Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
- conventional—mineral NPK* and organic fertilization (manure applied for potato), seed dressing, fungicide, herbicide, insecticide and retardants application, and mechanical weed control;
- organic—organic fertilization (manure applied for potato) with the fertilizer Humac Agro**, and mechanical weed control.
- Potato (Solanum tuberosum L.)
- Winter wheat (Triticum aestivum L.)
- Field bean (Vicia faba minor L.)
- Spring barley (Hordeum vulgare L.)
3. Weather Conditions at the Study Site
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic activity of loess soil in organic and conventional farming systems. Agriculture 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Haliniarz, M.; Harasim, E. Weed infestation and health of organically grown Chamomile (Chamomilla recutita (L.) Rausch.) depending on selected foliar sprays and row spacing. Agriculture 2020, 10, 168. [Google Scholar] [CrossRef]
- Biernat, L.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ. 2020, 298, 106964:1–106964:10. [Google Scholar] [CrossRef]
- Brickle, N.W.; Harper, D.G.C.; Aebischer, N.J.; Cockayne, S.H. Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. J. Appl. Ecol. 2000, 37, 742–755. [Google Scholar] [CrossRef]
- Mozumder, P.; Berrens, R.P. Inorganic fertilizer use and biodiversity risk: An empirical investigation. Ecol. Econ. 2007, 62, 538–543. [Google Scholar] [CrossRef]
- Medan, D.; Torretta, J.P.; Hodara, K.; de la Fuente, E.B.; Montaldo, N.H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers Conserv. 2011, 20, 3077–3100. [Google Scholar] [CrossRef]
- Shannon, D.; Sen, A.M.; Johnson, D.B. A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use Manage. 2002, 18 (Supp. S1), 274–283. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, C.; Cheng, L.; Li, C.; Gentry, L.F.; Hoyt, G.D.; Zhang, X.; Hu, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Till. Res. 2011, 117, 8–16. [Google Scholar] [CrossRef]
- Woźniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The effects of catch crops and tillage systems on selected physical properties and enzymatic activity of loess soil in a spring wheat monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Harasim, E.; Staniak, M. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. J. Elem. 2020, 25, 35–43. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United States. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 12 June 2020).
- Institute of Plant Protection—National Research Institute in Poznan. Crop Protection Calendar. In Cereal, Root, Legume Crops; Institute of Plant Protection—National Research Institute in Poznan: Poznan, Poland, 2015. [Google Scholar]
- Bac, S.; Koźmiński, C.; Rojek, M. Agrometeorology; Polish Scientific Publishers PWN: Warsaw, Poland, 1993; pp. 32–33. [Google Scholar]
- Araujo, A.S.F.; Santos, V.B.; Monteiro, R.T.R. Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí’ state, Brazil. Eur. J. Soil Biol. 2008, 44, 225–230. [Google Scholar] [CrossRef]
- Wilbois, K.-P.; Schmidt, J.E. Reframing the Debate Surrounding the Yield Gap between Organic and Conventional Farming. Agronomy 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Brückler, M.; Resl, T.; Reindl, A. Comparison of organic and conventional crop yields in Austria. Die Bodenkul. J. Land Manag. Food Environ. 2018, 68. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The content of dietary fiber, amino acids, dihydroxyphenols and some macro- and micronutrients in grain of conventionally and organically grown common wheat, spelt wheat and proso millet. Agric. Food Sci. 2015, 24, 195–205. [Google Scholar] [CrossRef]
- Schrama, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, V.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Mayes, M.; Heal, K.R.; Brandt, C.C.; Philips, J.R.; Jardine, P. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils. Soil Sci. Soc. Am. J. 2012, 76, 1027:1–1027:12. [Google Scholar] [CrossRef]
- Woźniak, A.; Kawecka-Radomska, M. Crop management effect on chemical and biological properties of soil. Int. J. Plant. Prod. 2016, 10, 391–402. [Google Scholar]
- Reganold, J.P. Comparison of soil properties as influenced by organic and conventional farming systems. American J. Altern. Agricult. 1988, 3, 144–155. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.; van Bruggen, A.H.C.; Shennan, C. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Løes, A.K.; Øgaard, A.F. Changes in the nutrient content of agricultural soil on conversion to organic farming in relation to farm-level nutrient balances and soil contents of clay and organic matter. Acta Agric. Scand. Sec. B Soil Plant Sci. 1997, 47, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Askegaard, M.; Eriksen, J.; Olesen, J.E. Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use Manag. 2003, 19, 96–103. [Google Scholar] [CrossRef]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England. with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Haynes, R.J.; Goh, K.M. Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury New Zealand. Agric. Ecosyst. Environ. 1995, 52, 149–162. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnstrom, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Jończyk, K.; Martyniuk, K. Productivity of crop rotations and selected indicators of soil fertility in different types of ecological farms. J. Res. Appl. Agric. Eng. 2017, 62, 153–157. [Google Scholar]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007:1–100007:14. [Google Scholar] [CrossRef]
- Agrawal, R.; Kumar, B.; Priyanka, K.; Narayan, C.; Shukla, K.; Sarkar, J. Micronutrient fractionation in coal mine-affected agricultural soils, India. Bull. Environ. Contam. Toxicol. 2016, 96, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Al Chami, Z.; Cavoski, I.; Mondelli, D.; Miano, T. Effect of compost and manure amendments on Zn soil speciation, plant content, and translocation in an artificially contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 4766–4776. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Liu, L.; Kong, J.; Cui, H.; Zhang, J.; Wang, F.; Cai, Z.; Huang, X. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control. 2016, 101, 103–113. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Jurado, M.M.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; López-González, J.A.; Moreno, J. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J. Environ. Manag. 2014, 133, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Raupp, J. Manure fertilization for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial. In Sustainable Management of Soil Organic Matter; Rees, R.M., Ball, B.C., Campbell, C.D., Watson, C.A., Eds.; CABI Publishing: London, UK, 2001; pp. 301–308. [Google Scholar]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mäder, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils. 2010, 46, 303–307. [Google Scholar] [CrossRef]
- Marinari, S.; Mancinelli, R.; Campiglia, E.; Grego, S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol Indic. 2006, 6, 701–711. [Google Scholar] [CrossRef]
Farming System | Soil pH 1 M KCl | Humus % | N % | P mg kg−1 | K mg kg−1 | Mg mg kg−1 | B mg kg−1 | Cu mg kg−1 | Mn mg kg−1 | Zn mg kg−1 | Organic C g kg−1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Organic | 6.1 a* | 1.48 a | 0.11 a | 142 a | 223 a | 68.1 a | 2.39 a | 7.4 a | 201 a | 9.3 a | 31.4 a |
Conventional | 5.9 a | 1.41 a | 0.09 b | 159 b | 241 b | 64.3 b | 2.17 b | 7.0 b | 185 b | 9.1 a | 31.0 a |
Crop Plant | Sowing Date | Harvest Date |
---|---|---|
Potato | 26–30.04 | 17–19.09 |
Winter wheat | 24–26.09 | 10–12.08 |
Field bean | 10–14.04 | 05–08.09 |
Spring barley | 19–23.04 | 15–17.08 |
Crop Plant | Mineral Fertilization in kg ha−1 | Manure Fertilization in t ha−1 | ||
---|---|---|---|---|
N | P | K | ||
Potato | 80 (before planting) | 80 (before planting) | 110 (before planting) | 25 (autumn; before planting) |
Winter wheat | 90 (split doses) * | 70 (before sowing) | 100 (before sowing) | - |
Field bean | 25 (before sowing) | 40 (before sowing) | 60 (before sowing) | - |
Spring barley | 55 (before sowing) | 45 (before sowing) | 75 (before sowing) | - |
Crop Plant | Mineral Fertilization (Humac Agro) in kg ha−1 | Manure Fertilization (Originating from Organic Livestock Production) in t ha−1 |
---|---|---|
Potato | 400 (before planting) | 25 (autumn; before planting) |
Winter wheat | 380 (before sowing) | - |
Field bean | 190 (before sowing) | - |
Spring barley | 300 (before sowing) | - |
Plant Protection | Potato | Winter wheat | Field bean | Spring barley |
---|---|---|---|---|
Seed dressing | Prestige Forte 370 FS (a.i. imidachlopryd—120 g L−1 and pencycuron 250 g L−1)—60 mL 100 kg−1 of potato | Divident 030 FS (a.i. difenoconazole—30 g L−1)—150 mL 100 kg−1 of seed | Nitragina (bacteria from the Rhizobiaceae family)—300 g ha−1 | Vitavax 200 FS (a.i. carboxin—200 g L−1, thiram—200 g L−1)—300 mL 100 kg−1 of grain |
Herbicides | Sencor® Liquid 600 SC (a.i. metribuzin 600 g L−1)—1L ha−1 | Agroxone Max 750 SL (a.i. MCPA—750 g L−1)—1 L ha−1, Puma Universal 069 EW (a.i. florasulam 6.25 g L−1)—0.8 L ha−1 | Basagran 480 SL (a.i. bentazone 480 g L−1)—2.5 L ha−1 | Agroxone Max 750 SL (a.i. MCPA—750 g L−1)—1 L ha−1, Puma Universal 069 EW (a.i. florasulam 6.25 g L−1)—0.8 L ha−1 |
Fungicides | Altima 500 SC (a.i. fluazinam—500 g L−1)—0.3 L ha−1 | Amistar 250 SC (a.i. azoxystrobin 250 g L)—0.6 L ha−1 | Gwarant 500 SC (a.i. chlorothalonil—500 g L−1)—2 L ha−1 | Delaro 325 SC (a.i. prothioconazole 175 g L−1 and trifloxystrobin 150 g L−1)—1 L ha−1 |
Insecticides | Actara 25 WG (a.i. thiamethoxam—250 g kg−1)—0.08 kg ha−1 | Decis Mega 50 EW (a.i. deltamethrin—50 g L−1)—0.1 Lha−1 | AcetGuard (a.i. acetamiprid-20%)–2 g 100 m2 | Fastac 100 EC a.i. (alpha-cypermethrin–100 g L−1)—0.12 L ha−1 |
Retardants | - | Moddus 250 EC (a.i. trinexapac ethyl—250 g L−1)—0.3 L ha−1 | - | Cerone 480 SL (ethephon—480 g L−1)—1.5 L ha−1 |
Months | Years | |||
---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | |
I | 1.03 | 1.14 | 0.98 | 1.11 |
II | 0.93 | 0.88 | 1.01 | 0.91 |
III | 1.12 | 1.09 | 1.12 | 0.90 |
IV | 1.30 | 1.55 | 1.16 | 1.32 |
V | 1.62 | 1.29 | 1.76 | 1.63 |
VI | 0.56 | 1.51 | 0.57 | 0.26 |
VII | 0.61 | 0.71 | 0.38 | 0.65 |
VIII | 0.77 | 0.92 | 0.86 | 0.75 |
IX | 0.86 | 0.90 | 0.65 | 1.02 |
X | 0.97 | 1.04 | 1.13 | 1.20 |
XI | 1.16 | 1.24 | 1.01 | 0.93 |
XII | 0.89 | 0.95 | 0.82 | 1.03 |
Crop Plant | Primary Yield (Grain/Seeds, Tubers) t ha−1 | Secondary Yield (Straw, Stems, Leaves) t ha−1 | Belowground Crop Residues (Roots) t ha−1 | |||
---|---|---|---|---|---|---|
Organic System | Conv. System | Organic System | Conv. System | Organic System | Conv. System | |
Potato | 26.8 a * ± 1.16 ** | 32.5 b ± 1.75 | 15.7 a ± 1.17 | 18.6 b ± 1.11 | 0.18 a ± 0.03 | 0.19 a ± 0.04 |
Winter wheat | 5.14 a ± 0.31 | 5.66 b ± 0.38 | 3.86 a ± 0.29 | 4.02 b ± 0.32 | 0.11 a ± 0.02 | 0.12 a ± 0.03 |
Field bean | 3.71 a ± 0.22 | 3.98 a ± 0.25 | 3.62 a ± 0.20 | 3.75 a ± 0.18 | 0.32 a ± 0.08 | 0.36 a ± 0.09 |
Spring barley | 4.59 a ± 0.28 | 5.14 b ± 0.33 | 3.25 a ± 0.19 | 3.60 b ± 0.25 | 0.10 a ± 0.02 | 0.11 a ± 0.02 |
Mean | 10.06 a | 11.82 b | 6.61 a | 7.49 b | 0.18 a | 0.19 a |
HSD(0.05) | for farming systems = 1.125 | for farming systems = 0.812 | for farming systems = n.s. *** |
Crop Plant | Humus Content | Soil pH | ||||
---|---|---|---|---|---|---|
Organic System | Conventional System | Mean | Organic System | Conventional System | Mean | |
Potato | 1.59 a * ± 0.06 *** | 1.48 b ± 0.05 | 1.54 A ** | 6.5 a ± 0.2 | 6.2 b ± 0.2 | 6.4 A |
Winter wheat | 1.50 a ± 0.04 | 1.39 b ± 0.02 | 1.44 B | 6.3 a ± 0.1 | 6.3 a ± 0.1 | 6.3 A |
Field bean | 1.53 a ± 0.07 | 1.50 a ± 0.07 | 1.52 A | 6.5 a ± 0.1 | 6.5 a ± 0.1 | 6.5 A |
Spring barley | 1.49 a ± 0.02 | 1.37 b ± 0.01 | 1.43 B | 6.3 a ± 0.1 | 6.2 a ± 0.1 | 6.2 B |
Mean | 1.53 a | 1.43 b | - | 6.4 a | 6.3 a | - |
HSD(0.05) | for farming systems (a) = 0.092 for plant species (b) = 0.096 interaction (a × b) = n.s. **** | for farming systems (a) = n.s. for plant species (b) = 0.29 interaction (a × b) = n.s. |
Crop Plant | Total Sorption Capacity cmol (+) kg−1 | ||
---|---|---|---|
Organic System | Conventional System | Mean | |
Potato | 40.4 a * ± 1.2 *** | 34.7 b ± 1.0 | 37.5 A ** |
Winter wheat | 33.4 a ± 0.9 | 26.2 b ± 0.6 | 29.8 B |
Field bean | 42.7 a ± 1.4 | 36.8 b ± 1.1 | 39.7 A |
Spring barley | 29.7 a ± 0.8 | 25.3 b ± 0.7 | 27.5 B |
Mean | 36.5 a | 30.7 b | - |
HSD(0.05) | for farming systems (a) = 4.98 for plant species (b) = 5.12 interaction (a × b) = n.s. **** |
Crop Plant | P | K | Mg | ||||||
---|---|---|---|---|---|---|---|---|---|
Organic System | Conv. System | Mean | Organic System | Conv. System | Mean | Organic System | Conv. System | Mean | |
Potato | 161 a * ± 6 *** | 175 b ± 9 | 168 A ** | 264 a ± 11 | 280 b ± 13 | 272 A | 74 a ± 3 | 69 b ± 2 | 71 A |
Winter wheat | 155 a ± 4 | 169 b ± 7 | 162 A | 251 a ± 8 | 272 b ± 10 | 261 A | 70 a ± 2 | 65 b ± 2 | 67 A |
Field bean | 144 a ± 3 | 150 a ± 4 | 147 B | 256 a ± 7 | 267 a ± 9 | 261 A | 68 a ± 3 | 61 b ± 1 | 64 B |
Spring barley | 159 a ± 5 | 171 b ± 8 | 165 A | 255 a ± 8 | 279 b ± 12 | 267 A | 71 a ± 4 | 68 b ± 3 | 69 A |
Mean | 155 a | 166 b | - | 256 a | 274 b | - | 71 a | 66 b | - |
HSD(0.05) | for farming systems (a) = 9.7 for plant species (b) = 10.2 interaction (a × b) = n.s. **** | for farming systems (a) = 15.5 for plant species (b) = n.s. interaction (a × b) = n.s. | for farming systems (a) = 3.8 for plant species (b) = 2.9 interaction (a × b) = n.s. |
Crop Plant | B | Cu | ||||
---|---|---|---|---|---|---|
Organic System | Conventional System | Mean | Organic System | Conventional System | Mean | |
Potato | 2.57 a * ± 0.9 *** | 2.28 b ± 0.9 | 2.42A ** | 7.94 a ± 0.9 | 7.25 b ± 0.9 | 7.60 A |
Winter wheat | 2.21 a ± 0.9 | 2.09 b ± 0.9 | 2.15 B | 6.58 a ± 0.9 | 6.41 b ± 0.9 | 6.50 B |
Field bean | 2.33 a ± 0.9 | 2.24 b ± 0.9 | 2.29 A | 6.82 a ± 0.9 | 6.79 b ± 0.9 | 6.80 A |
Spring barley | 2.36 a ± 0.9 | 2.16 b ± 0.9 | 2.26 A | 6.61 a ± 0.9 | 6.49 b ± 0.9 | 6.55 B |
Mean | 2.37 a | 2.19 b | - | 6.99 a | 6.73 b | - |
HSD(0.05) | for farming systems (a) = 0.104 for plant species (b) = 0.136 interaction (a × b) = n.s. **** | for farming systems (a) = 0.153 for plant species (b) = 0.099 interaction (a × b) = n.s. |
Crop Plant | Mn | Zn | ||||
---|---|---|---|---|---|---|
Organic System | Conventional System | Mean | Organic System | Conventional System | Mean | |
Potato | 214 a * ± 0.9 *** | 194 b ± 0.9 | 204 A ** | 9.64 a ± 0.9 | 9.22 b ± 0.9 | 9.43 A |
Winter wheat | 181 a ± 0.9 | 177 b ± 0.9 | 179 B | 8.47 a ± 0.9 | 8.30 b ± 0.9 | 8.38 B |
Field bean | 211 a ± 0.9 | 189 b ± 0.9 | 200 A | 9.17 a ± 0.9 | 8.76 b ± 0.9 | 8.96 A |
Spring barley | 176 a ± 0.9 | 170 a ± 0.9 | 173 B | 8.29 a ± 0.9 | 8.03 b ± 0.9 | 8.16 B |
Mean | 195 a | 182 b | - | 8.89 a | 8.58 b | - |
HSD(0.05) | for farming systems (a) = 12.4 for plant species (b) = 11.8 interaction (a × b) = n.s. **** | for farming systems (a) = 0.377 for plant species (b) = 0.313 interaction (a × b) = n.s. |
Crop Plant | Organic C g kg−1 | Total N kg−1 | C/N | |||||
---|---|---|---|---|---|---|---|---|
Organic System | Conv. System | Mean | Organic System | Conv. System | Mean | Organic System | Conv. System | |
Potato | 33.7 a * ± 1.1 *** | 31.4 b ± 0.8 | 32.5 A ** | 3.25 a ± 0.11 | 3.00 b ± 0.09 | 3.12 A | 10.3 a | 10.5 a |
Winter wheat | 32.5 a ± 1.0 | 31.0 b ± 0.7 | 31.7 A | 3.11 a ± 0.08 | 2.82 b ± 0.07 | 2.96 B | 10.4 a | 10.9 a |
Field bean | 31.6 a ± 0.6 | 31.3 a ± 0.6 | 31.4 A | 3.26 a ± 0.12 | 2.99 b ± 0.07 | 3.12 A | 9.7 b | 10.5 a |
Spring barley | 32.9 a ± 0.5 | 31.2 b ± 0.4 | 32.0 A | 3.09 a ± 0.09 | 2.87 b ± 0.06 | 2.98 B | 10.6 a | 10.9 a |
Mean | 32.7 a | 31.2 b | - | 3.18 a | 2.92 b | - | 10.2 a | 10.7 b |
HSD(0.05) | for farming systems (a) = 1.32 for plant species (b) = n.s. interaction (a × b) = n.s. **** | for farming systems (a) = 0.186 for plant species (b) = 0.128 interaction (a × b) = n.s. | for farming systems (a) = 0.44 for plant species (b) = n.s. interaction (a × b) = 0.53 |
Crop Plant | N-NO3 mg kg−1 d.m. | N-NH4 mg kg−1 d.m. | ||||
---|---|---|---|---|---|---|
Organic System | Conventional System | Mean | Organic System | Conventional System | Mean | |
Potato | 31.7 a ± 1.4 *** | 33.9 b ± 1.6 | 32.8A** | 2.33 a ± 0.11 | 2.18 b ± 0.10 | 2.25 A |
Winter wheat | 28.5 a* ± 0.9 | 31.1 b ± 1.1 | 29.8 B | 1.91 a ± 0.08 | 1.74 b ± 0.06 | 1.82 B |
Field bean | 31.9 a ± 1.0 | 34.4 b ± 1.5 | 33.1A | 2.47 a ± 0.13 | 2.24 b ± 0.09 | 2.35 A |
Spring barley | 27.8 a ± 0.7 | 30.6 b ± 0.8 | 29.2 B | 1.83 a ± 0.06 | 1.65 b ± 0.04 | 1.74 B |
Mean | 30.0 a | 32.5 b | - | 2.13 a | 1.94 b | - |
HSD(0.05) | for farming systems (a) = 2.33 for plant species (b) = 2.19 interaction (a × b) = n.s. **** | for farming systems (a) = 0.178 for plant species (b) = 0.194 interaction (a × b) = n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Harasim, E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy 2020, 10, 1045. https://doi.org/10.3390/agronomy10071045
Kwiatkowski CA, Harasim E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy. 2020; 10(7):1045. https://doi.org/10.3390/agronomy10071045
Chicago/Turabian StyleKwiatkowski, Cezary A., and Elżbieta Harasim. 2020. "Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems" Agronomy 10, no. 7: 1045. https://doi.org/10.3390/agronomy10071045
APA StyleKwiatkowski, C. A., & Harasim, E. (2020). Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy, 10(7), 1045. https://doi.org/10.3390/agronomy10071045