The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Adom, K.K.; Sorrells, M.E.; Rui, H.L. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Longin, C.F.H.; Würschum, T. Back to the Future—Tapping into Ancient Grains for Food Diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, T.; Żuk-Gołaszewska, K. Agronomic and economic characteristics of common wheat and spelt production in an organic farming system. Acta Sci. Pol. Agric. 2017, 16, 247–254. [Google Scholar]
- Kyptova, M.; Konvalina, P.; Khoa, T.D. Technological and sensory quality of grain and baking products from spelt wheat. Res. Rural Dev. 2017, 2, 46–53. [Google Scholar]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Longin, C.F.H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Würschum, T. Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Sci. 2016, 56, 302–311. [Google Scholar] [CrossRef]
- Góral, T.; Ochodzki, P. Fusarium head blight resistance and mycotoxin profiles of four Triticum species genotypes. Phytopathol. Mediterr. 2017, 56, 175–186. [Google Scholar]
- Bencze, S.; Makádi, M.; Aranyos, T.J.; Földi, M.; Hertelendy, P.; Mikó, P.; Bosi, S.; Negri, L.; Drexler, D. Re-Introduction of Ancient Wheat Cultivars into Organic Agriculture—Emmer and Einkorn Cultivation Experiences under Marginal Conditions. Sustainability 2020, 12, 1584. [Google Scholar] [CrossRef] [Green Version]
- Aslan, D.; Aktaş, H.; Ordu, B.; Zencirci, N. Evaluation of bread and einkorn wheat under in vitro drought stress. J. Anim. Plant Sci. 2017, 27, 1974–1983. [Google Scholar]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Árendás, T. Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef] [Green Version]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Leváková, L.; Lacko-Bartošová, M. Phenolic acids and antioxidant activity of wheat species: A review. Agriculture 2017, 63, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Pihlava, J.M.; Hellström, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; van Berkel, W.J.H.; Voragen, A.G.J. Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. J. Chem. Ecol. 2005, 31, 2671–2688. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic Content and Antioxidant Properties of Bran in 51 Wheat Cultivars. Cereal Chem. 2008, 85, 544–549. [Google Scholar] [CrossRef]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Laddomada, B.; Durante, M.; Minervini, F.; Garbetta, A.; Cardinali, A.; D’Antuono, I.; Caretto, S.; Blanco, A.; Mita, G. Phytochemical Composition and Anti-Inflammatory Activity of Extracts from the Whole-Meal Flour of Italian Durum Wheat Cultivars. Int. J. Mol. Sci. 2015, 16, 3512–3527. [Google Scholar] [CrossRef]
- Sánchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol. 2011, 111, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Health Benefits of Dietary Whole Grains: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Li, Y.; Ma, D.; Sun, D.; Wang, C.; Zhang, J.; Xie, Y.; Guo, T. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J. 2015, 3, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Miholová, D.; Pivec, V.; Jírů, K.; Janovská, D. Content of phenolic antioxidants and selenium in grainof einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ. 2011, 57, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P.; Galieni, A.; Manetta, A.C.; Pace, R.; Guiducci, M.; Pisante, M.; Stagnari, F. Phenolic compounds in grains, sprouts and wheatgrass of hulled and non-hulled wheat species. J. Sci. Food Agric. 2015, 95, 1795–1803. [Google Scholar] [CrossRef]
- Engert, N.; Honermeier, B. Characterization of grain quality and phenolic acids in ancient wheat species (Triticum sp.). J. Appl. Bot. Food Qual. 2011, 84, 33–39. [Google Scholar]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.M.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Lee, K.S.; Choe, Y.C.; Park, S.H. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J. Environ. Manag. 2015, 162, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; (Slovak University of Agriculture in Nitra, Nitra, Slovakia). Personal communication, 2018.
- Wang, L.; Yao, Y.; He, Z.; Wang, D.; Liu, A.; Zhang, Y. Determination of phenolic acid concentrations in wheat flours produced at different extraction rates. J. Cereal Sci. 2013, 57, 67–72. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Costanzo, A.; Amos, C.D.; Dinelli, G.; Sferrazza, E.R.; Accorsi, G.; Negri, L.; Bosi, S. Performance and Nutritional Properties of Einkorn, Emmer and Rivet Wheat in Response to Different Rotational Position and Soil Tillage. Sustainability 2019, 11, 6304. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.S.M.; Hucl, P.; Sosulski, F.W.; Graf, R.; Gillott, C.; Pietrzak, L. Screening spring wheat for midge resistance in relation to ferulic acid content. J. Agric. Food Chem. 2001, 49, 3559–3566. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Yao, Y.; Yan, J.; He, Z. Phenolic acid profiles of Chinese wheat cultivars. J. Cereal Sci. 2012, 56, 629–635. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Kerienė, I.; Mankevičienė, A.; Bliznikas, S.; Jablonskytė-Raščė, D.; Maikštėnienė, S.; Česnulevičienė, R. Biologically active phenolic compounds in buckwheat, oats and winter spelt wheat. Zemdirbyste 2015, 102, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Şahin, Y.; Yıldırım, A.; Yücesan, B.; Zencirci, N.; Erbayram, Ş.; Gürel, E. Phytochemical content and antioxidant activity of einkorn (Triticum monococcum ssp. monococcum), bread (Triticum aestivum L.), and durum (Triticum durum Desf.) wheat. Prog. Nutr. 2018, 19, 450–459. [Google Scholar]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef]
- Mallick, S.A.; Gupta, M.; Mondal, S.K.; Sinha, B.K. Characterization of wheat (Triticum aestivum) genotypes on the basis of metabolic changes associated with water stress. Indian J. Agric. Sci. 2011, 81, 767–771. [Google Scholar]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.-M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural Variation in Grain Composition of Wheat and Related Cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci. Technol. 2017, 69, 281–288. [Google Scholar] [CrossRef]
- Mateo Anson, N.; van den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 2009, 49, 296–300. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Kucek, L.K.; Veenstra, L.D.; Amnuaycheewa, P.; Sorrells, M.E. A Grounded Guide to Gluten: How Modern Genotypes and Processing Impact Wheat Sensitivity. Compr. Rev. Food Sci. Food Saf. 2015, 14, 285–302. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Bordoni, A.; Di Nunzio, M.; Viadel, B.; Gallego, E.; Villalba, M.P.; Tomás-Cobos, L.; Taneyo Saa, D.L.; Gianotti, A. Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads. Nutrients 2017, 9, 1232. [Google Scholar] [CrossRef] [Green Version]
- Saa, D.T.; Di Silvestro, R.; Dinelli, G.; Gianotti, A. Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT Food Sci. Technol. 2017, 83, 26–32. [Google Scholar] [CrossRef]
Year | Month | t (°C) | Δt (°C) | c1 | p (mm) | n (%) | c1 |
---|---|---|---|---|---|---|---|
normal | May | 15.1 | - | - | 58 | - | - |
(1961–1990) | June | 18 | - | - | 66 | - | - |
July | 19.8 | - | - | 52 | - | - | |
2013 | May | 15.1 | 0.0 | N | 65.6 | 113.1 | N |
June | 18.5 | 0.5 | N | 54.8 | 83.0 | N | |
July | 22.2 | 2.4 | VW | 2.2 | 4.2 | ED | |
2014 | May | 15.2 | 0.1 | N | 57.6 | 99.3 | N |
June | 19.3 | 1.3 | W | 52.5 | 79.6 | N | |
July | 21.8 | 2.0 | W | 64.1 | 123.3 | N | |
2015 | May | 15.1 | 0.0 | N | 69.5 | 119.8 | N |
June | 19.9 | 1.9 | W | 10.2 | 15.5 | ED | |
July | 23.6 | 3.8 | EW | 17.2 | 33.1 | VD |
Free PAs | Bound PAs | Total PAs | |
---|---|---|---|
Triticum spelta L. | 35.24 ± 6.11 b | 564.6 ± 91.9 b | 599.8 ± 96.1 b |
Triticum dicoccon Schrank | 35.17 ± 4.69 b | 555.4 ± 96.0 b | 590.6 ± 100.4 b |
Triticum monococcum L. | 45.81 ± 4.92 a | 682.4 ± 84.1 a | 728.2 ± 85.6 a |
p wheat species | *** | *** | *** |
2013 | 36.52 ± 8.21 | 578.2 ± 106.9 | 614.7 ± 112.0 |
2014 | 37.57 ± 3.83 | 579.7 ± 78.8 | 617.2 ± 82.4 |
2015 | 34.44 ± 6.00 | 558.0 ± 108.1 | 592.4 ± 113.8 |
p year | ns | ns | ns |
p species × year | ns | *** | *** |
Ferulic Acid | p-HBA 1 | Caffeic Acid | p-Coumaric Acid | Salicylic Acid | Sinapic Acid | Syringic Acid | |
---|---|---|---|---|---|---|---|
Free phenolic acids | |||||||
Triticum spelta L. | 25.19 ± 5.87 b | 1.96 ± 0.77 a | 0.58 ± 0.27 b | 1.10 ± 0.38 c | 1.64 ± 0.54 a | 1.52 ± 0.78 c | 3.25 ± 1.37 a |
Triticum dicoccon Schrank | 25.84 ± 4.14 b | 1.54 ± 0.77 b | 0.95 ± 0.41 a | 1.66 ± 0.52 b | 0.99 ± 0.38 b | 1.96 ± 0.69 b | 2.23 ± 0.85 b |
Triticum monococcum L. | 34.03 ± 4.10 a | 1.60 ± 0.88 ab | 1.10 ± 0.63 a | 2.01 ± 0.72 a | 1.40 ± 0.73 a | 2.45± 0.30 a | 3.20 ± 1.13 a |
p wheat species | *** | ** | *** | *** | *** | *** | *** |
2013 | 27.04 ± 7.53 a | 1.21 ± 0.71 b | 0.86 ± 0.60 a | 1.43 ± 0.75 a | 1.48± 0.49 a | 1.79 ± 0.87 a | 2.71 ± 1.22 |
2014 | 26.32 ± 4.09 ab | 2.13 ± 0.59 a | 0.75 ± 0.20 ab | 1.34 ± 0.35 c | 1.45 ± 0.57 a | 2.08 ± 0.54 a | 3.50 ± 0.95 |
2015 | 25.34 ± 4.90 b | 1.98 ± 0.77 a | 0.67 ± 0.33 b | 1.39 ± 0.56 b | 1.22 ± 0.68 b | 1.42 ± 0.74 b | 2.42 ± 1.38 |
p year | * | *** | *** | *** | *** | * | ns |
p species × year | ns | *** | *** | *** | *** | ns | *** |
Bound phenolic acids | |||||||
Triticum spelta L. | 538.0 ± 90.9 b | 2.99 ± 1.42 a | 2.09 ± 0.97 | 13.54 ± 4.88 c | 1.98 ± 0.78 a | 1.67 ± 0.86 c | 4.27 ± 1.95 a |
Triticum dicoccon Schrank | 524.5 ± 96.6 b | 1.60 ± 0.77 c | 1.85 ± 0.74 | 21.26 ± 8.34 b | 1.02 ± 0.38 c | 2.55 ± 0.99 b | 2.67 ± 1.05 b |
Triticum monococcum L. | 644.7± 86.0 a | 2.17 ± 1.40 b | 2.17 ± 0.37 | 25.18 ± 9.58 a | 1.47 ± 0.55 b | 3.38 ± 0.42 a | 3.36 ± 1.17 b |
p wheat species | *** | *** | ns | *** | *** | *** | *** |
2013 | 546.5 ± 108.7 | 2.73 ± 1.74 a | 2.11 ± 1.02 | 20.13± 10.59 a | 1.93 ± 0.88 a | 2.07 ± 1.25 | 2.67 ± 1.32 c |
2014 | 549.7 ± 80.4 | 2.95 ± 0.99 a | 2.11 ± 0.73 | 16.12 ± 4.17 b | 1.45 ± 0.57 b | 2.53 ± 0.72 | 4.80 ± 1.78 a |
2015 | 532.1 ± 102.9 | 1.55 ± 0.80 b | 1.82 ± 0.79 | 15.96 ± 7.52 b | 1.37 ± 0.77 b | 1.83 ± 0.99 | 3.35 ± 1.51 b |
p year | ns | *** | ns | *** | *** | ns | *** |
p species × year | *** | *** | *** | *** | ns | * | *** |
2013 | 2014 | 2015 | |||||||
---|---|---|---|---|---|---|---|---|---|
T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | |
Phenolic acids sums | |||||||||
Bound PAs | 623 ± 97 a | 498 ± 88 b | 627 ± 16 a | 535 ± 42 c | 618 ± 72 b | 698 ± 84 a | 536 ± 98 b | 550 ± 91 b | 722 ± 110 a |
Total PAs | 659 ± 102 a | 532 ± 91 b | 678 ± 18 a | 571 ± 44 c | 656 ± 75 b | 742 ± 89 a | 570 ± 103 b | 584 ± 97 b | 765 ± 115 a |
Free phenolic acids | |||||||||
p-HBA 1 | 1.69 ± 0.63 a | 0.62 ± 0.14 b | 0.72 ± 0.08 b | 2.04 ± 0.67 | 2.12 ± 0.43 | 2.66 ± 0.43 | 2.15 ± 0.91 | 1.87 ± 0.52 | 1.42 ± 0.23 |
Caffeic acid | 0.47 ± 0.21 c | 1.18 ± 0.55 b | 1.93 ± 0.23 a | 0.77 ± 0.22 | 0.75 ± 0.18 | 0.65 ± 0.11 | 0.49 ± 0.28 b | 0.91 ± 0.29 a | 0.74 ± 0.11 ab |
p-coumaric acid | 0.85 ± 0.21 b | 2.04 ± 0.56 a | 2.47 ± 0.29 a | 1.36 ± 0.28 | 1.39 ± 0.45 | 1.08 ± 0.15 | 1.10 ± 0.44 c | 1.54 ± 0.31 b | 2.49 ± 0.16 a |
Salicylic acid | 1.5 ± 0.47 b | 1.24 ± 0.28 b | 2.27 ± 0.48 a | 1.80 ± 0.53 a | 0.99 ± 0.26 b | 1.22 ± 0.17 b | 1.63 ± 0.61 a | 0.75 ± 0.40 b | 0.72 ± 0.16 b |
Syringic acid | 2.75 ± 1.29 b | 2.23 ± 0.76 b | 4.43 ± 0.61 a | 4.12 ± 0.59 a | 2.9 ± 0.67 b | 2.11 ± 0.57 b | 2.87 ± 1.60 ab | 1.57 ± 0.52 b | 3.06 ± 0.58 a |
Bound phenolic acids | |||||||||
Ferulic acid | 598 ± 96 a | 461 ± 85 b | 583 ± 17 a | 503 ± 43 c | 590 ± 71 b | 671 ± 84 a | 514 ± 94 b | 523 ± 90 b | 680 ± 110 a |
p-HBA 1 | 4.15 ± 0.99 a | 0.99 ± 0.27 b | 1.21 ± 0.25 b | 3.12 ± 1.11 a | 2.44 ± 0.45 b | 3.99 ± 0.64 a | 1.71 ± 0.94 | 1.39 ± 0.61 | 1.32 ± 0.32 |
Caffeic acid | 2.5 ± 1.09 a | 1.46 ± 0.63 b | 2.36 ± 0.40 ab | 2.30 ± 0.66 | 1.86 ± 0.83 | 1.95 ± 0.34 | 1.48 ± 0.83 b | 2.24 ± 0.54 a | 2.21 ± 0.32 ab |
p-coumaric acid | 12.3 ± 3.0 b | 28.7 ± 9.3 a | 32.7 ± 5.0 a | 16.3 ± 3.4 | 16.7 ± 5.4 | 12.9 ± 1.8 | 12 ± 6.4 c | 18.4 ± 3.7 b | 29.9 ± 1.9 a |
Sinapic acid | 1.39 ± 0.80 b | 2.72 ± 1.29 a | 3.57 ± 0.39 a | 2.37 ± 0.41 b | 2.52 ± 0.94 b | 3.51 ± 0.41 a | 1.25 ± 0.82 b | 2.4 ± 0.70 a | 3.06 ± 0.33 a |
Syringic acid | 2.82 ± 1.47 | 2.52 ± 1.25 | 2.33 ± 0.17 | 6.19 ± 0.89 a | 3.12 ± 0.96 b | 3.17 ± 0.86 b | 3.81 ± 1.61 a | 2.36 ± 0.78 b | 4.58 ± 0.87 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barański, M.; Lacko-Bartošová, M.; Rembiałkowska, E.; Lacko-Bartošová, L. The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy 2020, 10, 673. https://doi.org/10.3390/agronomy10050673
Barański M, Lacko-Bartošová M, Rembiałkowska E, Lacko-Bartošová L. The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy. 2020; 10(5):673. https://doi.org/10.3390/agronomy10050673
Chicago/Turabian StyleBarański, Marcin, Magdaléna Lacko-Bartošová, Ewa Rembiałkowska, and Lucia Lacko-Bartošová. 2020. "The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat" Agronomy 10, no. 5: 673. https://doi.org/10.3390/agronomy10050673
APA StyleBarański, M., Lacko-Bartošová, M., Rembiałkowska, E., & Lacko-Bartošová, L. (2020). The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy, 10(5), 673. https://doi.org/10.3390/agronomy10050673