Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Information
2.2. Field Experiments
2.3. Crop Management
2.4. Photosynthetic Characteristics and Leaf Area Measurements
2.5. Dry Matter Accumulation and Transport of Rice Plants
2.6. Rice Yield Measurements
2.7. Statistical Calculations and Analysis
3. Results
3.1. Effects of N Application on Rice LeafAreas
3.2. Effects of N Application on the Photosynthetic Characteristics of Rice
3.3. Effects of N Application on the Matter Accumulations and Transport of Rice
3.4. Effects of N Application on Rice Yield and its Components
4. Discussion
4.1. Optimal N Management During the Rice Season and N Application Rates During the Rapeseed Season of Rapeseed-rice Rotation Systems, Increased the Photosynthetic Productivity of Rice
4.2. Optimal N Management During the Rice Season and N Application Rates During the Rapeseed Season for Rapeseed-Rice Rotation Systems, Increased Rice Grain Yield
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Auth, T.D.; Balzer, C.; Hill, J. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 2011, 108, 20260–20264. [Google Scholar]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, J.; Yang, C. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis. Crop J. 2014, 2, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Fan, L.; Jiang, L. Continuous applications of biochar to rice: Effects on grain yield and yield attributes. J. Integr. Agric. 2019, 18, 563–570. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yin, Y.Z.; Sun, Y.J. Yield and photosynthetic characteristics of machine-transplanted hybrid rice under different plant spacing and slow-release nitrogen fertilizer application rates. J. Plant Nutr. Fertil. 2017, 23, 843–855, (in Chinese with English abstract). [Google Scholar]
- Wang, H.Y.; Guo, C.C.; Sun, Y.J. Effects of Slow-release Nitrogen Fertilizer Reduction and Plant Space on Nitrogen Utilization in Machine-transplanted Indica Rice. China Rice Sci. 2018, 155, 66–78, (in Chinese with English abstract). [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2015, 88, 97–185. [Google Scholar]
- Mohammed, Y.A.; Kelly, J.; Chim, B.K.; Rutto, E.; Waldschmidt, K.; Mullock, J.; Torres, G.; Desta, K.G.; Raun, W. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. J. Plant Nutr. 2013, 36, 749–761. [Google Scholar] [CrossRef]
- Fowler, D.M.; Coyle, U.; Skiba, M.A.; Sutton, J.N.; Cape, S. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 1–12. [Google Scholar]
- Liu, C.; Wang, K.; Zheng, X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences 2013, 10, 2427–2437. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Malhi, S.S.; Song, J.R.; Xiong, Y.C.; Yue, W.Y.; Lu, L.L.; Wang, J.G.; Guo, T.W. Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China. Nutr. Cycl. Agroecosys. 2006, 76, 81–94. [Google Scholar] [CrossRef]
- Deeba, F.; Pandey, A.K.; Ranjan, S. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 2012, 53, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zheng, Y.; Dai, K. Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. Trees 2014, 28, 923–933. [Google Scholar] [CrossRef]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Olszewski, J.; Makowska, M.; Pszczolkowska, A. The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil Environ. 2014, 60, 531–536. [Google Scholar] [CrossRef]
- Zhu, X.G.; Zhang, G.L.; Tholen, D. The next generation models for crops and agro-ecosystems. Sci. China Inf. Sci. 2011, 54, 589–597. [Google Scholar] [CrossRef]
- Yu, X.; Zheng, G.; Shan, L. Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2014, 5, 273. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.A. Selectable traits to increase crop photosynthesis and yield of grain crops1. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Barik, J.; Panda, D.; Mohanty, S.K. Leaf photosynthesis and antioxidant response in selected traditional rice landraces of Jeypore tract of Odisha, India to submergence. Physiol. Mol. Biol. Plants 2019, 25, 847–863. [Google Scholar] [CrossRef]
- Hirasawa, T.; Ozawa, S.; Taylaran, R.D.; Ookawa, T. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Product. Sci. 2010, 13, 53–57. [Google Scholar] [CrossRef]
- Lemaie, G.; Oosterom, E.V.; Sheehy, J. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Res. 2007, 100, 91–106. [Google Scholar] [CrossRef]
- Lim, P.O.; Nam, H.G. Aging and senescence of the leaf organ. Plant Biol. 2007, 50, 291–300. [Google Scholar] [CrossRef]
- Xiao-Qing, Q.; Qi-Rong, S.; Juan-Juan, W. Effect of Different Water Management and Nitrogen Forms on Characteristics of Iron Nutrition of Rice Cultivated Under Aerobic Condition. J. Agric. Sci. 2003, 2, 1014–1020. [Google Scholar]
- Zhu, Y. Characteristics of Photosynthetic Production and Yield Formation of Yixiang 1A Series Combinations. Hybrid Rice. 2014, 29, 68–72. [Google Scholar]
- Huang, L.Y.; Yang, D.S.; Li, X.X.; Peng, S.B.; Wang, F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res. 2019, 233, 49–58. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, C.; Zhang, H.C.; Shi, T.Y.; Ma, R.R.; Wang, X.Y.; Yang, J.W.; Dai, Q.G.; Huo, Z.Y.; et al. Dynamic model and its characteristics analysis for dry matter production after heading of indica/japonica hybrid rice of Yongyou series. Acta Agron. Sin. 2016, 42, 265–277, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Xu, K.; Guo, B.W.; Zhang, H.C.; Zhou, X.T.; Chen, H.C.; Zhang, J.; Chen, J.D.; Zhu, C.C.; Li, G.Y.; Wu, Z.H.; et al. Effect of ordered transplanting and optimized broadcasting on super high yield and photosynthetic productivity and exploration of rice super high yield model. Acta Agron. Sin. 2013, 39, 1652–1667, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, Z.Y.; Hu, R.; Sun, Y.; Xu, Y.M.; Ma, J. Effects of nitrogen fertilizer management on yield and nitrogen use efficiency of Eryou 498 in triangle-planted system of rice intensification. Acta Agron. Sin. 2012, 38, 1097–1106, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, W.L.; Dai, Z.G.; Ren, T. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems. J. China Agric.Sci. 2016, 49, 1254–1266, (in Chinese with English abstract). [Google Scholar]
- Wang, X.Y.; Wei, H.H.; Zhang, H.C.; Sun, J.; Zhang, J.M.; Li, C.; Lu, H.B.; Yang, J.W.; Ma, R.R.; Xu, J.F.; et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (> 13.5 t ha–1 ). Acta Agron. Sin. 2014, 40, 2149–2159, (in Chinese with English abstract). [Google Scholar] [CrossRef]
Year (Crop) | Treatment (kg/ha) | Stem-sheath Mass at the Heading Stage (kg/ha) | Stem-sheath Mass at the Maturing Stage (kg/ha) | Export Percentage of Stem-sheaths (%) | Translocation Percentage of Stem-sheaths (%) | |
---|---|---|---|---|---|---|
2017–2018 (Rapeseed) | Nc | M0 | 5340.46 c | 4034.71 d | 24.45 ab | 19.71 ab |
M1 | 5378.51 c | 4166.68 c | 22.53 b | 13.48 b | ||
M2 | 6575.03 b | 4556.74 b | 30.73 ab | 22.30 a | ||
M3 | 7001.52 a | 4702.05 a | 32.84 a | 23.76 a | ||
Average | 6073.88 | 4365.05 | 27.64 | 19.81 | ||
Nr | M0 | 5604.60 d | 4286.55 c | 23.54 ab | 18.46 bc | |
M1 | 5637.07 c | 4357.23 d | 22.70 ab | 14.38 c | ||
M2 | 7452.83 b | 4865.72 b | 34.71 a | 27.92 a | ||
M3 | 7540.67 a | 4913.19 a | 34.84 a | 26.65 ab | ||
Average | 6558.79 | 4740.25 | 28.15 | 21.85 | ||
2018–2019 (Rapeseed) | Nc | M0 | 5066.64 d | 3957.13 d | 21.95 c | 17.31 c |
M1 | 5104.33 c | 4089.45 c | 19.94 d | 11.30 d | ||
M2 | 6301.02 b | 4479.49 b | 28.97 b | 20.07 b | ||
M3 | 6727.34 a | 4624.69 a | 31.30 a | 22.93 a | ||
Average | 5799.83 | 4287.69 | 25.54 | 17.90 | ||
Nr | M0 | 5329.39 c | 4212.03 c | 21.02 c | 17.89 c | |
M1 | 5348.04 c | 4282.48 c | 20.18 d | 12.11 d | ||
M2 | 7177.55 b | 4791.14 b | 33.32 a | 26.30 a | ||
M3 | 7269.43 a | 4838.79 a | 33.43 a | 25.44 b | ||
Average | 6279.85 | 4541.11 | 26.85 | 20.43 | ||
p— value | N | 0.0453 | 0.0019 | 0.1006 | 0.0084 | |
M | 0.0058 | 0.0272 | 0.0054 | 0.0238 | ||
N × M | 0.0001 | 0.0001 | 0.0003 | 0.0001 |
Year (Crop) | Treatment (kg/ha) | PN (m−2) | SPN (Panicle−1) | SSR (%) | 1000-GW (g) | GY (kg/ha) | |
---|---|---|---|---|---|---|---|
2017–2018 (Rapeseed) | Nc | M0 | 133.20 b | 193.61b | 89.86 b | 30.76 c | 7140.01 d |
M1 | 154.86 a | 207.63 b | 90.86 ab | 31.19 bc | 8900.12 c | ||
M2 | 160.74 a | 203.66 b | 91.51 a | 31.78 ab | 9360.24 b | ||
M3 | 152.82 a | 226.36 a | 91.58 a | 32.16 a | 9600.15 a | ||
Average | 150.41 | 207.82 | 90.95 | 31.47 | 8750.13 | ||
Nr | M0 | 128.69 b | 205.71 b | 89.93 b | 30.25 c | 6620.06 c | |
M1 | 153.72 a | 218.64 a | 90.83 ab | 31.61 ab | 8980.11 b | ||
M2 | 149.64 a | 211.63 a | 90.27 ab | 31.33 b | 9050.06 b | ||
M3 | 155.88 a | 218.68 a | 92.94 a | 32.25 a | 9670.14 a | ||
Average | 146.98 | 213.67 | 90.99 | 31.36 | 8580.09 | ||
2018–2019 (Rapeseed) | Nc | M0 | 129.68f | 179.49 e | 83.87 c | 29.92 b | 6450.03 e |
M1 | 145.11 d | 208.02 a | 90.71 b | 30.97 b | 9090.21 cd | ||
M2 | 150.96 c | 201.69 c | 90.32 b | 30.08b | 9120.08bc | ||
M3 | 142.94 e | 201.09 c | 92.52 a | 31.68 a | 9220.17 b | ||
Average | 142.17 | 197.57 | 88.46 | 30.66 | 8470.12 | ||
Nr | M0 | 127.91 g | 168.76 f | 82.16 d | 30.11 b | 6260.15 f | |
M1 | 156.96 b | 205.76 b | 87.21 c | 30.09 b | 9010.08 d | ||
M2 | 150.88 c | 198.88 d | 89.42 b | 30.54 b | 9120.14 bc | ||
M3 | 160.69 a | 208.69 a | 89.06 b | 31.12 a | 9420.17 a | ||
Average | 149.11 | 195.52 | 86.96 | 30.46 | 8452.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Lan, Y.; Lyu, T.; Zhang, Y.; Lin, D.; Li, F.; Li, Y.; Yang, Z.; Sun, Y.; Ma, J. Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System. Agronomy 2020, 10, 1060. https://doi.org/10.3390/agronomy10081060
Ma P, Lan Y, Lyu T, Zhang Y, Lin D, Li F, Li Y, Yang Z, Sun Y, Ma J. Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System. Agronomy. 2020; 10(8):1060. https://doi.org/10.3390/agronomy10081060
Chicago/Turabian StyleMa, Peng, Yan Lan, Tengfei Lyu, Yujie Zhang, Dan Lin, Feijie Li, Yu Li, Zhiyuan Yang, Yongjian Sun, and Jun Ma. 2020. "Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System" Agronomy 10, no. 8: 1060. https://doi.org/10.3390/agronomy10081060
APA StyleMa, P., Lan, Y., Lyu, T., Zhang, Y., Lin, D., Li, F., Li, Y., Yang, Z., Sun, Y., & Ma, J. (2020). Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System. Agronomy, 10(8), 1060. https://doi.org/10.3390/agronomy10081060