Initial Experimental Experience with a Sprayable Biodegradable Polymer Membrane (SBPM) Technology in Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field Set-Up
2.2. Field Sensor Installation and Crop Data Collection
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Jabran, K.; Ullah, E.; Hussain, M.; Farooq, M.; Zaman, U.; Yaseen, M.; Chauhan, B.S. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop. Sci. 2014, 201, 389–400. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Shogren, R.L. Biodegradable mulches from renewable resources. J. Sustain. Agric. 2000, 16, 33–47. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Ding, Z.; Peng, Z. Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field. Agric. Water Manag. 2019, 226, 105788. [Google Scholar] [CrossRef]
- Dai, J.; Dong, H. Intensive cotton farming technologies in China: Achievements, challenges and counter measures. Field Crop. Res. 2014, 155, 99–110. [Google Scholar] [CrossRef] [Green Version]
- European Bioplastics e.V. EUBP. EU Takes Action Against Oxo-Degradable Plastics. Available online: https://www.european-bioplastics.org/eu-takes-action-against-oxo-degradable-plastics/ (accessed on 17 May 2019).
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Vaicekauskaite, J.; Ostrauskaite, J.; Treinyte, J.; Grazuleviciene, V.; Bridziuviene, D.; Rainosalo, E. Biodegradable linseed oil-based cross-linked polymer composites filled with industrial waste materials for mulching coatings. J. Polym. Environ. 2019, 27, 395–404. [Google Scholar] [CrossRef]
- Sartore, L.; Schettini, E.; Palma, L.; Brunetti, G.; Cocozza, C.; Vox, G. Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total. Environ. 2018, 645, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Bristow, K.L.; Hornbuckle, J.; Freischmidt, G.; Casey, P. Novel sprayable biodegradable polymer membrane to minimize soil evaporation. In Proceedings of the International Conference on Technologies for Sustainable Development (ICTSD 2015), Mumbai, India, 4–6 February 2015; pp. 1–4. [Google Scholar]
- Adhikari, R.; Casey, P.; Bristow, K.L.; Hornbuckle, J.; Freischmidt, G. Sprayable Polymer Membrane for Agriculture. U.S. Patent WO/2015/184490, 10 December 2015. [Google Scholar]
- Adhikari, R.; Bristow, K.L.; Casey, P.S.; Freischmidt, G.; Hornbuckle, J.W.; Adhikari, B. Preformed and sprayable polymeric mulch film to improve agricultural crop water productivity. Agric. Water Manag. 2016, 169, 1–13. [Google Scholar] [CrossRef]
- Adhikari, R.; Mingtarja, H.; Freischmidt, G.; Bristow, K.L.; Casey, P.S.; Johnston, P.; Sangwan, P. Effect of viscosity modifiers on soil wicking and physico-mechanical properties of a polyurethane based sprayable biodegradable polymer membrane. Agric. Water Manag. 2019, 222, 346–353. [Google Scholar] [CrossRef]
- Braunack, M.V.; Zaja, A.; Tam, K.; Filipović, L.; Filipović, V.; Wang, Y.; Bristow, K.L. A Sprayable Biodegradable Polymer Membrane (SBPM) technology: Effect of band width and application rate on water conservation and seedling emergence. Agric. Water Manag. 2020, 230, 105900. [Google Scholar] [CrossRef]
- Hulugalle, N.R.; Weaver, T.B.; Finlay, L.A.; Lonergan, P. Soil properties, black root-rot incidence, yield and greenhouse gas emissions in irrigated cotton cropping systems sown in a Vertosol with subsoil sodicity. Soil Res. 2012, 50, 278–292. [Google Scholar] [CrossRef]
- French, R.; Schultz, J. Crop water productivity of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res. 1984, 35, 743–764. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Modell. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows 18th Edition; VSN International: Hemel Hempstead, UK, 2015. [Google Scholar]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Crop water productivity of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crop. Res. 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Braunack, M.V.; Johnston, D.B.; Price, J.; Gauthier, E. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crop. Res. 2015, 184, 91–103. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, C.; Zhang, H.; Lin, Q.; Hong, Y.; Lou, Y. Empirical estimation of pollution and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environ. Earth Sci. 2013, 70, 239–247. [Google Scholar] [CrossRef]
- Bu, L.; Liu, J.; Zhu, L.; Lou, S.; Chen, X.; Li, S.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Dong, H.; Li, W.; Tang, W.; Zhang, D. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crop. Res. 2009, 111, 269–275. [Google Scholar] [CrossRef]
- Filipović, V.; Bristow, K.L.; Filipović, L.; Wang, Y.; Sintim, H.Y.; Flury, M.; Šimůnek, J. Sprayable biodegradable polymer membrane technology for cropping systems: Challenges and opportunities. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef] [Green Version]
Treatment | Crop Water Consumption (mm) | Crop Water Productivity (kg ha−1 mm−1) |
---|---|---|
CON | 667 a | 5.1 a |
ODP film | 677 a | 4.9 a |
SBPM_gap | 654 a | 5.5 a |
Treatment | Establishment (plants m−1) | Height (cm) | Lint yield (kg ha−1) | Fibre Strength (g tex−1) | Fibre Length (dec. inch) | Micronaire (-) |
---|---|---|---|---|---|---|
CON | 7.8 b | 98.1 a | 2884 a | 27.8 a | 1.16 a | 4.69 a |
ODP film | 10.2 a | 100.0 a | 2839 a | 26.8 a | 1.18 a | 4.69 a |
SBPM_gap | 10.3 a | 97.2 a | 3032 a | 26.9 a | 1.18 a | 4.69 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braunack, M.V.; Adhikari, R.; Freischmidt, G.; Johnston, P.; Casey, P.S.; Wang, Y.; Bristow, K.L.; Filipović, L.; Filipović, V. Initial Experimental Experience with a Sprayable Biodegradable Polymer Membrane (SBPM) Technology in Cotton. Agronomy 2020, 10, 584. https://doi.org/10.3390/agronomy10040584
Braunack MV, Adhikari R, Freischmidt G, Johnston P, Casey PS, Wang Y, Bristow KL, Filipović L, Filipović V. Initial Experimental Experience with a Sprayable Biodegradable Polymer Membrane (SBPM) Technology in Cotton. Agronomy. 2020; 10(4):584. https://doi.org/10.3390/agronomy10040584
Chicago/Turabian StyleBraunack, Michael V., Raju Adhikari, George Freischmidt, Priscilla Johnston, Philip S. Casey, Yusong Wang, Keith L. Bristow, Lana Filipović, and Vilim Filipović. 2020. "Initial Experimental Experience with a Sprayable Biodegradable Polymer Membrane (SBPM) Technology in Cotton" Agronomy 10, no. 4: 584. https://doi.org/10.3390/agronomy10040584