Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Preparation
2.3. Data Analysis
2.4. Categorical Meta-Analysis
3. Results
3.1. Effects of RR Methods on SOC Storage
3.2. Effects of Field Management Practices on SOC Storage under RR
3.3. Effects of Climatic and Soil Conditions on SOC Storage under RR
3.4. SOC Sequestration Rate and Its Correlation with Influential Factors under RR
4. Discussion
4.1. Impacts of RR Methods on SOC Storage
4.2. Combined Effects of Field Management Practices on SOC Storage under RR
4.3. SOC Sequestration Rate under RR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Johnson, J.M.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Lal, R. Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosys. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.Y.; Liu, S.L.; Qi, J.Y.; Wang, X.; Pu, C.; Li, S.S.; Zhang, X.Z.; Yang, X.G.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2020, 31, 694–709. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.Y.; Liu, B.Y.; Kan, Z.R.; Zhao, X.; Xiao, X.P.; Zhang, H.L. Strategic tillage effects on soil properties and agricultural productivity in the paddies of Southern China. Land Degrad. Dev 2019. [Google Scholar] [CrossRef]
- Mosaddeghi, M.R.; Mah boubi, A.A.; Safadoust, A. Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage Res. 2009, 104, 173–179. [Google Scholar] [CrossRef]
- Yao, S.; Teng, X.; Zhang, B. Effects of rice straw incorporation and tillage depth on soil puddlability and mechanical properties during rice growth period. Soil Tillage Res. 2015, 146, 125–132. [Google Scholar] [CrossRef]
- Lal, R. Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag. 2008, 28, 747–758. [Google Scholar] [CrossRef]
- Wang, G.H.; Dobermann, A.; Witt, C.; Sun, Q.Z.; Fu, R. Performance of Site-Specific Nutrient Management for Irrigated Rice in Southeast China. Agron. J. 2001, 93, 869–878. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Wang, W.J.; Reeves, S.; Gibson, I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil Tillage Res. 2011, 112, 133–139. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and Challenges of Soil Carbon Sequestration by Conservation Agriculture in China. Adv. Agron. 2014, 124, 1–36. [Google Scholar]
- Zhao, X.; Liu, S.L.; Pu, C.; Zhang, X.Q.; Xue, J.F.; Ren, Y.X.; Zhao, X.L.; Chen, F.; Lal, R.; Zhang, H.L. Crop yields under no-till farming in China: A meta-analysis. Eur. J. Agron. 2017, 84, 67–75. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.; Li, J.; Hu, J. Comparative effects of different maize straw returning modes on soil humus composition and humic acid structural characteristics in Northeast China. Chem. Ecol. 2018, 34, 355–370. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Li, Y.E.; Shi, S.; Waqas, M.A.; Zhou, X.; Li, J.; Wan, Y.; Qin, X.; Gao, Q.; Liu, S.; Wilkes, A. Long-term (≥20 years) application of fertilizers and straw return enhances soil carbon storage: A meta-analysis. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 603–619. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, C.X.; Wang, X.D.; Rees, R.M. Changes in soil organic carbon and its chemical fractions under different tillage practices on loess soils of the Guanzhong Plain in north-west China. Soil Use Manag. 2013, 29, 344–353. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez-Gutiérrez, J.D.; Osborne, S.L.; Nleya, T.; Guzman, J.; Rohila, J.S. Cover Crops and Returning Residue Impact on Soil Organic Carbon, Bulk Density, Penetration Resistance, Water Retention, Infiltration, and Soybean Yield. Agron. J. 2019, 111, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Gurevitch, J.; Hedges, L.V. Statistical Issues in Ecological Meta-Analyses. Ecology 1999, 80, 1142–1149. [Google Scholar] [CrossRef]
- Philibert, A.; Loyce, C.; Makowski, D. Assessment of the quality of meta-analysis in agronomy. Agric. Ecosyst. Environ. 2012, 148, 72–82. [Google Scholar] [CrossRef]
- Werf, E.V. Lack’s Clutch Size Hypothesis: An Examination of the Evidence Using Meta-Analysis. Ecology 1992, 73, 1699–1705. [Google Scholar] [CrossRef]
- Bender, D.J.; Contreras, T.A.; Fahrig, L. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 1998, 79, 517–533. [Google Scholar] [CrossRef]
- Song, G.; Li, L.; Pan, G.; Zhang, Q. Topsoil Organic Carbon Storage of China and Its Loss by Cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 74, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.F.; Xu, S.Q.; Zhang, H.L.; Chen, F.; Xiao, X.P. Effects of Rotational Tillage in Double Rice Cropping Region on Organic Carbon Storage of the Arable Paddy Soil. Sci. Agric. Sin. 2010, 43, 3776–3783. [Google Scholar]
- Rosenberg, M.S.; Adams, D.C.; Gurevitch, J. MetaWin: Statistical Software for Meta-Analysis; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.C.; Gurevitch, J.; Rosenberg, M.S. Resampling Tests for Meta-Analysis of Ecological Data. Ecology 1997, 78, 1277–1283. [Google Scholar] [CrossRef]
- Curtis, P.S.; Wang, X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 1998, 113, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.B.; Ainsworth, E.A.; Long, S.P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 2003, 26, 1317–1328. [Google Scholar] [CrossRef]
- Ji, S.; Unger, P.W. Soil Water Accumulation under Different Precipitation, Potential Evaporation, and Straw Mulch Conditions. Soil Sci. Soc. Am. J. 2001, 65, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Rathore, A.L.; Pal, A.R.; Sahu, K.K. Tillage and Mulching Eþects on Water Use, Root Growth and Yield of Rainfed Mustard and Chickpea Grown after Lowland Rice. J. Sci. Food Agric. 1998, 78, 149–161. [Google Scholar] [CrossRef]
- Peng, H.; Ji, X.H.; Wu, J.M.; Zhu, J.; Tian, F.X. Organic Carbon and Carbon Pool Management Index in Soil under Different Rice Straw Returning Way in Double-croping Paddy Fields. Ecol. Environ. Sci. 2016, 25, 563–568. [Google Scholar]
- Li, X.J.; Zhang, Z.G.; Li, Y.X. Effects of soil depth on decay speed of straw. Acta Pedol. Sin. 2001, 38, 135–138. [Google Scholar]
- Hu, G.Q.; Liu, X.; He, H.B.; Zhang, X.D. Fate of Nitrogen Contained in Maize Stalk Mulch in No-tillage System. Acta Pedol. Sin. 2016, 53, 963–971. [Google Scholar]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Han, L.J.; Yan, Q.J.; Liu, X.Y.; Hu, J.Y. Straw resources and their utilization in China. Trans. CSAE 2002, 18, 87–91. [Google Scholar]
- West, T.O.; Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Chang. 2007, 80, 25–41. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Xue, J.F.; Pu, C.; Zhang, X.Q.; Liu, S.L.; Chen, F.; Lal, R.; Zhang, H.L. Management-Induced Changes to Soil Organic Carbon in China: A Meta-analysis. Adv. Agron. 2015, 134, 1–50. [Google Scholar]
- Zhao, X. Effects and Potential of Conservation Tillage on Soil Carbon Sequestration and Greenhouse Gases Emission Reduction in China Based on Meta-Analysis. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, C.; Sardans, J.; Fang, Y.; Singh, B.P.; Wang, H.; Huang, X.; Zeng, C.; Tong, C.; Peñuelas, J. Multiple trade-offs between maximizing yield and minimizing greenhouse gas production in Chinese rice croplands. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; van Groenigen, K.J.; Hungate, B.A.; Cao, J.; Zhou, X.; Wang, R.W. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 2018, 4, q1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, S.; Pu, C.; Zhang, X.; Xue, J.; Zhang, R.; Wang, Y.; Lal, R.; Zhang, H.L.; Chen, F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob. Chang. Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef]
- Ahmad, S.; Li, C.; Dai, G.; Zhan, M.; Wang, J.; Pan, S.; Cao, C. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res. 2009, 106, 54–61. [Google Scholar] [CrossRef]
- Ball, B.; Crichton, I.; Horgan, G. Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil Tillage Res. 2008, 101, 20–30. [Google Scholar] [CrossRef]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crop. Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.; Reynolds, W.; Tan, C. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon. Soil Tillage Res. 2008, 100, 120–124. [Google Scholar] [CrossRef]
- Zhu, B.; Gutknecht, J.L.; Herman, D.J.; Keck, D.C.; Firestone, M.K.; Cheng, W. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 2014, 76, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Wang, X.K.; Han, B.; Ouyang, Z.Y.; Duan, X.N.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Vivanco, L.; Austin, A.T. Tree Species Identity Alters Forest Litter Decomposition through Long-Term Plant and Soil Interactions in Patagonia. Argent. J. Ecol. 2008, 96, 727–736. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z.G. Decomposition Dynamics in Mixed-Species Leaf Litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
Categorical Variables | Groups | n | Qb | p | ||||
---|---|---|---|---|---|---|---|---|
Irrigation | Irrigation | No irrigation | 52 | 0.0263 | 0.0098 | |||
Cropping pattern | Crop rotation | Without crop rotation | 320 | 0.0083 | 0.456 | |||
Cropping system | Single cropping | Double cropping | 323 | 0.0103 | 0.3602 | |||
Returning mode | others | MR | 223 | 0.0449 | 0.0694 | |||
Tillage practices | Plow tillage | Rotary tillage | No-till | 132 | 0.0018 | 0.9444 | ||
Different crops | Maize | Wheat | Rice | 329 | 0.0094 | 0.6884 | ||
Returning pattern | OSCS | ODCS | TDCS | 246 | 0.0049 | 0.7318 | ||
Returning duration (yr) | 1–5 | 6–10 | 10 | 352 | 0.0241 | 0.3762 | ||
Different residues | Maize | Wheat | Rice | 264 | 0.0023 | 0.9138 | ||
Land-use | Paddy-upland rotation | Paddy field | Dry land | 300 | 0.0454 | 0.1796 | ||
MAP (mm) | 0–500 | 500–1000 | >1000 | 316 | 0.0297 | 0.2704 | ||
MAT (°C) | 0–10 | 10–15 | >15 | 305 | 0.0254 | 0.3356 | ||
NFIR (kg N ha−1) | 0 | 1–120 | 120–240 | >240 | 309 | 0.1005 | 0.0482 | |
Returning percentage | 1/3 | 2/3 | Half | All | 351 | 0.0106 | 0.7802 | |
pHi | 4.5–5.5 | 5.5–6.5 | 6.5–7.5 | 7.5–8.5 | 8.5–9.5 | 264 | 0.0686 | 0.2664 |
Returning Duration (yr) | Cropping Pattern | Relative Change Rate (%) | 95% CI | n | Qb | p |
---|---|---|---|---|---|---|
1–5 | Crop rotation | 11.3 | 7.3–16.0 | 135 | ||
Without crop rotation | 9.9 | 6.8–13.5 | 53 | 0.0021 | 0.7278 | |
6–10 | Crop rotation | 8.1 | 5.3–11.2 | 67 | ||
Without crop rotation | 16.7 | 4.6–31.4 | 10 | 0.0187 | 0.0606 | |
>10 | Crop rotation | 12.8 | 7.6–18.4 | 46 | ||
Without crop rotation | 15.2 | 6.3–26.3 | 11 | 0.0019 | 0.7194 |
Influential Factors | n | x0 | y0 | a | Equation | R2 | p |
---|---|---|---|---|---|---|---|
Returning duration (yr) | 353 | 0.9700 | 1.4342 | −0.4653 | y = 1.4342 − 0.4653ln(x − 0.97) | 0.1699 | <0.0001 |
Soil bulk density (g cm−3) | - | - | - | - | - | - | - |
Amount of residue (kg ha−1) | 212 | - | −5.6010 | 0.8182 | y = −5.6010 + 0.8182lnx | 0.0256 | 0.0197 |
Initial SOC content (g kg−1) | 307 | −5.7730 | −1.6506 | 0.9329 | y = −1.6506 + 0.9329ln(x + 5.773) | 0.0251 | 0.0210 |
NFIR (kg N ha−1) | 302 | −2.68 × 10−13 | 1.7571 | −0.1177 | y = −1.7571 − 0.1177ln(x + 2.68 × 10−13) | 0.0475 | 0.0007 |
MAP (mm) | - | - | - | - | - | - | - |
MAT (°C) | - | - | - | - | - | - | - |
Rice yield (%) | 51 | - | 3.3206 | 2.1098 | y = 3.3206 + 2.1098lnx | 0.0943 | 0.0283 |
Wheat yield (%) | 42 | −1.2106 | 0.4126 | 11.9805 | y = 0.4126 + 11.9805ln(x + 1.2106) | 0.1898 | 0.0165 |
Maize yield (%) | - | - | - | - | - | - | - |
SOC storage (Mg C ha−1) | 357 | - | 33.8197 | 1.7147 | y = 33.8197 + 1.7147x | 0.0501 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; He, C.; Liu, B.; Zhao, X.; Liu, Y.; Wang, Q.; Zhang, H. Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis. Agronomy 2020, 10, 691. https://doi.org/10.3390/agronomy10050691
Wang X, He C, Liu B, Zhao X, Liu Y, Wang Q, Zhang H. Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis. Agronomy. 2020; 10(5):691. https://doi.org/10.3390/agronomy10050691
Chicago/Turabian StyleWang, Xudong, Cong He, Bingyang Liu, Xin Zhao, Yang Liu, Qi Wang, and Hailin Zhang. 2020. "Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis" Agronomy 10, no. 5: 691. https://doi.org/10.3390/agronomy10050691
APA StyleWang, X., He, C., Liu, B., Zhao, X., Liu, Y., Wang, Q., & Zhang, H. (2020). Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis. Agronomy, 10(5), 691. https://doi.org/10.3390/agronomy10050691