Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions, Sample Collection, DNA Extraction, and Chemical Component Analysis
2.2. PCR Amplification and 16S rRNA Gene Sequencing
2.3. Data Analysis
2.4. Deposition of DNA Sequence Data
3. Results and Discussion
3.1. Difference of Yields and Chemical Parameters between Different Farming Experimental Fields
3.2. Influences of Organic and Conventional Farming on Soil Microbial Diversity
3.3. Changes of Soil Microbial Community Structures during Green Onion Cultivation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practice: Conventional vs. organic agriculture. Crit. Rev. Plan. Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. [Google Scholar] [CrossRef]
- IFOAM. Principles of Organic Agriculture. Preamble In Movement 2020. Available online: https://www.ifoam.bio/principles-organic-agriculture-brochure (accessed on 27 June 2020).
- Schaller, N. Low-input sustainable agriculture. In 1989 Yearbook of Agriculture; United States Department of Agriculture: Washington, DC, USA, 1989; pp. 216–219. [Google Scholar]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? —A meta-analysis of European research. J. Env. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloter, M.; Dilly, O.; Munch, J.K. Indicators for evaluating soil quality. Agric. Ecosyst Env. 2003, 98, 255–262. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; Deyn, G.D.; Goede, R.D.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 14, 1446. [Google Scholar] [CrossRef] [Green Version]
- Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.; Kuramae, E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef] [Green Version]
- Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Sanderlin, J.S.; Reeves, J.H.; Jenkins, M.B.; Endale, D.M.; Coleman, D.C.; Whitman, W.B. Relative impacts of land-use, management intensity and fertilization upon soil micr Principal coordinate analysis (PCoA) plots with (A) weighted UniFrac and (B) unweighted UniFrac in experimental fields obial community structure in agricultural systems. Soil Biol. Biochem. 2008, 40, 2843–2853. [Google Scholar] [CrossRef]
- Wang, L.; Yang, F.; Yuan, J.; Raza, W.; Huang, Q.; Shen, Q. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil. Front. Microbiol. 2016, 7, 1893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, J.; Liang, H.; Huang, J.; Chen, Z.; Nie, Y.; Wang, C.; Wang, Y. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS ONE 2018, 13, e0192967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Cons. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Pershina, E.; Valkonen, J.; Kurki, P.; Ivanova, E.; Chirak, E.; Korvigo, I.; Provorov, N.; Andronov, E. Comparative Analysis of Prokaryotic Communities Associated with Organic and Conventional Farming Systems. PLoS ONE 2015, 10, e0145072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Takemura, M.; Miki, T.; Nonaka, M.; Harada, N. Differences in Soil Bacterial Community Compositions in Paddy Fields under Organic and Conventional Farming Conditions. Microbes Env. 2019, 34, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.F.; Bagtzoglou, A.C.; Willig, M.R. The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensics 2011, 12, 333–341. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Eprikashvili, L.; Zautashvili, M.; Kordzakhia, T.; Pirtskhalava, N.; Dzagania, M.; Rubashvili, I.; Tsitsishvili, V. Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils. Ann. Agrar. Sci. 2016, 14, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Cairo, P.C.; de Armas, J.M.; Artiles, P.T.; Martin, B.D.; Carrazana, R.J.; Lopez, O.R. Effects of zeolite and organic fertilizers on soil quality and yield of sugarcane. Aust. J. Crop. Sci. 2017, 11, 733–738. [Google Scholar] [CrossRef]
- McGilloway, R.L.; Weaver, R.W.; Ming, D.W.; Gruener, J.E. Nitrification in a zeoponic substrate. Plant Soil 2003, 256, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Tazaki, K. Green-tuff landslide areas are beneficial for rice nutrition in Japan. Acad Bras. Cienc. 2006, 78, 749–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumada, K.; Sato, O.; Ohsumi, Y.; Ohta, S. Humus composition of mountain soils in Central Japan with special reference to the distribution of P type humic acid. J. Soil Sci. 1967, 13, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Nobu, M.K.; Mei, R.; Narihiro, T.; Bocher, B.T.; Yamaguchi, T.; Liu, W.T. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor. PLoS ONE 2016, 11, e0167788. [Google Scholar] [CrossRef] [PubMed]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing Strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2, Reproducible, interactive, scalable, and extensible microbiome data science. Peerj Prepr. 2018, 6, e27295v. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2, High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Parks, D.H.; Beiko, R.G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010, 26, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazdag, O.; Kovács, R.; Parádi, I.; Füzy, A.; Ködöböcz, L.; Mucsi, M.; Szili-Kovács, T.; Inubushi, K.; Takács, T. Density and Diversity of Microbial Symbionts under Organic and Conventional Agricultural Management. Microbes Environ. 2019, 34, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mader, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Stamatiadisa, S.; Wernerb, M.; Buchananb, M. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl. Soil Ecol. 1999, 12, 217–225. [Google Scholar] [CrossRef]
- Palanivell, P.; Susilawati, K.; Ahmed, O.H.; Majid, N.M. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth. Sci. World J. 2013, 2013, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perner, H.; Schwarz, D.; Krumbein, A.; Li, X.; George, E. Influence of nitrogen forms and mycorrhizal colonization on growth and composition of Chinese bunching onion. J. Plant. Nutr. Soil Sci. 2007, 170, 762–768. [Google Scholar] [CrossRef]
- Kapoulas, N.; Koukounaras, A.; Ilić, Z.S. Nutritional quality of lettuce and onion as companion plants from organic and conventional production in north Greece. Sci. Hortic. 2017, 17, 310–318. [Google Scholar] [CrossRef]
- Bernal, M.P.; Lopez-Real, J.M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresour. Technol. 1993, 43, 27–33. [Google Scholar] [CrossRef]
- Kithome, M.; Paul, J.W.; Lavkulich, L.M.; Bomke, A.A. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci. Soc. Am. J. 1998, 62, 622–629. [Google Scholar] [CrossRef]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P.; Da, H.N.; Sun, H.Y.; Raun, W.R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol. Fertil. Soil 2003, 38, 209–215. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Omar, L.; Ahmed, O.H.; Majid, N.M.A. Amending chemical fertilizers with rice straw compost and clinoptilolite zeolite and their effects on nitrogen use efficiency and fresh cob yield of Zea mays L. Commun. Soil Sci. Plan. 2018, 49, 1795–1813. [Google Scholar] [CrossRef]
- Hatamoto, M.; Kaneko, T.; Takimoto, Y.; Ito, T.; Miyazato, N.; Maki, S.; Yamaguchi, T.; Aoi, T. Microbial community structure and enumeration of Bacillus species in activated sludge. J. Water Environ. Technol. 2017, 15, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Kuipers, O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. Bmc Genom. 2016, 17, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Kaushik, R.; Saxena, A.K.; Arora, D.K. Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J. Basic Microbiol. 2011, 51, 98–106. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microbiol. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Eisa Ahmed, M.F.; Sangare, L.; Zhao, Y.; Selvaraj, J.N.; Xing, F.; Wang, Y.; Yang, H.; Liu, Y. Novel Aflatoxin-Degrading Enzyme from Bacillus shackletonii L7. Toxins (Basel) 2017, 9, 36. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Zablotowicz, R.M.; Wilkinson, J.R. Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil. Can. J. Microbiol. 2008, 54, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Fouché, T.; Claassens, S.; Maboeta, M. Aflatoxins in the soil ecosystem: An overview of its occurrence, fate, effects and future perspectives. Mycotoxin Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, R.; Hu, J.; Zhao, F.; Wang, J.; Chu, H.; Zhang, J.; Dolfing, J.; Lin, X. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol. Biochem. 2015, 81, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Lin, Y.; Liu, D.; Chen, Z.; Luo, J.; Bolan, N.; Fan, J.; Ding, W. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl. Soil Ecol. 2019, 133, 23–33. [Google Scholar] [CrossRef]
Day 131 (kg-wet/m2) | Day 189 (kg-wet/m2) | Day 261 (kg-wet/m2) | Average Yields (kg-wet/m2) | |
---|---|---|---|---|
EF a 1 | 6.45 ± 0.94 b,* | 4.69 ± 0.60 | 4.73 ± 0.74 | 5.29 ± 1.12 |
EF2 | 5.70 ± 0.41 | 4.56 ± 0.85 | 4.42 ± 0.95 | 4.89 ± 0.93 |
Chemical Parameters | EF a Name | Sampling Days | |||||
---|---|---|---|---|---|---|---|
1 | 13 | 93 | 191 | 261 | 313 | ||
pH (-) | EF1 | 5.7 ± 0.1 b | 6.4 ± 0.5 | 5.6 ± 0.1 * | 6.0 ± 0.2 | 5.9 ± 0.2 * | 5.5 ± 0.2 |
EF2 | 6.4 ± 0.2 | 5.3 ± 0.2 | 5.9 ± 0.2 | 5.6 ± 0.2 | 5.3 ± 0.2 | ||
NH4+-N (mg/100 g-dry) | EF1 | 9.7 ± 2.3 | 37.8 ± 15.2 | 1.5 ± 1.3 | 2.4 ± 1.1 | 7.1 ± 3.5 | 0.9 ± 1.7 |
EF2 | 63.8 ± 11.7 * | 5.1 ± 4.3 | 5.8 ± 2.3 * | 6.3 ± 2.5 | 5.9 ± 0.2 * | ||
NO3−-N (mg/100 g-dry) | EF1 | 19.5 ± 6.0 | 13.1 ± 10.1 | 40.1 ± 23.1 | 12.0 ± 8.6 | 10.6 ± 15.1 | 13.3 ± 13.0 |
EF2 | 29.0 ± 8.2 * | 78.4 ± 19.9 * | 35.6 ± 21.6 | 26.3 ± 27.7 | 11.1 ± 4.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroda, K.; Kurashita, H.; Arata, T.; Miyata, A.; Kawazoe, M.; Nobu, M.K.; Narihiro, T.; Ohike, T.; Hatamoto, M.; Maki, S.; et al. Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation. Agronomy 2020, 10, 929. https://doi.org/10.3390/agronomy10070929
Kuroda K, Kurashita H, Arata T, Miyata A, Kawazoe M, Nobu MK, Narihiro T, Ohike T, Hatamoto M, Maki S, et al. Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation. Agronomy. 2020; 10(7):929. https://doi.org/10.3390/agronomy10070929
Chicago/Turabian StyleKuroda, Kyohei, Hazuki Kurashita, Tomoka Arata, Ayaka Miyata, Miyu Kawazoe, Masaru K. Nobu, Takashi Narihiro, Tatsuya Ohike, Masashi Hatamoto, Shinya Maki, and et al. 2020. "Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation" Agronomy 10, no. 7: 929. https://doi.org/10.3390/agronomy10070929
APA StyleKuroda, K., Kurashita, H., Arata, T., Miyata, A., Kawazoe, M., Nobu, M. K., Narihiro, T., Ohike, T., Hatamoto, M., Maki, S., & Yamaguchi, T. (2020). Influence of Green Tuff Fertilizer Application on Soil Microorganisms, Plant Growth, and Soil Chemical Parameters in Green Onion (Allium fistulosum L.) Cultivation. Agronomy, 10(7), 929. https://doi.org/10.3390/agronomy10070929