Response of Broccoli Transplants to LED Light during Short and Long-Term Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Light Conditions during Storage
2.3. Growth Analyses
2.4. Chemical Analyses
2.5. Chlorophyll Fluorescence Analyses
2.6. Yield Estimation
2.7. Statistical Analyses
3. Results
3.1. Growth Analyses
3.2. Chemical Analyses
3.3. Chlorophyll Fluorescence Analyses
3.4. Yield Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klepacki, B.; Perkowska, A. Organization of food supply chains in dispersed production on the example of the vegetable sector in Poland. Ann. PAAAE 2020, 22, 149–158. [Google Scholar] [CrossRef]
- Sánchez-Pujante, P.J.; Gionfriddo, M.; Sabater-Jara, A.B.; Almagro, L.; Pedreño, M.A.; Diaz-Vivancos, P. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism. J. Plant Physiol. 2020, 248, 153136. [Google Scholar] [CrossRef] [PubMed]
- Peñas, E.; Zielińska, D.; Gulewicz, P.; Zieliński, H.; Frias, J. Vitamin C, phenolic compounds and antioxidant capacity of broccoli florets grown under different nitrogen treatments combined with selenium. Pol. J. Food Nutr. Sci. 2018, 68, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Elia, A. Harvest season and genotype affect head quality and shelf-life of ready-to-use broccoli. Agronomy 2020, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Borowski, J.; Szajdek, A.; Borowska, E.J.; Ciska, E.; Zieliński, H. Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea var. italica L.). Eur. Food Res. Technol. 2007, 226, 459–465. [Google Scholar] [CrossRef]
- Abbaoui, B.; Riedl, K.M.; Ralston, R.A.; Thomas-Ahner, J.M.; Schwartz, S.J.; Clinton, S.K.; Mortazavi, A. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: Characterization, metabolism, and interconversion. Mol. Nutr. Food Res. 2012, 56, 1675–1687. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-H.; Lim, S.-B. Antioxidant and anticancer activities of broccoli by-products from different cultivars and maturity stages at harvest. Prev. Nutr. Food Sci. 2015, 20, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Kaczperski, M.P.; Armitage, A.M. Short-term storage of plug-grown bedding plant seedlings. HortScience 1992, 27, 798–800. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, A.; Kunicki, E.; Kalisz, A.; Wojciechowska, R.; Leja, M.; Sękara, A. Chilling stress applied to broccoli transplants of different age affects yield of the plants cultivated in summer. Hortic. Sci. (Prague) 2014, 41, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Kalisz, A.; Sękara, A.; Grabowska, A.; Cebula, S.; Kunicki, E. The effect of chilling stress at transplant stage on broccoli development and yield with elements of modeling. J. Plant Growth Regul. 2015, 34, 532–544. [Google Scholar] [CrossRef]
- Kubota, C. Environmental control for growth suppression and quality preservation of transplants. Environ. Control Biol. 2003, 41, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, I.; Dan, K.; Shimomura, M. Active modified atmosphere packaging storage of cabbage plug seedlings. J. Japan Soc. Hort. Sci. 1999, 68, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Sato, F.; Yoshioka, H.; Fujiwara, T.; Higashio, H.; Uragami, A.; Tokuda, S. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness. Sci. Hortic. 2004, 101, 349–357. [Google Scholar] [CrossRef]
- Grabowska, A.; Sękara, A.; Bieniasz, M.; Kunicki, E.; Kalisz, A. Dark-chilling of seedlings affects initiation and morphology of broccoli inflorescence. Not. Bot. Horti Agrobot. Cluj. Napoca. 2013, 41, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.B.; Iwabuchi, K.; Rajapakse, N.C.; Young, R.E. Responses of broccoli seedlings to light quality during low-temperature storage in vitro: I. Morphology and survival. HortScience 1998, 33, 1253–1257. [Google Scholar] [CrossRef]
- Sato, F.; Okada, K. Daily red LED illumination improves the quality of cabbage plug seedlings during low-temperature storage. J. Hortic. Sci. Biotechnol. 2014, 89, 179–184. [Google Scholar] [CrossRef]
- Viršilė, A.; Olle, M.; Duchovskis, P. LED lighting in horticulture. In Light Emitting Diodes for Agriculture; Dutta Gupta, S., Ed.; Springer: Berlin, Germany, 2017; pp. 113–147. [Google Scholar]
- Wojciechowska, R.; Kołton, A.; Długosz-Grochowska, O.; Kunicki, E.; Mrowiec, K.; Bathelt, P. LED lighting affected the growth and metabolism of eggplant and tomato transplants in greenhouse. Hort. Sci. 2020, in press. [Google Scholar]
- Pardo, G.P.; Aguilar, C.H.; Martinez, F.R.; Pacheco, A.D.; González, C.M.; Canseco, M. Effects of light emitting diode high intensity on growth of lettuce (Lactuca sativa L.) and broccoli (Brassica oleracea L.) seedlings. Annu. Res. Rev. Biol. 2014, 4, 2983–2994. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Xiaoying, L.; Shirong, G.; Taotao, C.; Zhigang, X.; Tezuka, T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 2012, 11, 6169–6177. [Google Scholar] [CrossRef]
- Kang, W.H.; Park, J.S.; Park, K.S.; Son, J.E. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Hortic. Environ. Biotechnol. 2016, 57, 573–579. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Duchovskis, P.; Viršilė, A.; Jankauskienė, J.; Sirtautas, R.; Novickovas, A.; Skalauskienė, S.; Sakalauskaitė, J. Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic. 2012, 952, 885–892. [Google Scholar] [CrossRef]
- D’Souza, C.; Yuk, H.-G.; Khoo, G.H.; Zhou, W. Light-emitting diodes in postharvest quality preservation and microbiological food safety. In Light Emitting Diodes for Agriculture; Dutta Gupta, S., Ed.; Springer: Berlin, Germany, 2017; pp. 191–235. [Google Scholar]
- Hasperué, J.H.; Guarddianelli, L.; Rodoni, L.M.; Chavesa, A.R.; Martinezc, G.A. Continuous white-blue LED light exposition delays postharvest senescence of broccoli. LWT Food Sci. Technol. 2016, 65, 495–502. [Google Scholar]
- Braidot, E.; Petrussa, E.; Perreson, C.; Patuia, S.; Bertolinia, A.; Tubarob, F.; Wählbyc, U.; Coanc, M.; Vianelloa, A.; Zancania, M. Low-intesity light cycles improve the quality of lamb‘s lettuce (Varianella olitoria [L.] Pollich) during storage at low temperature. Postharvest Biol. Technol. 2014, 90, 15–23. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Štroch, M.; Materová, Z.; Vrábl, D.; Karlický, V.; Šigut, L.; Nezval, J.; Špunda, V. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. Plant Physiol. Biochem. 2015, 96, 90–96. [Google Scholar] [CrossRef]
- Yemm, E.W.; Wills, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of a total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Axler, R.C.; Owen, C.J. Measuring chlorophyll and phaeophytin: Whom should you believe? Lake Reservoir Manag. 1994, 8, 143–151. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteau micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Du, Z.; Bramlage, W.J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 1992, 40, 1566–1570. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Ruban, A. Evolution under sun: Optimizing light harvesting in photosynthesis. J. Exp. Bot. 2015, 66, 7–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pockock, T. Influence of light-emitting diodes (LEDs) on light sensing and signaling networks in plants. In Light Emitting Diodes for Agriculture; Dutta Gupta, S., Ed.; Springer: Berlin, Germany, 2017; pp. 37–58. [Google Scholar]
- Verdaguer, D.; Jansen, M.A.K.; Llorens, L.; Morales, L.O.; Neugart, S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017, 255, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Khoshimkhujaev, B.; Kwon, J.K.; Park, K.S.; Choi, H.G.; Lee, S.Y. Effect of monochromatic UV-A LED irradiation on the growth of tomato seedlings. Hortic. Environ. Biotechnol. 2014, 55, 287–292. [Google Scholar] [CrossRef]
- Lercari, B.; Sodi, F.; Sbrana, C. Comparison of photomorphogenic responses to UV light in red and white cabbage (Brassica oleracea L.). Plant Physiol. 1989, 90, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tang, C.; Xu, Z.; Liu, X.; Han, X. Effects of different sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Kopsel, D.A.; Sams, C.E.; Morrow, R.C. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience 2015, 50, 1285–1288. [Google Scholar] [CrossRef] [Green Version]
- Samuoliene, G.; Virsile, A.; Brazaityte, A.; Jankauskiene, J.; Sakalauskiene, S.; Vastakaite, V.; Novickovas, A.; Viskeliene, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef]
- Hoffmann, A.M.; Noga, G.; Hunsche, M. Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves. Plant Growth Regul. 2016, 79, 275–285. [Google Scholar] [CrossRef]
- Mohanty, B.; Lakshmanan, M.; Lim, S.-H.; Kim, J.K.; Ha, S.-H.; Lee, D.-Y. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves. Plant Signal. Behav. 2016, 11, e1184808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazaityte, A.; Viršile, A.; Samuoliene, G.; Vaštakaite-Kairiene, V.; Jankauskiene, J.; Miliauskiene, J.; Novickovas, A.; Duchovskis, P. Response of mustard microgreens to different wavelengths and durations of UV-A LEDs. Front. Plant Sci. 2019, 10, 1153. [Google Scholar] [CrossRef] [Green Version]
- Dutta Gupta, S.; Agarwal, A. Artificial lighting system for plant growth and development: Chronological advancement, working principles and comparative assessment. In Light Emitting Diodes for Agric; Dutta Gupta, S., Ed.; Springer: Berlin, Germany, 2017; pp. 1–26. [Google Scholar]
- Bieza, K.; Lois, R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 2001, 126, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Kliebenstein, D.J. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004, 27, 675–684. [Google Scholar] [CrossRef]
- Taulavouri, K.; Pyysalo, A.; Taulavouri, T.; Julkunen-Titto, R. Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 2018, 150, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Czarnocka, W.; Karpiński, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Długosz-Grochowska, O.; Leja, M.; Grabowska, A.; Kunicki, E. The effect of preliminary chilling of broccoli transplants on some antioxidative parameters. Folia Hort. 2012, 24, 131–139. [Google Scholar]
- Farmer, E.E.; Mueller, M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 2013, 64, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Yalcinkaya, T.; Uzilday, B.; Ozgur, R.; Turkan, I.; Mano, J.I. Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses. Environ. Exp. Bot. 2019, 165, 391–414. [Google Scholar] [CrossRef]
- Ashraf, M.H.P.J.C.; Harris, P.J. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Special issue in honour of Prof. Reto J. Strasser–Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Rastogi, A.; Živčák, M.; Brestic, M.; Daszkowska-Golec, A.; Sitko, K.; Alsharafa, K.Y.; Lotfi, R.; Stypiński, P.; Samborska, I.A.; et al. Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica 2018, 56, 953–961. [Google Scholar] [CrossRef] [Green Version]
Date of Sowing | Plant Age in Weeks before Storage | Term T0 before 2 or 6 Weeks of Storage or without Storage | Storage Duration in Weeks | Term T1 after Storage in Darkness (D) and under LED Light: L1 or L2 | Age of Plants Planted on 1st July in Weeks |
---|---|---|---|---|---|
15 April | 5 | 20 May T0(6) | 6 | 1 July T1-6D; T1-6L1; T1-6L2 | 11 |
13 May | 5 | 17 June T0(2) | 2 | 1 July T1-2D; T1-2L1; T1-2L2 | 7 |
27 May | 5 | 1 July T0 | 0 | - | 5 |
Period | Mean Temperature (°C) ± 2 °C | Mean Relative Humidity (%) ± 2% | Solar Radiation J cm−2 Mean per Day | ||
---|---|---|---|---|---|
Day | Night | Day | Night | ||
15 April–20 May | 25 | 18 | 41 | 54 | 1208 |
13 May–17 June | 30 | 22 | 45 | 61 | 1546 |
27 May–1 July | 33 | 25 | 40 | 57 | 1903 |
Transplants Treatment | T1-2D | T1-2L1 | T1-2L2 | T1-6D | T1-6L1 | T1-6L2 | T0 |
---|---|---|---|---|---|---|---|
Yield(t ha−1) | 19 ± 1.2abc | 19 ± 0.7abc | 21 ± 1.6cd | 17 ± 0.6ab | 17 ± 1a | 20 ± 0.7bcd | 23 ± 0.9d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowska, R.; Kunicki, E.; Długosz-Grochowska, O.; Kołton, A. Response of Broccoli Transplants to LED Light during Short and Long-Term Storage. Agronomy 2020, 10, 1009. https://doi.org/10.3390/agronomy10071009
Wojciechowska R, Kunicki E, Długosz-Grochowska O, Kołton A. Response of Broccoli Transplants to LED Light during Short and Long-Term Storage. Agronomy. 2020; 10(7):1009. https://doi.org/10.3390/agronomy10071009
Chicago/Turabian StyleWojciechowska, Renata, Edward Kunicki, Olga Długosz-Grochowska, and Anna Kołton. 2020. "Response of Broccoli Transplants to LED Light during Short and Long-Term Storage" Agronomy 10, no. 7: 1009. https://doi.org/10.3390/agronomy10071009
APA StyleWojciechowska, R., Kunicki, E., Długosz-Grochowska, O., & Kołton, A. (2020). Response of Broccoli Transplants to LED Light during Short and Long-Term Storage. Agronomy, 10(7), 1009. https://doi.org/10.3390/agronomy10071009