Maintenance of Photosynthesis as Leaves Age Improves Whole Plant Water Use Efficiency in an Australian Wheat Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Gas Exchange Measurements and Leaf Sampling
2.3. Biomass Estimation
2.4. ABA, ACC, and Rubisco Assays
2.5. Data Analysis
3. Results
3.1. Whole Plant Response
3.2. Leaf Level Response across Leaf Age
3.3. Leaf ABA and ACC Concentrations
3.4. Leaf Age, Rubisco Activities, and Chlorophyll Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, M.; Foulkes, M.; Slafer, G.; Berry, P.; Parry, M.; Snape, J.; Angus, W. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changhai, S.; Baodi, D.; Yunzhou, Q.; Yuxin, L.; Mengyu, S.; Changhai, L.; Yuxin, L.; Lei, L.; Haipei, L. Physiological regulation of high transpiration efficiency in winter wheat under drought conditions. Plant Soil Environ. 2010, 56, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Tatar, Ö.; Brück, H.; Asch, F. Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage. J. Agron. Crop Sci 2015, 202, 292–299. [Google Scholar] [CrossRef]
- Veneklaas, E.; Peacock, J. Growth, biomass allocation and water use efficiency of two wheat cultivars in a mediterranean environment; a pot experiment under field conditions. Plant Soil 1994, 162, 241–247. [Google Scholar] [CrossRef]
- Ringler, C.; Zhu, T. Water resources and food security. Agron. J. 2015, 107, 1533–1538. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Shen, Y.; Yu, Q.; Flerchinger, G.N.; Zhang, Y.; Liu, C.; Zhang, X. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agric. Water Manag. 2010, 97, 1139–1145. [Google Scholar] [CrossRef]
- Shu, Y.; Villholth, K.G.; Jensen, K.H.; Stisen, S.; Lei, Y. Integrated hydrological modeling of the North China Plain: Options for sustainable groundwater use in the alluvial plain of Mt. Taihang. J. Hydrol. 2012, 464–465, 79–93. [Google Scholar] [CrossRef]
- Gilbert, M.; Zwieniecki, M.; Holbrook, N. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J. Exp. Bot. 2011, 62, 2875–2887. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop. J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Leakey, A.; Ferguson, J.; Pignon, C.; Wu, A.; Jin, Z.; Hammer, G.; Lobell, D. Water Use Efficiency as a constraint and target for improving the resilience and productivity of C and C crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Díaz-Espejo, A.; Conesa, M.A.; Coopman, R.E.; Douthe, C.; Gago, J.; Gallé, A.; Galmés, J.; Medrano, H.; Ribas-Carbo, M.; et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 2016, 39, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.; Hawkesford, M. Food security: Increasing yield and improving resource use efficiency. Proc. Nutr. Soc. 2010, 69, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Carmo-Silva, E.; Scales, J.; Madgwick, P.; Parry, M. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 2015, 38, 1817–1832. [Google Scholar] [CrossRef]
- Medrano, H.; Pou, A.; Tomás, M.; Martorell, S.; Gulias, J.; Flexas, J.; Escalona, J.M. Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agric. Water Manag. 2012, 114, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Scotti-Campos, P.; Semedo, J.N.; Pais, I.P.; Oliveira, M.; Passarinho, J.; Santos, M.; Almeida, A.S.; Costa, A.R.; Pinheiro, N.; Bagorro, C.; et al. Physiological responses to drought in four developed Triticum aestivum groups. Emir. J. Food Agric. 2015, 27, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, J.A.; Capó-Bauçà, S.; Carmo-Silva, E.; Galmés, J. Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front. Plant Sci. 2017, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; Alonso, A.; Zita, G.; Morcuende, R.; Martínez-Carrasco, R. Down-regulation of Rubisco activity under combined increases of CO2 and temperature minimized by changes in Rubisco kcat in wheat. Plant Growth Regul. 2011, 65, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Carmo-Silva, E.; Andralojc, P.; Scales, J.; Driever, S.; Mead, A.; Lawson, T.; Raines, C.; Parry, M. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 2017, 68, 3473–3486. [Google Scholar] [CrossRef]
- Jauregui, I.; Rothwell, S.; Taylor, S.; Parry, M.; Carmo-Silva, E.; Dodd, I.C. Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef]
- González, A.; Bermejo, V.; Gimeno, B. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J. Agric. Sci. 2010, 148, 319–328. [Google Scholar] [CrossRef]
- James, R.; Rivelli, A.; Munns, R.; Caemmerer, S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol. 2002, 29, 1393–1403. [Google Scholar] [CrossRef]
- Atkinson, C.; Davies, W.; Mansfield, T. Changes in stomatal conductance in intact ageing wheat leaves in response to abscisic acid. J. Exp. Bot. 1989, 40, 1021–1028. [Google Scholar] [CrossRef]
- Munns, R. Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Phys. 1988, 88, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Schoppach, R.; Sadok, W. Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ. Exp. Bot. 2012, 84, 1–10. [Google Scholar] [CrossRef]
- Xue, Q.; Weiss, A.; Arkebauer, T.J.; Baenziger, P.S. Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environ. Exp. Bot. 2004, 51, 167–179. [Google Scholar] [CrossRef]
- Lawson, T.; Weyers, J.; A’Brook, R. The nature of heterogeneity in the stomatal behaviour of Phaseolus vulgaris L. primary leaves. J. Exp. Bot. 1998, 49, 1387–1395. [Google Scholar] [CrossRef]
- Eckstein, J.; Artsaenko, O.; Conrad, U.; Peisker, M.; Beyschlag, W. Abscisic acid is not necessarily required for the induction of patchy stomatal closure. J. Exp. Bot. 1998, 49, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Terashima, I.C.; Wong, S.B.; Osmond, C.D.; Farquhar, G. Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Phys. 1988, 29, 385–394. [Google Scholar]
- Mott, K. Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment. Plant Cell Environ. 1995, 18, 1291–1300. [Google Scholar] [CrossRef]
- Buckley, T.; Farquhar, G.; Mott, K. Carbon-water balance and patchy stomatal conductance. Oecologia 1999, 118, 132–143. [Google Scholar] [CrossRef]
- Chen, L.; Dodd, I.C.; Davies, W.J.; Wilkinson, S. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ. 2013, 36, 1850–1859. [Google Scholar] [CrossRef]
- Saradadevi, R.; Palta, J.; Siddique, K. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Front. Plant Sci. 2017, 8, 1251. [Google Scholar] [CrossRef]
- Saradadevi, R.; Bramley, H.; Siddique, K.H.M.; Edwards, E.; Palta, J.A. Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought. Field Crops Res. 2014, 162, 77. [Google Scholar] [CrossRef]
- Yang, W.; Yin, Y.; Jiang, W.; Peng, D.; Yang, D.; Cui, Y.; Wang, Z. Severe water deficit-induced ethylene production decreases photosynthesis and photochemical efficiency in flag leaves of wheat. Photosynthetica 2014, 52, 341–350. [Google Scholar] [CrossRef]
- Young, T.; Meeley, R.; Gallie, D. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J. 2004, 40, 813–825. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant Cell Environ. 2010, 33, 510–525. [Google Scholar] [CrossRef]
- Sharp, R.; Lenoble, M. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 2002, 53, 33–37. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Ozone suppresses soil drying—and abscisic acid (ABA)—induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ. 2009, 32, 949–959. [Google Scholar] [CrossRef]
- Wilkinson, S.; Kudoyarova, G.; Veselov, D.; Arkhipova, T.; Davies, W. Plant hormonee interactions: Innovative targets for crop breeding and management. J. Exp. Bot. 2012, 63, 3499–3509. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sano, T.; Tamaoki, M.; Nakajima, N.; Kondo, N.; Hasezawa, S. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Phys. 2005, 138, 2337–2343. [Google Scholar] [CrossRef] [Green Version]
- Sharipova, G.; Veselov, V.; Kudoyarova, D.; Timergalin, S.; Wilkinson, R. Effect of ethylene perception inhibitor on growth, water relations, and abscisic acid content in wheat plants under water deficit. Russ. J. Plant Phys. 2015, 59, 573–580. [Google Scholar] [CrossRef]
- Kretzler, B.M. Examining the Mechanisms by Which Photosynthetic Capacity and Water Use Efficiency are Regulated in Wheat Exposed to Soil Drying. Master’s Thesis, Lancaster University, Lancaster, UK, September 2019. [Google Scholar]
- Quarrie, S.; Whitford, A.; Appleford, P.; Wang, N.; Cook, E.; Henson, J.; Loveys, T. A monoclonal antibody to (S)-abscisic acid: Its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 1988, 173, 330–339. [Google Scholar] [CrossRef]
- Lamaire, L.; Deleu, C.; Le Deunff, E. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. J. Exp. Bot. 2013, 64, 2725–2737. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016; Available online: http://www.rstudio.com/ (accessed on 20 December 2018).
- Scales, J.C.; Parry, M.A.J.; Salvucci, M.E. A non-radioactive method for measuring Rubisco activase activity in the presence of variable ATP:ADP ratios, including modifications for measuring the activity and activation state of Rubisco. Photosynth. Res. 2014, 119, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Sales, C.R.G.; Silva, A.B.; Carmo-Silva, E. Measuring Rubisco activity: Challenges and opportunities of NADH-linked and 14C-based assays. J. Exp. Bot. 2020. [Google Scholar] [CrossRef]
- Carmo-Silva, E.; da Bernardes Silva, A.; Keys, A.J.; Parry, M.A.; Arrabaça, M.C. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Photosynth. Res. 2008, 97, 223–233. [Google Scholar] [CrossRef]
- Wintermans, J.F.G.M.; de Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 20 December 2018).
- Length, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.3.2. 2019. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 20 December 2018).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wu, X.; Bao, W. Influence of water deficit and genotype on photosynthetic activity, dry mass partitioning and grain yield changes of winter wheat. Afr. J. Agric. Res. 2011, 6, 5567–5574. [Google Scholar]
- Alou, I.N.; Steyn, J.M.; Annandale, J.G.; van Der Laan, M. Growth, phenological, and yield response of upland rice (Oryza sativa L. cv. Nerica 4®) to water stress during different growth stages. Agric. Water Manag. 2018, 198, 39–52. [Google Scholar] [CrossRef]
- Gaju, O.; DeSilva, J.; Carvalo, P.; Hawkesford, M.J.; Griffiths, S.; Greenland, A.; Foulkes, M.J. Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crop. Res. 2016, 193, 1–15. [Google Scholar] [CrossRef]
- Valluru, R.; Davies, W.; Reynolds, M.; Dodd, I.C. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Front. Plant Sci. 2016, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Akhkha, A.; Boutraa, T.; Alhejely, A. The rates of photosynthesis, chlorophyll content, dark respiration, proline and abscicic acid (aba) in wheat (Triticum durum) under water deficit conditions. Int. J. Agric. Biol. 2011, 13, 215–221. [Google Scholar]
- Cooper, C.S.; Qualls, M. Morphology and chlorophyll content of shade and sun leaves of two legumes. Crops Res. 1967, 7, 672–673. [Google Scholar] [CrossRef]
- Šesták, Z.; Čatsky, J. Intensity of photosynthesis and chlorophyll content as related to leaf age in Nicotiana sanderae hort. Bio. Plant. 1962, 4, 131. [Google Scholar] [CrossRef]
- Hamblin, J.; Stefanova, K.; Angessa, T.T. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material. PLoS ONE 2014, 9, e92529. [Google Scholar] [CrossRef] [Green Version]
- Lia, H.; Jianga, D.; Wollenweberb, B.; Daia, T.; Caoa, W. Effects of shading on morphology, physiology and grain yield of winter wheat. Eur. J. Agron. 2010, 33, 267–275. [Google Scholar] [CrossRef]
- Mu, H.; Jiang, D.; Wollenweber, B.; Dai, T.; Jing, Q.; Cao, W. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J. Agron. Crop Sci. 2010, 196, 38–47. [Google Scholar] [CrossRef]
- Slattery, R.A.; VanLoocke, A.; Bernacchi, C.J.; Zhu, X.G.; Ort, D. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front. Plant Sci. 2017, 8, 549. [Google Scholar] [CrossRef] [Green Version]
Genotype | Experiment | Leaf Age | ACC (pg mg−1 FW) | ABA (ng g−1 DW) | Ratio (ACC/ACC) |
---|---|---|---|---|---|
Krichauff | CE | H1 | 147 ± 10 | 238± 102 | 4.1 ± 5.1 |
H2 | 17 ± 12 * | 307 ± 125 | 0.03 ± 6.3 | ||
H3 | 18 ± 18 * | 34 ± 112 | 11± 8.8 | ||
GH | H1 | 91 ± 13 | 328 ± 112 | 1.6 ± 6.3 | |
H2 | 86± 10 | 265 ± 102 | 16 ± 5.1 | ||
H3 | 28 ± 13 | 227 ±112 | 0.2 ± 6.3 | ||
Gatsby | CE | H1 | 33 ± 10 | 258 ± 102 | 2.8 ± 5.1 |
H2 | 10± 10 | 210 ±112 | 0.2 ± 5.1 | ||
H3 | 11.0 ± 10 | 328 ±102 | 0.02 ± 5.1 | ||
GH | H1 | 88 ± 10 | 168 ± 102 | 1.4 ± 5.1 | |
H2 | 67 ± 10 | 325 ± 112 | 1.01 ± 5.1 | ||
H3 | 37 ± 10 | 296 ± 102 | 0.3 ± 5.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kretzler, B.; Rodrigues Gabriel Sales, C.; Karady, M.; Carmo-Silva, E.; Dodd, I.C. Maintenance of Photosynthesis as Leaves Age Improves Whole Plant Water Use Efficiency in an Australian Wheat Cultivar. Agronomy 2020, 10, 1102. https://doi.org/10.3390/agronomy10081102
Kretzler B, Rodrigues Gabriel Sales C, Karady M, Carmo-Silva E, Dodd IC. Maintenance of Photosynthesis as Leaves Age Improves Whole Plant Water Use Efficiency in an Australian Wheat Cultivar. Agronomy. 2020; 10(8):1102. https://doi.org/10.3390/agronomy10081102
Chicago/Turabian StyleKretzler, Bailey, Cristina Rodrigues Gabriel Sales, Michal Karady, Elizabete Carmo-Silva, and Ian C. Dodd. 2020. "Maintenance of Photosynthesis as Leaves Age Improves Whole Plant Water Use Efficiency in an Australian Wheat Cultivar" Agronomy 10, no. 8: 1102. https://doi.org/10.3390/agronomy10081102
APA StyleKretzler, B., Rodrigues Gabriel Sales, C., Karady, M., Carmo-Silva, E., & Dodd, I. C. (2020). Maintenance of Photosynthesis as Leaves Age Improves Whole Plant Water Use Efficiency in an Australian Wheat Cultivar. Agronomy, 10(8), 1102. https://doi.org/10.3390/agronomy10081102