McCown, R.L. Probing the enigma of the decision support system for farmers: Learning from experience and from theory. Agric. Syst. 2002, 74, 1–10. [Google Scholar] [CrossRef]
- Noe, E.; Halberg, N. Research experience with tools to involve farmers and local institutions in developing more environmentally friendly practices. In Environmental Co-Operation and Institutional Change; Hagedorn, K., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2002; pp. 143–161. [Google Scholar]
- Magarey, R.D.; Travis, J.W.; Russo, J.M.; Seem, R.C.; Magarey, P.A. Decision support systems: Quenching the thirst. Plant Dis. 2002, 86, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bourgeois, T.; Jeuffrault, E.; Grard, P.; Carrara, A.; St Pierre, L.R. A new process to identify the weeds of La Réunion Island: The AdvenRun system. In Proceedings of the 14th Australian Weeds Conference, Charles Sturt University, Wagga Wagga, Australia, 6–9 September 2004; Weed Society of New South Wales: Coffs Harbour, Australia, 2004. [Google Scholar]
- Dhima, K.V.; Eleftherohorinos, I.G.; Vasilakoglou, I.B. Interference between Avena sterilis, Phalaris minor and five barley cultivars. Weed Res. 2000, 40, 549–559. [Google Scholar] [CrossRef]
- Brown, R.B.; Noble, S.D. Site-specific weed management: Sensing requirements— What do we need to see? Weed Sci. 2005, 53, 252–258. [Google Scholar] [CrossRef]
- Crassweller, R.M.; Travis, J.W.; Heinemann, P.H.; Rajotte, E.G. The actual and potential future use of expert system in horticulture. Hortic. Technol. 1993, 3, 203–205. [Google Scholar]
- Blair, A.M.; Cussans, J.W.; Lutman, P.J.W. A biological framework for developing a weed management support system for weed control in winter wheat: Weed competition and time of weed control. In Brighton Crop Protection Conference Weeds; BCPC: Farnham, UK, 1999; pp. 753–760. [Google Scholar]
- Gonzalez-Andujar, J.L.; Fernandez-Quintanilla, C.; Izquierdo, J.; Urbano, J.M. SIMCE: An expert system for seedling weed identification in cereals. Comput. Electron. Agric. 2006, 54, 115–123. [Google Scholar] [CrossRef]
- Medlin, C.R.; Shaw, D.R.; Gerard, P.D.; LaMastus, F.E. Using remote sensing to detect weed infestations in Glycine max. Weed Sci. 2000, 48, 393–398. [Google Scholar] [CrossRef]
- Brown, R.B.; Steckler, P.G.A.; Anderson, G.W. Remote sensing for identification of weeds in no-till corn. Trans. Am. Soc. Agric. Eng. 1994, 37, 297–302. [Google Scholar] [CrossRef]
- Lamb, D.W.; Weedon, M. Evaluating the accuracy of mapping weeds in fallow fields using airborne digital imaging Panicum effusum in oilseed rape stubble. Weed Res. 1998, 38, 443–451. [Google Scholar] [CrossRef]
- Everitt, J.H.; Alaniz, M.A.; Escobar, D.E.; Davis, M.R. Using remote sensing to distinguish common (Isocoma coronopifolia) and Drummond goldenweed (Isocoma drumondii). Weed Sci. 1992, 40, 621–628. [Google Scholar] [CrossRef]
- Williams, A.P.; Hunt, E.R. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens. Environ. 2002, 82, 446–456. [Google Scholar] [CrossRef]
- Bajwa, S.G.; Tian, L.F. Aerial CIR remote sensing for weed density mapping in a soybean field. Trans. Am. Soc. Agric. Eng. 2001, 44, 1965–1974. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Lamb, D.W.; Weedon, M.M.; Rew, L.J. Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale. Weed Res. 1999, 39, 481–492. [Google Scholar] [CrossRef]
- Rew, L.J.; Whelan, B.; McBratney, A.B. Does kriging predict weed distributions accurately enough for site-specific weed control? Weed Res. 2001, 41, 245–263. [Google Scholar] [CrossRef]
- Moran, M.S. Image-Based remote sensing for agricultural management—Perspectives of image providers, research scientists and users. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; Volume 1, pp. 23–29. [Google Scholar]
- Zangeneh, H.S.; Mohammaddust Chamanabad, H.R.; Zand, E.; Alcantara-de la Cruz, R.; Travlos, I.S.; De Prado, R.; Alebrahim, M.T. Clodinafop-Propargyl resistance genes in Lolium rigidum Guad populations are associated with fitness costs. Agronomy 2018, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Travlos, I.S.; Cheimona, N.; De Prado, R.; Jhala, A.J.; Chachalis, D.; Tani, E. First case of glufosinate-resistant rigid ryegrass (Lolium rigidum Gaud.). Agronomy 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Pannell, D.J. Decision support for integrated weed management. In Proceedings of the Third International Weed Science Congress, Foz do Iguacu, Brazil, 6–11 June 2000; pp. 6–11. [Google Scholar]
- Sindhu, P.V.; Thomas, C.G.; Abraham, C.T. Seed bed manipulations for weed management in wet seeded rice. Indian J. Weed Sci. 2010, 42, 173–179. [Google Scholar]
- Kanatas, P.J.; Travlos, I.S.; Gazoulis, J.; Antonopoulos, N.; Tsekoura, A.; Tataridas, A.; Zannopoulos, S. The combined effects of false seedbed technique, post-emergence chemical control and cultivar on weed management and yield of barley in Greece. Phytoparasitica 2020, 48, 131–143. [Google Scholar] [CrossRef]
- Wilson, R.S.; Hooker, N.; Tucker, M.; Lejuene, J.; Doohan, D. Targeting the farmer decision making process: A pathway to increased adoption of integrated weed management. Crop Prot. 2009, 28, 756–764. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanatas, P.; Travlos, I.S.; Gazoulis, I.; Tataridas, A.; Tsekoura, A.; Antonopoulos, N. Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds. Agronomy 2020, 10, 548. https://doi.org/10.3390/agronomy10040548
Kanatas P, Travlos IS, Gazoulis I, Tataridas A, Tsekoura A, Antonopoulos N. Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds. Agronomy. 2020; 10(4):548. https://doi.org/10.3390/agronomy10040548
Chicago/Turabian StyleKanatas, Panagiotis, Ilias S. Travlos, Ioannis Gazoulis, Alexandros Tataridas, Anastasia Tsekoura, and Nikolaos Antonopoulos. 2020. "Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds" Agronomy 10, no. 4: 548. https://doi.org/10.3390/agronomy10040548
APA StyleKanatas, P., Travlos, I. S., Gazoulis, I., Tataridas, A., Tsekoura, A., & Antonopoulos, N. (2020). Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds. Agronomy, 10(4), 548. https://doi.org/10.3390/agronomy10040548