Extended Storage of Yellow Pepper Fruits at Suboptimal Temperatures May Alter Their Physical and Nutritional Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Bagging
2.2. External Quality Parameters
2.3. Nutritional Quality Parameters
2.3.1. Ascorbic Acid (AA)
2.3.2. Hydrophilic Antioxidant (HAOX) Content
2.3.3. Total Phenolic (Polyphenol) Content
2.4. Statistical Analysis
3. Results
3.1. Effect of Suboptimal Temperature on the External Quality of Yellow Pepper Fruit
3.2. Effects of Suboptimal Temperatures on the Nutritional Quality of Yellow Peppers
3.3. Correlations between the Quality Parameters
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Maalekuu, K.; Elkind, Y.; Alkalai-Tuvia, S.; Shalom, Y.; Fallik, E. Quality evaluation of three sweet pepper cultivars after prolonged storage. Adv. Hort. Sci. 2003, 17, 187–191. [Google Scholar]
- Maalekuu, K.; Elkind, Y.; Tuvia-Alkalai, S.; Shalom, Y.; Fallik, E. The influence of harvest season and cultival type on several quality traits and quality stability of three commercial sweet bell peppers during the harvest season. Adv. Hort. Sci. 2004, 18, 21–25. [Google Scholar]
- Frank, C.A.; Nelson, R.G.; Simonne, E.H.; Behe, B.K.; Simonne, A.H. Consumers’ preferences for color, price and vitamin C content of bell peppers. HortScience 2001, 36, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Aizat, W.M.; Able, J.A.; Stangoulis, J.C. Characterisation of ethylene pathway components in non-climacteric capsicum. BMC Plant Biol. 2013, 13, 191. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.L.; Stommel, J.R.; Fung, R.W.M.; Wang, C.Y.; Whitaker, B.D. Influence of cultivar and harvest method on postharvest storage quality of pepper (Capsicum annuum L.) fruit. Postharvest Biol. Technol. 2006, 42, 243–247. [Google Scholar] [CrossRef]
- Tan, C.K.; Ali, Z.M.; Zainal, Z. Changes in ethylene production, carbohydrase activity and antioxidant status in pepper fruits during ripening. Sci. Hort. 2012, 142, 23–31. [Google Scholar] [CrossRef]
- Maalekuu, K.; Elkind, Y.; Leikin-Frenkel, A.; Lurie, S.; Fallik, E. Effects of postharvest water loss on membrane lipids and other biochemical properties in ripe pepper fruit during storage. Postharvest Biol. Technol. 2006, 42, 248–255. [Google Scholar] [CrossRef]
- Fallik, E.; Grinberg, S.; Alkalai, S.; Lurie, S. The effectiveness of postharvest hot water dips on the control of gray and black moulds in sweet red pepper. Plant Pathol. 1996, 45, 644–649. [Google Scholar] [CrossRef]
- Bar-Yosef, A.; Alkalai-Tuvia, S.; Perzelan, Y.; Aharon, Z.; Ilic’, Z.; Lurie, S.; Fallik, E. Effect of shrink packaging in combination with rinsing and brushing treatment on chilling injury and decay of sweet pepper during storage. Adv. Hort. Sci. 2009, 23, 225–230. [Google Scholar]
- Fallik, E.; Perzelan, Y.; Alkalai-Tuvia, S.; Nemny-Lavy, E.; Nestel, D. Development of cold quarantine protocols to arrest the development of the Mediterranean fruit fly (Ceratitis capitata) in pepper (Capsicum annuum L.) fruit after harvest. Postharvest Biol. Technol. 2012, 70, 7–12. [Google Scholar] [CrossRef]
- Lama, K.; Alkalai-Tuvia, S.; Perzelan, Y.; Fallik, E. Nutritional qualities and aroma volatiles of harvested red pepper fruits stored at suboptimal temperatures. Sci. Hort. 2016, 213, 42–48. [Google Scholar] [CrossRef]
- Creusen, M.E.H.; Schoormans, J.P.L. The different roles of product appearance in consumer choice. J. Prod. Innov. Manag. 2005, 22, 63–81. [Google Scholar] [CrossRef]
- Schifferstein, H.N.J.; Wehrle, T.; Carbon, C.C. Consumer expectations for vegetables with typical and atypical colors: The case of carrots. Food Qual. Prefer. 2019, 72, 98–108. [Google Scholar] [CrossRef]
- Fallik, E.; Grinberg, S.; Alkalai, S.; Yekutieli, O.; Wiseblum, A.; Regev, R.; Bar-Lev, E. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol. Technol. 1999, 15, 25–32. [Google Scholar] [CrossRef]
- Lim, C.S.; Kang, S.M.; Cho, J.L.; Gross, K.C.; Woolf, A.B. Bell pepper (Capsicum annuum L.) fruits are susceptible to chilling injury at the breaker stage of ripeness. HortScience 2007, 42, 1659–1664. [Google Scholar] [CrossRef] [Green Version]
- Ghasemnezhad, M.; Javaherdashti, M. Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit. Caspian J. Environ. Sci. 2008, 6, 73–78. [Google Scholar]
- Barkai-Golan, R. Postharvest Diseases of Fruits and Vegetables: Development and Control; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Chanasut, U.; Rattanpanone, N.; Boonyakiat, D.; Kampoun, W. Chilling injury susceptibility of early-season ‘Sai Nam Peung’ tangerine fruit and alteration of α-farnesene and conjugated trienols during low temperature storage. Chiang Mai J. Sci. 2018, 45, 147–153. [Google Scholar]
- Kashash, Y.; Mayuoni-Kirshenbaum, L.; Goldenberg, L.; Choi, H.-J.; Porat, R. Effects of harvest date and low-temperature conditioning on chilling tolerance of ‘Wonderful’ pomegranate fruit. Sci. Hortic. 2018, 209, 286–292. [Google Scholar] [CrossRef]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Agar, I.T.; Massantini, R.; Kader, A.A.; Slices, F.K. Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. J. Food Sci. 1999, 64, 433–440. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Martí, M.C.; Camejo, D.; Vallejo, F.; Bacarizo, S.; Palma, J.M.; Sevilla, F.; Jiménez, A. Influence of fruit ripening stage and environmental conditions on the antioxidant content of sweet pepper cultivars. Plant Foods Hum. Nutr. 2011, 66, 416–423. [Google Scholar] [CrossRef]
- Matsufuji, H.; Ishikawa, K.; Nunomura, O.; Chino, M.; Takeda, M. Anti-oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). Intl. J. Food Sci. Technol. 2007, 42, 1482–1488. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
- Rai, D.R.; Kaur, P.; Patil, R.T. Quality changes in fresh-cut capsicum (Capsicum annuum) shreds under modified atmospheres during simulated retail and home storage. J. Food Proc. Pres. 2011, 35, 402–409. [Google Scholar] [CrossRef]
- Chen, W.H.; Zhang, F.P.; Lin, J.X.; Ye, B.C.; Yu, M.L. Effects of bagging with micro-adjustment of air composition on the quality and some physiological indices of litchi fruit under ambient temperature. J. Fruit Sci. 2004, 21, 85–87. [Google Scholar]
- Rekha, C.; Poornima, G.; Manasa, M.; Abhipsa, V.; Pavithra Devi, J.; Vijay Kumar, H.T.; Prashith Kekuda, T.R. Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem. Sci. Trans. 2012, 1, 303–310. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Trajković, R.; Pavlović, R.; Alkalai-Tuvia, S.; Perzelan, Y.; Fallik, E. Effect of heat treatment and individual shrink packaging on quality and nutritional value of bell pepper stored at suboptimal temperature. Intl. J. Food Sci. Technol. 2012, 47, 83–90. [Google Scholar] [CrossRef]
Treatment | Weight Loss (%) | Elasticity (mm Deformation) | Decay (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Harv1 | Harv2 | Harv3 | Harv1 | Harv2 | Harv3 | Harv1 | Harv2 | Harv3 | |
7 °C-control | 5.9 A * | 4.6 B | 3.2 B | 2.8 A | 2.3 AB | 2.1 B | 9.9 A | 19.4 A | 21.2 B |
7 °C-Xtend® | 2.9 C | 1.7 D | 1.7 D | 2.2 A | 1.5 D | 1.4 B | 4.5 A | 17.1 A | 46.0 A |
4 °C-control | 4.2 B | 6.0 A | 4.5 A | 2.3 A | 3.0 A | 2.3 B | 2.7 A | 19.8 A | 30.5 AB |
4 °C-Xtend® | 2.0 D | 2.4 CD | 1.9 CD | 1.9 A | 2.3 ABC | 2.1 B | 2.7 A | 10.9 A | 20.5 AB |
1.5 °C-control | 4.2 B | 3.1 C | 2.6 BC | 2.1 A | 2.1 BCD | 3.3 A | 5.2 A | 18.3 A | 35.4 AB |
1.5 °C-Xtend® | 1.5 D | 1.5 D | 1.3 D | 1.9 A | 1.6 CD | 1.3 B | 4.4 A | 10.3 A | 22.0 B |
Analysis of Variance (p-value) | |||||||||
Temp. (T) 2 | **** | **** | **** | NS | **** | NS | NS | NS | NS |
Xtend® (Xt) 1 | **** | **** | **** | * | **** | **** | NS | NS | NS |
T × Xt | NS | ** | ** | NS | NS | ** | NS | NS | NS |
Treatment | Chilling Injury (%) | Chilling Index (CINX) (0–3) | ||||
---|---|---|---|---|---|---|
Harv1 | Harv2 | Harv3 | Harv1 | Harv2 | Harv3 | |
7 °C-control | 0 | 0 | 0 | 0 | 0 | 0 |
7 °C-Xtend® | 0 | 0 | 0 | 0 | 0 | 0 |
4 °C-control | 29 B * | 16 A | 21 A | 0.5 B | 0.3 AB | 0.09 C |
4 °C-Xtend® | 13 C | 9 A | 4 B | 0.1 C | 0.1 B | 0.07 C |
1.5 °C-control | 46 A | 13 A | 24 A | 2.0 A | 0.4 A | 1.9 A |
1.5 °C-Xtend® | 14 C | 7 A | 5 B | 0.4 AB | 0.2 AB | 0.2 B |
Analysis of Variance (p-value) | ||||||
Temp. (T) 2 | **** | *** | **** | *** | **** | *** |
Xtend® (Xt) 1 | **** | NS | **** | *** | *** | *** |
T × Xt | **** | NS | **** | *** | NS | *** |
Treatment | Total Phenolics (mM GAE/100 mg Dry Weight) | Hydrophilic Antioxidants (µM TE/g Dry Weight) | Ascorbic Acid (AA) (mg/100 g Fresh Weight) | ||||||
---|---|---|---|---|---|---|---|---|---|
Harv1 | Harv2 | Harv3 | Harv1 | Harv2 | Harv3 | Harv1 | Harv2 | Harv3 | |
7 °C-control | 380 C * | 393 BC | 302 C | 81 A | 87 CD | 106 C | 179 AB | 193 B | 211 A |
7 °C-Xtend® | 474 A | 410 BC | 339 B | 82 A | 102 A | 119 AB | 179 AB | 208 AB | 202 A |
4 °C-control | 390 C | 380 C | 386 A | 70 A | 92 BC | 114 BC | 184 A | 214 AB | 204 A |
4 °C-Xtend® | 433 B | 419 B | 417 A | 83 A | 98 AB | 128 A | 182 AB | 210 AB | 214 A |
1.5 °C-control | 440 AB | 387 BC | 324 BC | 75 A | 81 D | 122 AB | 165 BC | 225 A | 195 A |
1.5 °C-Xtend® | 446 AB | 470 A | 412 A | 76 A | 96 ABC | 128 A | 172 C | 201 AB | 222 A |
Analysis of Variance (p-value) | |||||||||
Temp. (T) 2 | NS | *** | NS | NS | * | *** | **** | NS | NS |
Xtend® (Xt) 1 | **** | **** | **** | NS | **** | **** | NS | NS | NS |
T × Xt | **** | **** | ** | NS | NS | NS | NS | * | * |
CI | CINX | DE | EL | AA | HAOX | TP | |
---|---|---|---|---|---|---|---|
WL | 0.86 * | 0.72 * | −0.15 | 0.41 | −0.24 | −0.20 | 0.67 |
CI | 0.89 ** | −0.34 | 0.45 | −0.38 | −0.25 | 0.50 | |
CINX | 0.04 | 0.74 * | −0.05 | 0.14 | 0.32 | ||
DE | 0.37 | 0.65 | 0.96 *** | −0.40 | |||
EL | 0.29 | 0.37 | 0.42 | ||||
AA | 0.52 | −0.31 | |||||
HAOX | −0.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, K.; Alkalai-Tuvia, S.; Chalupowicz, D.; Fallik, E. Extended Storage of Yellow Pepper Fruits at Suboptimal Temperatures May Alter Their Physical and Nutritional Quality. Agronomy 2020, 10, 1109. https://doi.org/10.3390/agronomy10081109
Lama K, Alkalai-Tuvia S, Chalupowicz D, Fallik E. Extended Storage of Yellow Pepper Fruits at Suboptimal Temperatures May Alter Their Physical and Nutritional Quality. Agronomy. 2020; 10(8):1109. https://doi.org/10.3390/agronomy10081109
Chicago/Turabian StyleLama, Kumar, Sharon Alkalai-Tuvia, Daniel Chalupowicz, and Elazar Fallik. 2020. "Extended Storage of Yellow Pepper Fruits at Suboptimal Temperatures May Alter Their Physical and Nutritional Quality" Agronomy 10, no. 8: 1109. https://doi.org/10.3390/agronomy10081109
APA StyleLama, K., Alkalai-Tuvia, S., Chalupowicz, D., & Fallik, E. (2020). Extended Storage of Yellow Pepper Fruits at Suboptimal Temperatures May Alter Their Physical and Nutritional Quality. Agronomy, 10(8), 1109. https://doi.org/10.3390/agronomy10081109