Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review
Abstract
:1. Introduction
2. Biology and Distribution of Corn Poppy and Cornflower
3. Revision of Herbicides for Controlling Corn Poppy and Cornflower in Europe
4. Characteristics of Herbicide-Resistant Corn Poppy
Fitness Costs of Herbicide-Resistant Corn Poppy
5. Characteristics of Herbicide-Resistant Cornflower in Poland
6. Management of Resistant Corn Poppy and Cornflower
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heywood, V.H. Flowering Plants of the World; University Press Oxford: New York, NY, USA, 1993; p. 335. [Google Scholar]
- Holm, L.; Doll, J.; Holm, E.; Pancho, J.; Herberger, J. World Weeds: Natural Histories and Distribution; John Wiley: New York, NY, USA, 1997; p. 129. [Google Scholar]
- Mitich, L.W. Corn poppy (Papaver rhoeas L.). Weed Technol. 2000, 14, 826–829. [Google Scholar] [CrossRef]
- Petit, C.; Arnal, H.; Darmency, H. Effect of fragmentation and population size on the genetic diversity of Centaurea cyanus L. (Asteraceae) population. Plant. Ecol. Evolut. 2015, 148, 191–198. [Google Scholar] [CrossRef]
- Coble, H.D.; Schroeder, J. Call to action on herbicide resistance management. Weed Sci. 2016, 64, 661–666. [Google Scholar] [CrossRef]
- HRAC (Herbicide Resistance Action Committee). Available online: https://www.hracglobal.com/ (accessed on 15 April 2020).
- Moss, S.R. Herbicide-resistant weeds in Europe: The wider implications. Communic. Agric. Appl. Biol. Sci. 2004, 69, 3–11. [Google Scholar]
- Sattin, M.; Costa, B.; Campagna, C.; Valle, N.D.; Tabacchi, M.; Manuello, D.; Bartolini, D.; Magnani, D.; Miravalle, R. Herbicide resistance, analysis and risk management. Informatore Agrario 2007, 63, 55–61. [Google Scholar]
- Marshall, R.; Hull, R.; Moss, S.R. Target site resistance to ALS inhibiting herbicides in Papaver rhoeas and Stellaria media biotypes from the UK. Weed Res. 2010, 50, 621–630. [Google Scholar] [CrossRef]
- Calha, I.; Rocha, F.; Ruiz-Santaella, J.P.; Cruz-Hipolito, H. Two decades of herbicide resistance in the Iberian Peninsula. J. Plant. Dis. Prot. 2008, Special Issue XXI, 79–84. [Google Scholar]
- Rey-Caballero, J.; Menéndez, J.; Giné-Bordonaba, J.; Salas, M.; Alcántara, R.; Torra, J. Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas). Pest. Biochem. Physiol. 2016, 133, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Guillemin, J.P.; Bellanger, S.; Reibeil, C.; Darmency, H. Longevity, dormancy and germination of Cyanus segetum. Weed Res. 2017, 57, 361–371. [Google Scholar] [CrossRef]
- Heap IM International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.org (accessed on 15 April 2020).
- Adamczewski, K.; Matysiak, K.; Kierzek, R.; Kaczmarek, S. Significant increase of weed resistance to herbicides in Poland. J. Plant. Prot. Res. 2019, 59, 139–150. [Google Scholar]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant. Sci. 2020, 290, 110255. [Google Scholar] [CrossRef] [PubMed]
- EPPO. Efficacy evaluation of plant protection products PP 1/213 (4) resistance risk analysis. OEPP EPPO Bull. 2015, 45, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Moss, S.; Ulber, L.; den Hoed, I. A herbicide resistance risk matrix. Crop. Prot. 2019, 115, 13–19. [Google Scholar] [CrossRef]
- Hanf, M. Farbatlas Feldflora. Wildkräuter und Unkräuter; Verlag Eugen Ulmer: Stuttgart, Germany, 1990; p. 226. [Google Scholar]
- Cirujeda, A.; Recasens, J.; Torra, J.; Taberner, A. A germination study of herbicide-resistant field poppies in Spain. Agron. Sustain. Develop. 2008, 28, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Häfliger, T.J.; Wolf, M. Dicot Weeds. Dicotyledonous Weeds of 13 Families; Ciba-Geigy: Basel, Switzerland, 1988. [Google Scholar]
- Izquierdo, J.; González-Andújar, J.L.; Bastida, F.; Lezaún, J.A. A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Sci. 2009, 57, 660–664. [Google Scholar] [CrossRef]
- Cirujeda, A.; Aibar, J.; Zaragoza, C. Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agron. Sustain. Develop. 2011, 31, 675–688. [Google Scholar] [CrossRef]
- Muenscher, W.C. Weeds, 2nd ed.; The Macmillan Company: New York, NY, USA, 1955. [Google Scholar]
- Muller-Scharer, H. The biological control of Centaurea ssp. in North America: Do insects solve the problem? Pest. Sci. 1993, 37, 343–353. [Google Scholar] [CrossRef]
- Bellanger, S.; Guillemin, J.P.; Darmency, H. Pseudo-self-compatibility in Centaurea cyanus L. Flora 2014, 209, 325–331. [Google Scholar] [CrossRef]
- Bellanger, S.; Guillemin, J.P.; Touzeau, S.; Darmency, H. Variation of inbreeding depression in Centaurea cyanus L.; a self-incompatible species. Flora 2015, 212, 24–29. [Google Scholar] [CrossRef]
- Muth, N.Z.; Pigliucci, M. Traits of invasiveness reconsidered: Phenotypic comparisons of introduced invasive and introduced noninvasive plant species within two closely related clades. Am. J. Bot. 2006, 93, 188–196. [Google Scholar] [CrossRef]
- Weber, E.; Sun, S.G.; Li, B. Invasive alien plants in China: Diversity and ecological insights. Biol. Inv. 2008, 10, 1411–1429. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhenyu, L.; Gregg, W.P.; Dianmo, L. Invasive species in China—An overview. Biodiv. Conserv. 2001, 10, 1317–1341. [Google Scholar] [CrossRef]
- Kondo, T.; Ueda, M.; Isobe, M.; Goto, T. A new molecular mechanism of blue color development with protocyanin, a supramolecular pigment from cornflower, Centaurea cyanus. Tetrah. Lett. 1998, 39, 8307–8310. [Google Scholar] [CrossRef]
- Holt, J.S.; Welles, S.R.; Silvera, K.; Heap, I.M.; Heredia, S.M.; Martinez-Berdeja, A.; Palenscar, K.T.; Sweet, L.C.; Ellstrand, N.C. Taxonomic and life history bias in herbicide resistant weeds: Implications for deployment of resistant crops. PLoS ONE 2013, 8, e71916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasieniuk, M.; Brûlé-Babel, A.L.; Morrison, I.N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 1996, 44, 176–193. [Google Scholar] [CrossRef]
- Lutman, J.W.; Cussans, G.W.; Wright, K.J.; Wilson, B.J.; McN Wright, G.; Lawson, H.M. The persistence of seeds of 16 weed species over six years in two arable fields. Weed Res. 2002, 42, 231–241. [Google Scholar] [CrossRef]
- Torra, J.; Recasens, J. Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Sci. 2008, 56, 826–833. [Google Scholar] [CrossRef]
- Wilson, B.J.; Wright, K.J.; Brain, P.; Clements, M.; Stephens, E. Predicting the competitive effects of weed and crop density on weed biomass, weed production and crop yield in wheat. Weed Res. 1995, 35, 265–278. [Google Scholar] [CrossRef]
- Cirujeda, A.; Recasens, J.; Taberner, A. Dormancy cycle and viability of buried seeds of Papaver rhoeas. Weed Res. 2006, 46, 327–334. [Google Scholar] [CrossRef]
- Chachulski, Ł.; Jankowski, S.; Golinowski, W. Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L. Acta Soc. Bot. Pol. 1999, 68, 69–77. [Google Scholar] [CrossRef]
- Bellanger, S.; Guillemin, J.P.; Bretagnolle, V.; Darmency, H. Centaurea cyanus as a biological indicator of segetal species richness in arable fields. Weed Res. 2012, 52, 551–563. [Google Scholar] [CrossRef]
- Nagy, K.E.; Pinke, G. Arable weed vegetation in Maros county (Transylvania). I. Cereal crops. Magyar Gyomkutatás és Technológia 2014, 15, 33–45. [Google Scholar]
- Torra, J.; Gonzalez-Andujar, L.; Recasens, J. Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate. Weed Res. 2008, 48, 136–146. [Google Scholar] [CrossRef]
- Pannacci, E.; Tei, F.; Guiducci, M. Mechanical weed control in organic winter wheat. It. J. Agron. 2017, 12, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Bojarszczuk, J.; Podleśny, J. Diversity of segetal flora in crops cultivated in selected farms in Wielkopolska province. Prog. Plant. Prot. 2019, 59, 137–148. [Google Scholar]
- Jursik, M.; Holec, J.; Andr, J. Biology and control of another important weeds of the Czech Republic: Cornflower (Centaurea cyanus L.). Listy Cukrovarnickie a Reparske 2009, 125, 90–93. [Google Scholar]
- Haliniarz, M.; Kapeluszny, J. Segetal flora of landscape parks in the Lublin region. Pamiętniki Puławskie 2006, 143, 67–74. [Google Scholar]
- Wright, K.J.; Seavers, G.P.; Wilson, B.J. Competitive effects of multiple weed species on weed biomass and wheat yield. In Proceedings of the Brighton Crop Protection Conference—Weeds, Brighton, UK, 17–20 November 1997; pp. 497–502. [Google Scholar]
- Kapeluszny, J. Krytyczne zagęszczenie maku polnego—(Papaver rhoeas L.) w pszenicy ozimej. Zeszyty Problemowe Postępów Nauk Rolniczych 1988, 349, 41–46. [Google Scholar]
- Rola, H.; Domaradzki, K.; Kaczmarek, S.; Kapeluszny, J. Significance of thresholds in integrated methods of weeding regulation in cereals. Prog. Plant. Prot. 2013, 53, 96–104. [Google Scholar]
- Wassmuth, B.E.; Stoll, P.; Tscharntke, T.; Thies, C. Spatial aggregation facilitates coexistence and diversity of wild plant species in field margins. Perspectives in Plant Ecology. Evolut. Systemat. 2009, 11, 127–135. [Google Scholar] [CrossRef]
- McNaughton, I.; Harper, J. The comparative biology of closely related species living in the same area: I. External breeding-barriers between Papaver species. New Phytol. 1960, 59, 15–26. [Google Scholar] [CrossRef]
- Kati, V.; Scarabel, L.; Thiery-Lanfranchi, D.; Kioleoglou, V.; Liberopoulou, S.; Délye, C. Multiple resistance of Papaver rhoeas L. to 2,4-D and acetolactate synthase inhibitors in four European countries. Weed Res. 2019, 59, 367–376. [Google Scholar] [CrossRef]
- Godefroid, S.; Rivie‘re, S.; Waldren, S.; Boretos, N.; Eastwood, R.; Vanderborght, T. To what extent are threatened European plant species conserved in seed banks? Biol. Conserv. 2011, 144, 1494–1498. [Google Scholar] [CrossRef]
- March-Salas, M.; Fitze, P.S. A multi-year experiment shows that lower precipitation predictability encourages plants’ early life stages and enhances population viability. PeerJ 2019, 7, 6443. [Google Scholar] [CrossRef]
- Penet, L.; Marion, B.; Bonis, A. Impact of capitulum structure on reproductive success in the declining species Centaurea cyanus (Asteraceae): Small to self and big to flirt? J. Poll. Ecol. 2012, 8, 52–58. [Google Scholar] [CrossRef]
- Le Corre, V.; Bellanger, S.; Guillemin, J.; Darmency, H.; Lutman, P. Genetic diversity of the declining arable plant Centaurea cyanus: Population fragmentation within an agricultural landscape is not associated with enhanced spatial genetic structure. Weed Res. 2014, 54, 436–444. [Google Scholar] [CrossRef]
- Svenson, R.; Wigren, W. History and biology of Centaurea cyanus in Sweden. Svensk Botanisk Tidskrift 1985, 79, 273–297. [Google Scholar]
- Kaplan, Z.; Koutecký, P.; Danihelka, J.; Šumberová, K.; Ducháček, M.; Štěpánková, J.; Ekrt, L.; Grulich, V.; Řepka, R.; Kubát, K.; et al. Distributions of vascular plants in the Czech Republic. Part 6. Preslia 2018, 90, 235–346. [Google Scholar] [CrossRef]
- Bakels, C. The early history of cornflower (Centaurea cyanus L.) in the Netherlands. Acta Palaeobot. 2012, 52, 25–31. [Google Scholar]
- Ulbert, L.; Steinmann, H.H.; Klimek, S. Using selective herbicides to manage beneficial and rare weed species in winter wheat. J. Plant. Dis. Prot. 2010, 117, 233–239. [Google Scholar] [CrossRef]
- Albrecht, H.; Mattheis, A. The effects of organic and integrated farming on rare arable weeds on the Forschungsverbund Agrarökosysteme München (FAM) research station in southern Bavaria. Biol. Conserv. 1998, 86, 347–356. [Google Scholar] [CrossRef]
- Rydberg, N.T.; Milberg, P. A survey of weeds in organic farming in Sweden. Biol. Agric. Hortic. 2000, 18, 175–185. [Google Scholar] [CrossRef]
- Wilson, P.J. The Status of Centaurea cyanus in Britain; Plantlife: Salisbury, UK, 2007. [Google Scholar]
- Kolářová, M.; Tyšer, L.; Soukup, J. Impact of site conditions and farming practices on the occurrence of rare and endangered weeds on arable land in the Czech Republic. Weed Res. 2013, 53, 489–498. [Google Scholar] [CrossRef]
- Boutin, C.; Montroy, K.; Mathiassen, S.K.; Carpenter, D.J.; Strandberg, B.; Damgaard, C. Effects of sublethal doses of herbicides on the competitive interactions between two nontarget plants, Centaurea cyanus L. and Silene noctiflora L. Environ. Toxicol. Chem. 2019, 38, 2053–2064. [Google Scholar] [CrossRef]
- Dąbkowska, T.; Sygulska, P. Variations in weed flora and the degree of its transformation in ecological and extensive conventional cereal crops in selected habitats of the Beskid Wyspowy Mountains. Acta Agrobot. 2013, 66, 123–136. [Google Scholar] [CrossRef]
- Dąbkowska, T.; Grabowska-Orządała, M.; Łabza, T. The study of the transformation of segetal flora richness and diversity in selected habitats of southern Poland over a 20-year interval. Acta Agrobot. 2017, 70, 1712. [Google Scholar] [CrossRef]
- Hanzlik, K.; Gerowitt, B. Occurrence and distribution of important weed species in German winter oilseed rape fields. J. Plant. Dis. Prot. 2012, 119, 107–120. [Google Scholar] [CrossRef]
- Hofmeijer, M.A.; Gerowitt, B. The regional weed vegetation in organic spring-sown cereals as shaped by local management, crop diversity and site. Julius Kühn Archiv 2018, 458, 288–294. [Google Scholar]
- Staniak, M.; Haliniarz, M.; Kwiecińska-Poppe, E.; Harasim, E.; Wesołowski, M. Diversity of agrocoenoses in the Lublin region, Poland. Acta Agrobot. 2017, 70, 1722. [Google Scholar] [CrossRef] [Green Version]
- Siebielec, G. Stały monitoring gleb użytków rolnych Polski. Studia i Raporty IUNG PIB 2017, 51, 57–72. [Google Scholar]
- Bagavathiannan, M.V.; Davis, A.S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest. Manag. Sci. 2018, 74, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Busi, R.; Powles, S.B.; Beckie, H.J.; Renton, M. Rotations and mixtures of soil-applied herbicides delay resistance. Pest. Manag. Sci. 2020, 76, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, C.D.S. The Pesticide Manual: A World Compendium, 14th ed.; British Crop Production Council: Alton, Hampshire, UK, 2006. [Google Scholar]
- Crane, M.; Giddings, J.M. “Ecologically acceptable concentrations” when assessing the environmental risks of pesticides under European Directive 91/414/EEC. Hum. Ecol. Risk Assess. 2004, 10, 733–747. [Google Scholar] [CrossRef]
- Håkansson, S. Weeds and Weed Management on Arable Land: An Ecological Approach; CABI Publishing: Oxon, UK, 2003. [Google Scholar]
- Cobb, A.H.; Reade, J.P. Herbicides and Plant Physiology, 2nd ed.; Wiley-Blackwell: Shropshire, UK, 2011. [Google Scholar]
- Diggle, A.J.; Neve, P.B.; Smith, F.P. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 2003, 43, 371–382. [Google Scholar] [CrossRef]
- Beckie, H.J.; Reboud, X. Selecting for weed resistance: Herbicide rotation and mixture. Weed Technol. 2009, 23, 363–370. [Google Scholar] [CrossRef]
- Hull, R.; Tatnell, L.V.; Cook, S.K.; Beffa, R.; Moss, S.R. Current status of herbicide-resistant weeds in the UK. Aspects Appl. Biol. 2014, 127, 261–272. [Google Scholar]
- Torra, J.; Cirujeda, A.; Taberner, A.; Recasens, J. Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals. Crop. Prot. 2010, 29, 731–736. [Google Scholar] [CrossRef]
- Cirujeda, A. Integrated Management of Herbicide Resistant Papaver rhoeas L. Populations. Ph.D. Thesis, University of Lleida, Lleida, Spain, 2001. [Google Scholar]
- Cirujeda, A.; Recasens, J.; Taberner, A. A qualitative quick-test for detection of herbicide resistance to tribenuron-methyl in Papaver rhoeas. Weed Res. 2001, 41, 523–534. [Google Scholar] [CrossRef]
- Peterson, G.E. The discovery and development of 2,4-D. Agric. Hist. 1967, 41, 243–254. [Google Scholar]
- Torra, J.; Rojano-Delgado, A.M.; Rey-Caballero, J.; Royo-Esnal, A.; Salas, M.; De Prado, R. Enhanced 2,4-D metabolism in two resistant Papaver rhoeas populations from Spain. Front. Plant. Sci. 2017, 13, 1584. [Google Scholar] [CrossRef] [Green Version]
- Kotoula-Syka, E.; Afentouli, C.; Georgoulas, I. Herbicide-resistant weeds in cereal crops in Greece. In Proceedings of the International Symposium on Current Trends in Plant Protection, Institute for Plant Protection and Environment, Belgrade, Serbia, 25–28 September 2012; pp. 157–161. [Google Scholar]
- Kucharski, M.; Rola, H. Corn poppy (Papaver rhoeas L.) populations resistant to photosystem II inhibiting herbicides in Poland. In Proceedings of the 14th European Weed Research Society Congress, Hamar, Norway, 17–21 June 2007; p. 154. [Google Scholar]
- Duran-Prado, M.; Osuna, M.D.; De Prado, R.; Franco, A.R. Molecular basis of resistance to sulfonylureas in Papaver rhoeas. Pest. Biochem. Physiol. 2004, 79, 10–17. [Google Scholar] [CrossRef]
- Rey-Caballero, J.; Menéndez, J.; Osuna, M.D.; Salas, M.; Torra, J. Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pest. Biochem. Physiol. 2017, 138, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaloumenos, N.S.; Eleftherohorinos, I.G. Corn poppy (Papaver rhoeas) resistance to ALS-inhibiting herbicides and its impact on growth rate. Weed Sci. 2008, 56, 789–796. [Google Scholar] [CrossRef]
- Kaloumenos, N.S.; Dordas, C.A.; Diamantidis, G.C.; Eleftherohorinos, I.G. Multiple pro197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) confer resistance to tribenuron. Weed Sci. 2009, 57, 262–268. [Google Scholar] [CrossRef]
- Kaloumenos, N.S.; Adamouli, V.N.; Christos, A.; Dordas, C.A.; Eleftherohorinos, I.G. Corn poppy (Papaver rhoeas) cross-resistanceto ALS-inhibiting herbicides. Pest. Manag. Sci. 2011, 67, 574–585. [Google Scholar] [CrossRef]
- Scarabel, L.; Carraro, N.; Sattin, M.; Varotto, S. Molecular basis and genetic characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant. Sci. 2004, 166, 703–709. [Google Scholar] [CrossRef]
- Délye, C.; Pernin, F.; Scarabel, L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant. Sci. 2011, 180, 333–342. [Google Scholar] [CrossRef]
- Scarabel, L.; Pernin, F.; Déyle, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant. Sci. 2015, 238, 158–169. [Google Scholar] [CrossRef]
- Moss, S.R.; Anderson-Taylor, G.; Beech, P.A.; Cranwell, S.D.; Davies, D.H.K.; Ford, I.J.; Spence, E.E. The current status of herbicide-resistant grass and broad-leaved weeds of arable crops in Great Britain. In Proceedings of the BCPC Brighton Crop Protection Conference on Crop Science and Technology; Hampshire, UK, 31 October–2 November 2005, pp. 139–144.
- Adamczewski, K.; Kierzek, R.; Matysiak, K. Biotypes of scentless chamomile Matricaria maritima (L.) ssp. inodora (L.) Dostal and common poppy Papaver rhoeas (L.) resistant to tribenuron methyl, in Poland. J. Plant. Prot. Res. 2014, 54, 401–406. [Google Scholar]
- Gressel, J. Evolving understanding of the evolution of herbicide resistance. Pest. Manag. Sci. 2009, 65, 1164–1173. [Google Scholar] [CrossRef]
- Powels, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Ann. Rev. Plant. Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saari, L.L.; Cotermman, J.C.; Thill, D.C. Resistance to Acetolactate Inhibiting Herbicides. Herbicide Resistance in Plants; Powles, S.B., Holtum, J.M.A., Eds.; Lewis Publishers: London, UK, 1994. [Google Scholar]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- de Queiroz, A.R.; Delatorre, C.A.; Lucio, F.R.; Rossi, C.V.; Zobiole, L.H.; Merotto, A. Rapid necrosis: A novel plant resistance mechanism to 2,4-D. Weed Sci. 2020, 68, 6–18. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Rojano-Delgado, A.M.; Dellaferrera, I.; Rosario, J.M.; Vignia, M.R.; Torra, J.; de Prado, R. Resistance mechanisms to 2,4-D in six different dicotyledonous weeds around the world. Agronomy 2020, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- LeClere, S.; Wu, C.; Westra, P.; Sammons, R.D. Cross-resistance to dicamba, 2,4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. Proc. Nat. Acad. Sci. 2018, 115, E2911–E2920. [Google Scholar] [CrossRef] [Green Version]
- Scarabel, L.; Milani, A.; Panozzo, S.; Rasoni, A. Suitable reference genes for accurate gene expression analysis in Papaver rhoeas under 2,4-D herbicide stress. Pest. Biochem. Physiol. 2017, 143, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytologist 2009, 184, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Linn, A.I.; Min, R.; Peteinatos, G.G.; Gerhards, R. In-field classification of herbicide-resistant Papaver rhoeas and Stellaria media using an imaging sensor of the maximum quantum efficiency of photosystem II. Weed Res. 2019, 59, 357–366. [Google Scholar] [CrossRef]
- Adamczewski, K.; Kierzek, R. Cornflower (Centaurea cyanus L.) cross resistant on ALS inhibitors. Prog. Plant. Prot. 2010, 50, 285–290. [Google Scholar]
- Adamczewski, K.; Kierzek, R. Mechanism of resistance to sulfonylurea herbicides of Centaurea cyanus L. biotypes cross-resistant. Prog. Plant. Prot. 2011, 51, 317–324. [Google Scholar]
- Marczewska, K.; Rola, H. Identification of resistant to chlorsulfuron of Apera spica-venti and Centaurea cyanus biotypes and chemical methods their control in winter wheat. Prog. Plant. Prot. 2006, 56, 215–222. [Google Scholar]
- Saja, D.; Rys, M.; Stawowska, I.; Skoczowski, A. Metabolic response of cornflower (Centaurea cyanus L.) exposed to tribenuron-methyl: One of the active substances of sulfonylurea herbicides. Acta Physiol. Plant. 2016, 38, 168. [Google Scholar] [CrossRef] [Green Version]
- Marczewska-Kolasa, K.; Rola, H. Methods of identification of Centaurea cyanus biotypes resistant to chlorsulfuron in South—West Poland. J. Plant. Dis. Prot. 2008, 23, 91–94. [Google Scholar]
- Kieloch, R.; Sadowski, R.; Kucharski, M. Dynamics of free amino acid content changes in plants of field poppy (Papaver rhoeas L.) under the influence of tribenuron methyl. Prog. Plant. Prot. 2012, 53, 563–566. [Google Scholar]
- Marczewska-Kolasa, K.; Skoczowski, A.; Kucharski, M. The gas chromatography and isothermal calorimetry as the methods to estimating resistance of Centaurea cyanus to chlorosulfuron. In Proceedings of the 15th European Weed Research Society Symposium, Kaposvár, Hungary, 11–15 July 2010; p. 40. [Google Scholar]
- Stokłosa, A.; Janeczko, A.; Skoczowski, A.; Kieć, J. Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L.) to aryloxyphenoxypropionate herbicides. Thermochim. Acta 2006, 441, 203–206. [Google Scholar] [CrossRef]
- Saja, D.; Rys, M.; Stokłosa, A.; Skoczowski, A. Physiological tests for early detection of rigid ryegrass (Lolium rigidum Goud.) resistance to fenoxaprop-P. Acta Physiol. Plant. 2014, 36, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Munier-Jolain, N.; Charles, R.; Wirth, J.; Schwarz, J.; van der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 2013, 27, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Kapeluszny, J.; Pawłowski, F. Próba określenia progu szkodliwości chabra bławatka i maruny bezwonnej w łanie pszenicy ozimej. Roczniki Nauk Rolniczych Seria A 1978, 103, 25–33. [Google Scholar]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Milberg, P.; Andersson, L. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Bot. 1997, 75, 1998–2004. [Google Scholar] [CrossRef]
- Baskin, C.C.; Milberg, P.; Andersson, L.; Baskin, J.M. Non-deep simple morphophysiological dormancy in seeds of the weedy facultative winter annual Papaver rhoeas. Weed Res. 2001, 42, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Saatkamp, A.; Affre, L.; Dutoit, T.; Poschlod, P. Germination traits explain soil seed persistence across species: The case of Mediterranean annual plants in cereal fields. Ann. Bot. 2011, 107, 415–426. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, M.; Firbank, L.G.; Watkinson, A.R.; Webb, D.J. Interactions between weeds of winter wheat under different fertilizer, cultivation and weed management treatments. Weed Res. 1998, 38, 11–24. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Stellacci, A.M.; Cazzato, E.; Tedone, L.; Alhajj Ali, S.; De Mastro, G. Effects of conservative tillage and nitrogen management on weed seed bank after a seven-year durum wheat—FABA bean rotation. Plants 2018, 7, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barralis, G.; Chadoeuf, R.; Lonchamp, J.P. Longevity of annual weed seeds in cultivated soil. Weed Res. 1988, 28, 407–418. [Google Scholar] [CrossRef]
- Torra, J.; Royo-Esnal, A.; Rey-Caballero, J.; Recasens, J.; Salas, M. Management of herbicide-resistant corn poppy (Papaver rhoeas) under different tillage systems does not change the frequency of resistant plants. Weed Sci. 2018, 66, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Luna, I.M.; Fernández-Quintanilla, C.; Dorado, J. Is pasture cropping a valid weed management tool? Plants 2020, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Kieloch, R.; Marczewska-Kolasa, K. Influence of the tillage system and time of application on herbicide efficacy and yielding of winter wheat grown in monoculture. Annales UMCS, Agricultura 2015, 70, 67–75. [Google Scholar]
- Ozpinar, S. Effects of tillage systems on weed population and economics for winter wheat production under the Mediterranean dryland conditions. Soil Tillage Res. 2006, 87, 1–8. [Google Scholar] [CrossRef]
- Schwarz, J.; Pallutt, B. Influence of tillage system on the weed infestation in a long-term field trial. In Proceedings of the 26th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 11–13 March 2014. [Google Scholar]
- Tyburski, J.; Rychcik, B.; Łada, M. Yielding of selected varieties of winter wheat grown in organic system on heavy soil. Fragm. Agron. 2010, 27, 186–194. [Google Scholar]
- Recasens, J.; Royo-Esnal, A.; Valencia-Gredilla, F.; Torra, J. Efficiency, profitability and carbon footprint of different management programs under no-till to control herbicide resistant Papaver rhoeas. Plants 2020, 9, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwendwa, J.M.; Jeffrey, D.W.; Weston, L.A. The use of allelopathy and competitive crop cultivars for weed suppression in cereal crops. In Integrated Weed Management for Sustainable Agriculture; Zimdahl, R., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 361–388. [Google Scholar]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Zollinger, R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Dhima, K.; Vasilakoglou, I.; Lithourgidis, A.; Mecolari, E.; Keco, R.; Agolli, X.H.; Eleftherohorinos, I. Phytotoxicity of 10 winter barley varieties and their competitive ability against common poppy and ivy-leaved speedwell. Expl. Agric. 2008, 44, 385–397. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P.; Powles, S. Targeting weed seeds in-crop: A new weed control paradigm for global agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, C.; Bitarafan, Z.; Fenselau, J.; Glasner, C. Exploiting waste heat from combine harvesters to damage harvested weed seeds and reduce weed infestation. Agriculture 2018, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, K.; Jensen, J.A.; Bitarafanand, Z.; Andreasen, C. Killing weed seeds with exhaust gas from a Combine harvester. Agronomy 2019, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Glasner, C.; Vieregge, C.; Robert, J.; Fenselau, J.; Bitarafan, Z.; Andreasen, C. Evaluation of new harvesting methods to reduce weeds on arable fields and collect a new feedstock. Energies 2019, 12, 1688. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Kingwell, R. The Harrington seed destructor: Its role and value in farming systems facing the challenge of herbicide-resistant weeds. Agric. Syst. 2016, 142, 33–40. [Google Scholar] [CrossRef]
- Sygulska, P. Agricultural and Environmental Aspects of Weed Infestation in Organic and Conventional Cereal Crops. Ph.D. Thesis, University of Agriculture in Krakow, Krakow, Poland, 11 March 2015. [Google Scholar]
- Walsh, M.J.; Harrington, R.B.; Powles, S.B. Harrington seed destructor: A new nonchemical weed control tool for global grain crops. Crop. Sci. 2012, 52, 1343–1347. [Google Scholar] [CrossRef]
SoA 1 (HRAC) | Active Ingredient | 1970–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 |
---|---|---|---|---|---|---|
B | chlorosulfuron | |||||
florasulam | ||||||
iodosulfuron-methyl-Na | ||||||
metsulfuron-methyl | ||||||
rimsulfuron | ||||||
tribenuron-methyl | ||||||
thifensulfuron-methyl | ||||||
C1 | chloridazon | |||||
cyanazine | ||||||
lenacil | ||||||
prometryne | ||||||
simazine | ||||||
C1 + K3 | phenmedipham + ethofumesate | |||||
C2 | isoproturon | |||||
E | oxadiargyl | |||||
F1 | flurochloridone | |||||
F1 + K3 | diflufenican + flufenacet | |||||
F2 + B | tembotrione + thiencarbazone-methyl | |||||
K1 | propyzamide | |||||
K3 | metazachlor | |||||
O | aminopyralid | |||||
clopyralid | ||||||
dicamba | ||||||
MCPA | ||||||
MCPB | ||||||
mecoprop |
SoA 1 (HRAC) | Active Ingredient | 1970–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 |
---|---|---|---|---|---|---|
B | chlorsulfuron | |||||
flupyrsulfuron-methyl | ||||||
iodosulfuron-methyl-Na | ||||||
metsulfuron-methyl | ||||||
rimsulfuron | ||||||
tribenuron-methyl | ||||||
tritosulfuron + florasulam | ||||||
C1 | cyanazine | |||||
metamitron | ||||||
metribuzin | ||||||
C2 | chlorotoluron | |||||
C3 | bentazon | |||||
bromoxynil | ||||||
E | oxadiargyl | |||||
F1 | diflufenikan | |||||
F2 + B | tembotrione + thiencarbazone-methyl | |||||
K1 + C2 | pendimethalin + isoproturon | |||||
O | 2,4-D 2 | |||||
aminopyralid | ||||||
clopyralid | ||||||
dicamba | ||||||
fluroxypyr | ||||||
MCPA | ||||||
MCPB |
Country | Biotype | Herbicide | HRAC 1 Group | RI 2 | Test | TSR/NTSR 5 | Ref. |
---|---|---|---|---|---|---|---|
Spain | 25/98 | chlorosulfuron, metsulfuron, rimsulfuron, sulfometuron, tribenuron, imazamox, imazapyr | B/2 | n.a. 3 | ALS activity test | TSR | [86] |
Spain | CU1 CU2 | 2,4-D 2,4-D and tribenuron | O/4 O/4, B/2 | n.a. | Seed-based quick test | NTSR | [79,83] |
Spain | D-R703 F-R213 | 2,4-D, dicamba and aminopyralid 2,4-D and tribenuron, dicamba and aminopyralid | O/4 O/4, B/2 | 15 12 and 286 | DRT 4 | NTSR | [11] |
Spain | R-213 R-313 R-114 R-703 | tribenuron florasulam imazamox 2,4-D | B/2, O/4 | 2–695 2–24 6–40 12–18 | DRT | TSR NTSR | [87] |
Greece | 28 biotypes from Thessaloniki, Kilkis and Serres | tribenuron pirythiobac imazamox florasulam | B/2 B/2 B/2 B/2 | from 137 to >2400 from 12.4 to >88 from 1.5 to 28.3 from 5.6 to 25.4 | DRT | TSR | [88,89,90] |
Greece | Bafra | chlorsulfuron tribenuron triasulfuron thifensulfuron | B/2 B/2 B/2 B/2 | 149 149 99 >>400 | DRT | TSR | [84] |
Italy | 9 biotypes | tribenuron | B/2 | n.a. | whole-plant pot test-field rate | TSR | [91] |
Italy | 02-24, 02-26 * 04-38, 04-41, 04-44 | tribenuron imazamox florasulam | B/2 B/2 B/2 | n.a. | whole-plant pot test-field rate | TSR, NTSR * | [92,93] * |
France, Greece, Italy, Spain | over 20 populations | metsulfuron tribenuron 2,4-D | B/2 B/2 O/4 | n.a. | whole-plant pot test-dose 1N and 2N | TSR (ALS inhibitors) | [50] |
United Kingdom | metsulfuron | B/2 | n.a. | DRT | n.a. | [94] | |
United Kingdom | DEV001, DEV002 DK001 | metsulfuron; tribenuron; MCPA metsulfuron; tribenuron metsulfuron; tribenuron | B/2; O/4 B/2 B/2 | >18; n.a; 1.8 >18; n.a. >18; n.a. | DRT | TSR | [9] |
Poland | 40% resistant out of 179 collected | atrazine, simazine, cyanazine and metamitron isoproturon, bentazone | C1 C2 | >6 | DRT and fluorescence test | n.a. | [85] |
Poland | R1 R2 | tribenuron | B2 | 26 24 | DRT | n.a. | [95] |
Biotype | Herbicide | HRAC 1 Group | RI 2 | Test 3 | TSR/NTSR 4 | Ref. |
---|---|---|---|---|---|---|
2/2009 1/2009 3/2010 4/2010 | tribenuron, chlorsulfuron, sulfometuron, imazapyr | B/2; B | 10.4; --; 4.6; 6.9 8.6; 7.1; 3.5; 4.2 8.2; 6.7; 1.1; 1.2 7.6; --; 3.3; 1.1 | DRT | n/a | [106,107] |
Laskowice /2001 | chlorsulfuron | B/2 | n/a, reduction in a dry mass of plants by ca. 60% | DRT | n/a | [108] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankiewicz-Kosyl, M.; Synowiec, A.; Haliniarz, M.; Wenda-Piesik, A.; Domaradzki, K.; Parylak, D.; Wrochna, M.; Pytlarz, E.; Gala-Czekaj, D.; Marczewska-Kolasa, K.; et al. Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review. Agronomy 2020, 10, 874. https://doi.org/10.3390/agronomy10060874
Stankiewicz-Kosyl M, Synowiec A, Haliniarz M, Wenda-Piesik A, Domaradzki K, Parylak D, Wrochna M, Pytlarz E, Gala-Czekaj D, Marczewska-Kolasa K, et al. Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review. Agronomy. 2020; 10(6):874. https://doi.org/10.3390/agronomy10060874
Chicago/Turabian StyleStankiewicz-Kosyl, Marta, Agnieszka Synowiec, Małgorzata Haliniarz, Anna Wenda-Piesik, Krzysztof Domaradzki, Danuta Parylak, Mariola Wrochna, Elżbieta Pytlarz, Dorota Gala-Czekaj, Katarzyna Marczewska-Kolasa, and et al. 2020. "Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review" Agronomy 10, no. 6: 874. https://doi.org/10.3390/agronomy10060874
APA StyleStankiewicz-Kosyl, M., Synowiec, A., Haliniarz, M., Wenda-Piesik, A., Domaradzki, K., Parylak, D., Wrochna, M., Pytlarz, E., Gala-Czekaj, D., Marczewska-Kolasa, K., Marcinkowska, K., & Praczyk, T. (2020). Herbicide Resistance and Management Options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review. Agronomy, 10(6), 874. https://doi.org/10.3390/agronomy10060874