Technology Adoption and Extension Strategies in Mediterranean Agriculture: The Case of Family Farms in Chile
Abstract
:1. Introduction
Technology Adoption and Extension
2. Materials and Methods
3. Results
Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- FAO. Master Plan. Retrieved from International Year of Family Farming. 2013. Available online: http://www.fao.org/fileadmin/user_upload/iyff/docs/Final_Master_Plan_IYFF_2014_30-05.pdf (accessed on 12 January 2020).
- Kumar, P.; Ratnakar, R. A scale to measure farmers’ attitude towards ICT-based Extension Services. Indian Res. J. Ext. Educ. 2011, 11, 109–112. [Google Scholar]
- FAO. The State of Food and Agriculture. Livestock in the Balance. 2016. Available online: http://www.fao.org/3/a-i6030e.pdf (accessed on 12 January 2020).
- FAO. Fact Sheet Smallholders. 2012. Available online: http://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Factsheet_SMALLHOLDERS.pdf (accessed on 12 January 2020).
- Anderson, J.; Feder, G. Agricultural extension: Good intentions and hard realities. World Bank Res. Obser. 2004, 19, 41–60. [Google Scholar] [CrossRef]
- Evenson, E. Economic impacts of agricultural research and extension. In Handbook of Agricultural Economics, 1st ed.; Chapter 11; Gardner, L., Rausser, G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1, pp. 573–628. [Google Scholar]
- Kay, C. Chile’s neoliberal agrarian transformation and the peasantry. J. Agrar. Chang. 2002, 2, 464–501. [Google Scholar] [CrossRef]
- OECD. OECD Review of Agricultural Policies: Chile; OECD Publishing: Paris, France, 2008. [Google Scholar]
- INDAP. La Agricultura Familiar Campesina en Chile y los Usuarios de INDAP. 2016. Available online: https://www.indap.gob.cl/docs/default-source/default-document-library/afc-en-chile-y-los-usuarios-de-indap.pdf?sfvrsn=0 (accessed on 15 December 2019).
- INDAP. Lineamientos Estratégicos 2014 a 2018. 2014. Available online: https://www.indap.gob.cl/biblioteca/documentos-indap/!k/lineamientos-estrategico (accessed on 15 December 2019).
- Jara-Rojas, R.; Díaz, J.; Manríquez, P.; Rojas, A. Classification criteria and commercial profile re-definition of the Family Farm Agriculture in Chile, Maule region. Rev. FCA Uncuyo 2012, 44, 143–156. [Google Scholar]
- Berdegué, J.; Marchant, C. Chile’s Agricultural Advisory Service for Small Farmers: 1978–2000. 2001. Available online: https://www.rimisp.org/wp-content/files_mf/135912535332.pdf (accessed on 10 December 2019).
- Edmonds, C. The effect of technology transfer program participation on small farms in Chile. In Proceedings of the 1999 Annual meeting, Nashville, TN, USA, 8–11 August 1999. [Google Scholar]
- Boza, S.; Jara-Rojas, R. Peri-urban family farming and agricultural earnings: The effect of long-term participation in an extension program in a Metropolitan area. Cien. Investig. Agrc. 2018, 45, 99–108. [Google Scholar] [CrossRef]
- INDAP. INDAP en Cifras año 2017. 2018. Available online: https://www.indap.gob.cl/servicios-indap/plataforma-de-servicios/asesor%C3%ADas/!k/programa-de-asesoria-tecnica-sat (accessed on 10 December 2019).
- Parvan, A. Agricultural Technology Adoption Issues for Consideration When Scaling-Up. Cornell Policy Rev. 2011, 1, 495–504. [Google Scholar]
- Engler, A.; Jara-Rojas, R.; Bopp, C. Efficient use of water resources in vineyards: A recursive joint estimation for the adoption of irrigation technology and scheduling. Water Res. Man. 2016, 30, 5369–5383. [Google Scholar] [CrossRef]
- Tsinigo, E.; Behrman, J. Technological priorities in rice production among smallholder farmers in Ghana. J. Life Sci. 2017, 83, 47–56. [Google Scholar] [CrossRef]
- Alcon, F.; de Miguel, M.D.; Burton, M. Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technol. Forecast. Soc. Chang. 2011, 78, 991–1001. [Google Scholar] [CrossRef]
- Ali, A.; Abdulai, A. The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan. J. Agric. Econ. 2010, 6, 175–192. [Google Scholar] [CrossRef]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of adoption and impacts of improved maize varieties in Eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Beyene, A.D.; Kassie, M. Speed of adoption of improved maize varieties in Tanzania: An application of duration analysis. Technol. Forecast. Soc. 2015, 96, 298–307. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Bekele, W.; Drake, L. Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: A case study of the Hunde-Lafto area. Ecol. Econ. 2003, 46, 437–451. [Google Scholar] [CrossRef]
- Tsegaye, W.; LaRovere, R.; Mwabu, G.; Kassie, G.T. Adoption and farm-level impact of conservation agriculture in Central Ethiopia. Environ. Dev. Sustain. 2017, 19, 2517–2533. [Google Scholar] [CrossRef]
- Abdulai, A.; Huffman, W. The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Econ. 2014, 90, 26–43. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Bravo-Ureta, B.E.; Engler, A.; Díaz, J. An analysis of the joint adoption of soil and water conservation practices in Central Chile. Land Use Policy 2013, 32, 292–301. [Google Scholar] [CrossRef]
- Bryant, A.; Charmaz, K. The Sage Handbook of Grounded Theory; Sage Publications Ltd.: London, UK, 2007. [Google Scholar]
- Vélez, I.; Espinosa, G.; Omaña, S.; González, O. Technology adoption in dairy family enterprises in Guanajuato, Mexico. Actas Iberoam. Conserv. Anim. 2013, 3, 88–96. [Google Scholar]
- Janssen, E.; Swinnen, J. Technology adoption and value chains in developing countries: Evidence from dairy in India. Food Policy 2017, 83, 327–336. [Google Scholar] [CrossRef]
- Aguilar-Gallegos, N.; Muñoz-Rodríguez, M.; Santoyo-Cortés, H.; Aguilar-Ávila, J.; Klerkx, L. Information networks that generate economic value: A study on clusters of adopters of new or improved technologies and practices among oil palm growers in Mexico. Agric. Syst. 2015, 135, 122–132. [Google Scholar] [CrossRef]
- Ponce-Méndez, F.; Rendón-Medel, R.; Zarazúa-Escobar, J. Desarrollo de Capacidades Tecnológicas Mediante la Gestión de Redes Locales de Innovación; Departamento de Zootecnia, Universidad Autónoma Chapingo: Texcoco, Mexico, 2011; pp. 1–20. [Google Scholar]
- Snapp, S.S.; Grabowski, P.; Chikowo, R.; Smith, A.; Anders, E.; Sirrine, D.; Chimonyo, V.; Bekunda, M. Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible? Agric. Syst. 2018, 162, 77–88. [Google Scholar] [CrossRef]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Veliz, C. Análisis Multivariante. Métodos Estadísticos; Cengage Learning: Buenos Aires, Argentina, 2017. [Google Scholar]
- García-Torres, L.; Martínez-Vilela, A.; De Noreña, F.S. Conservation Agriculture in Europe: Current Status and Perspectives. In Conservation Agriculture; García-Torres, L., Benites, J., Martínez-Vilela, A., Holgado-Cabrera, A., Eds.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Salas González, J.M.; Leos Rodríguez, J.A.; Sagarnaga Villegas, L.; Zavala-Pineda, M.J. Technology adoption by producers participating in the livestock productivity enhancement scheme (PROGAN) in Mexico. Rev. Mex. Cienc. Pecu. 2013, 4, 243–254. [Google Scholar]
- Jara-Rojas, R.; Bravo-Ureta, B.; Solís, D.; Martínez, D. Technical efficiency and marketing channels among small scale farmers: Evidence for raspberry production in Chile. Int. Food Agribus. Manag. Rev. 2018, 21, 351–364. [Google Scholar] [CrossRef]
- Solís, D.; Bravo-Ureta, B.; Quiroga, R. Determinants of household efficiency among small-scale hillside farmers in El Salvador and Honduras. J. Agric. Econ. 2009, 60, 202–219. [Google Scholar]
- ODEPA. Estudio de Evaluación de Desempeño y de Impacto del Programa de Incentivos Para la Sustentabilidad Agroambiental de los Suelos Agropecuarios. Departamento de Economía Agraria Universidad de Talca. 2016. Available online: https://www.odepa.gob.cl/wp-content/uploads/2017/12/estudioSirsd2016.pdf (accessed on 20 April 2020).
- Amsalu, A.; de Graaff, J. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed. Ecol. Econ. 2007, 61, 294–302. [Google Scholar] [CrossRef]
- Hassan, M.B.; Baiyegunhi, L.J.S.; Ortmann, G.F.; Abdoulaye, T. Adoption of striga (Striga hermonthica) Management Technologies in Northern Nigeria. Agrekon 2016, 55, 168–188. [Google Scholar] [CrossRef]
Reference | Year | Country | Technology | Variable Type/Effect | Crop(s) |
---|---|---|---|---|---|
[1] | 2016 | Ghana | Chemical fertilizer | presence of extensionist/+ | Rice |
[18] | 2016 | Chile | Irrigation technologies | presence of extensionist/+ | Vineyards |
[19] | 2017 | Ghana | Improved varieties | number of extension contact/+ | Rice |
[20] | 2011 | Spain | Irrigation technologies | presence of extensionist /+ | Various crops |
[21] | 2010 | Pakistan | Improved varieties | presence of extensionist/+ | Cotton |
[22] | 2015 | Zambia | Improved varieties | number of extension contact/+ | Maize |
[23] | 2015 | Tanzania | Improved varieties | presence of extensionist/+ | Maize |
[24] | 2012 | Philippines | Certified seeds/integrated crop management | presence of extensionist/+ | Rice |
[25] | 2003 | Ethiopia | Soil and water conservation | presence of extensionist + | Various crops |
[26] | 2017 | Ethiopia | Conservation Agriculture | number of extension contact/+ | Maize |
[27] | 2014 | Ghana | Soil and water conservation | presence of extensionist/+ | Rice |
[28] | 2013 | Chile | Soil and water conservation | presence of extensionist/+ | Various crops |
Categories | Practices | Weight * | Adoption | Berries | Vegetables |
---|---|---|---|---|---|
Techniques and productive information | Information on chemicals dosage | 0.71 | 92% | x | x |
Soil analysis information | 0.68 | 89% | x | x | |
Market information | 0.65 | 65% | x | x | |
Informal group sales | 0.65 | 44% | x | x | |
Price information | 0.60 | 75% | x | x | |
Previous formal training—last two years | 0.55 | 67% | x | x | |
Internet use for farm decisions | 0.74 | 49% | x | x | |
Calibration (nozzles) machinery | 0.55 | 64% | x | x | |
Conservation | Ridge cultivation | 0.65 | 62% | x | x |
Use of groundwater for irrigation | 0.66 | 42% | x | x | |
Use of guano, compost, humus | 0.65 | 45% | x | x | |
Crop rotation | 0.62 | 46% | na | x | |
Intercropping | 0.68 | 16% | x | x | |
Stubble incorporation | 0.65 | 54% | na | x | |
Use of mulch | 0.66 | 22% | x | x | |
Mechanical weed control | 0.63 | 62% | x | x | |
Cleaning irrigation channels | 0.65 | 74% | x | x | |
Scheduling irrigation (climatic or soil) | 0.74 | 52% | x | x | |
Infrastructure and certification | Input storage shed | 0.71 | 78% | x | x |
Packing room (harvesting) | 0.80 | 39% | x | na | |
Own transport for products | 0.55 | 58% | x | x | |
Good agricultural practice (GAP) | 0.73 | 31% | x | x | |
Technological innovation | Improved seeds (certified) | 0.69 | 37% | na | x |
Use of Trichoderma | 0.60 | 32% | x | x | |
Pressurized irrigation system | 0.75 | 38% | x | x | |
Minor mechanization (roto-cultivator, brush cutter, fumigator) | 0.74 | 89% | x | x | |
Mechanized harvest | 0.62 | 21% | na | x | |
Greenhouse | 0.66 | 25% | na | x | |
Improved varieties (from certified plant nursery) | 0.63 | 63% | x | na | |
Implements for soil preparation | 0.74 | 71% | x | x | |
Total practices | 25 | 28 |
Variables * | Clusters | ||
---|---|---|---|
High (n = 24) | Intermediate (n = 46) | Low (n = 31) | |
Average adoption index (AI) | 0.88 | 0.65 | 0.38 |
Average adoption rate (%) | 75.7 | 52.2 | 31.9 |
Household characteristics | |||
Age (years) | 54.5 n.s. | 51.8 n.s. | 50.8 n.s. |
Education (years) | 8.7 n.s. | 9.0 n.s. | 8.9 n.s. |
Female-headed household (in %) | 12.5 n.s. | 15.2 n.s. | 15.8 n.s. |
Household size (number) | 4.0 n.s. | 3.4 n.s. | 3.3 n.s |
Years of crop experience (in years) | 10.4 n.s.. | 12.4 n.s. | 9.9 n.s. |
Farm characteristics | |||
Farm size (own land in ha) | 4.5 a | 2.9 a | 1.7 b |
Total farm size (owned plus rented land) | 4.9 n.s. | 3.9 n.s. | 5.3 n.s. |
Value of production ($US/farm) mean | 69,116 a | 21,554 b | 6130 b |
Extension characteristics | |||
Time as SAT beneficiary (years) | 8.2 n.s. | 8.1 n.s. | 6.7 n.s. |
Time with same PEC (years) | 5.3 n.s. | 4.3 n.s. | 3.9 n.s. |
Extension strategies | |||
Visits (number/year) | 10.1 n.s. | 11.0 n.s. | 12.0 n.s. |
Duration of visits (minutes) | 75.4 a | 57.7 b | 52.7 b |
Field days (days/year) | 2.7 a | 2.9 a | 1.3 bc |
Expert consultant visits (number/year) | 1.5 a | 0.9 b | 0.1 c |
Group meetings (number/year) | 1.6 a | 1.2 a | 0.4 b |
Farmer incentives | |||
PDI-Investment development program (%) | 50.0 n.s. | 50.0 n.s. | 54.8 n.s. |
Soil recovery program (%) | 33.3 a | 13.0 ab | 6.5 b |
Irrigation projects (%) | 50.0 a | 30.4 a | 9.7 b |
INDAP credits (%) | 37.5 n.s. | 34.7 n.s. | 22.5 n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Rojas, R.; Canales, R.; Gil, J.M.; Engler, A.; Bravo-Ureta, B.; Bopp, C. Technology Adoption and Extension Strategies in Mediterranean Agriculture: The Case of Family Farms in Chile. Agronomy 2020, 10, 692. https://doi.org/10.3390/agronomy10050692
Jara-Rojas R, Canales R, Gil JM, Engler A, Bravo-Ureta B, Bopp C. Technology Adoption and Extension Strategies in Mediterranean Agriculture: The Case of Family Farms in Chile. Agronomy. 2020; 10(5):692. https://doi.org/10.3390/agronomy10050692
Chicago/Turabian StyleJara-Rojas, Roberto, Romina Canales, José M. Gil, Alejandra Engler, Boris Bravo-Ureta, and Carlos Bopp. 2020. "Technology Adoption and Extension Strategies in Mediterranean Agriculture: The Case of Family Farms in Chile" Agronomy 10, no. 5: 692. https://doi.org/10.3390/agronomy10050692
APA StyleJara-Rojas, R., Canales, R., Gil, J. M., Engler, A., Bravo-Ureta, B., & Bopp, C. (2020). Technology Adoption and Extension Strategies in Mediterranean Agriculture: The Case of Family Farms in Chile. Agronomy, 10(5), 692. https://doi.org/10.3390/agronomy10050692