Reduced Herbicide Antagonism of Grass Weed Control through Spray Application Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sethoxydim and Bentazon Field Trial
2.2. Clethodim with Synthetic Auxins Field Trial
2.3. Glyphosate with Synthetic Auxins Field Trial
2.4. Statistical Analyses
3. Results and Discussion
3.1. Sethoxydim with Bentazon Field Trial
3.2. Clethodim with Synthetic Auxins Field Trial
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colby, S.R. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 1967, 15, 20–22. [Google Scholar] [CrossRef]
- Flint, J.L.; Cornelius, P.L.; Barrett, M. Analyzing herbicide interactions: A statistical treatment of Colby’s method. Weed Technol. 1988, 2, 304–309. [Google Scholar] [CrossRef]
- Weed Science Society of America (WSSA). Available online: http://wssa.net/wssa/wssa-glossary/ (accessed on 24 July 2020).
- Mueller, T.C.; Witt, W.W.; Barrett, M. Antagonism of johnsongrass (Sorghum halepense) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4-D. Weed Technol. 1989, 3, 86–89. [Google Scholar] [CrossRef]
- Zhang, J.; Hamill, A.S.; Weaver, S.E. Antagonism and synergism between herbicides: Trends from previous studies. Weed Technol. 1995, 9, 86–90. [Google Scholar] [CrossRef]
- McMullan, P.M. Utility Adjuvants. Weed Technol. 2000, 14, 792–797. [Google Scholar] [CrossRef]
- Penner, D. The impact of adjuvants on herbicide antagonism. Weed Technol. 1989, 3, 227–231. [Google Scholar] [CrossRef]
- Green, J.M. Herbicide antagonism at the whole plant level. Weed Technol. 1989, 3, 217–226. [Google Scholar] [CrossRef]
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef]
- Corteva Agriscience. Enlist Traits. Available online: https://www.enlist.com/en/traits.html (accessed on 10 January 2020).
- Zollinger, R.K. Grass antagonism with dicamba + clethodim. North Dakota State University. Available online: https://www.ag.ndsu.edu/cpr/weeds/grass-antagonism-with-dicamba-clethodim-07-06-17 (accessed on 10 January 2020).
- Grichar, W.J.; Besler, B.A.; Brewer, K.D.; Baughman, T.A. Grass control in peanut (Arachis hypogaea) with clethodim and selected broadleaf herbicide combinations. Peanut Sci. 2002, 29, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Underwood, M.G.; Soltani, N.; Hooker, D.C.; Robinson, D.E. The addition of dicamba to POST applications of quizalofop-p-ethyl or clethodim antagonizes volunteer glyphosate-resistant corn control in dicamba-resistant soybean. Weed Technol. 2016, 30, 639–647. [Google Scholar] [CrossRef]
- Flint, J.L.; Barrett, M.B. Antagonism of glyphosate toxicity to johnsongrass (Sorghum halepense) by 2,4-D and Dicamba. Weed Sci. 1989, 37, 700–705. [Google Scholar] [CrossRef]
- Byrne, P.J.; Gempesaw, C.M.; Toensmeyer, U.C. An evaluation of Consumer Pesticide Residue Concerns and Risk Information Sources. J. Agric. Econ. 1991, 23, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, R.E.; Beus, C.E. Understanding public concerns about pesticides: And empirical examination. J. Consum. Aff. 1992, 26, 418–438. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, B.P.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridges, D.C.; Whitwell, T.; Walker, R.H. Johnsongrass control in soybeans with postemergence herbicides. In Proceedings of the Southern Weed Science Society 34 Annual Meeting, Dallas, TX, USA, 20–22 January 1981; Volume 34, p. 50. [Google Scholar]
- Hartzler, R.G.; Foy, C.L. Compatibility of BAS 9052 OH with acifluorfen and bentazon. Weed Sci. 1983, 31, 597–599. [Google Scholar] [CrossRef]
- Horng, L.C.; Ilnicki, R.D. Combinations of several grass and broadleaf herbicides for postemergence weed control in soybeans. In Proceedings of the Northeastern Weed Science Society, New York, NY, USA, 5–7 January 1982; Volume 36, p. 16. [Google Scholar]
- Nalewaja, J.D.; Miller, S.D.; Dexter, A.G. Postemergence herbicide combinations for grass and broadleaf weed control. In Proceedings of the North Central Weed Control Conference, Omaha, NE, USA, 9–11 December 1980; Volume 35, p. 43. [Google Scholar]
- Rhodes, G.N., Jr.; Coble, H.D. Influence of application variables on antagonism between sethoxydim and bentazon. Weed Sci. 1984, 32, 436–441. [Google Scholar] [CrossRef]
- Rhodes, G.N., Jr.; Coble, H.D. Influence of bentazon on absorption and translocation of sethoxydim in goosegrass (Eleusine indica). Weed Sci. 1984, 32, 595–597. [Google Scholar] [CrossRef]
- Lassiter, R.B.; Coble, H.D. Carrier volume effects on the antagonism of sethoxydim by bentazon. Weed Sci. 1987, 35, 541–546. [Google Scholar] [CrossRef]
- Sperry, B.P. Optimizing Residual Herbicides in Mid-South Cropping Systems. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2019. [Google Scholar]
- Sidak, Z. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Minton, B.W.; Kurtz, M.E.; Shaw, D.R. Barnyardgrass (Echinochloa crus-galli) control with grass and broadleaf weed herbicide combinations. Weed Sci. 1989, 37, 223–227. [Google Scholar] [CrossRef]
- Grichar, W.J. Sethoxydim and broadleaf herbicide interaction effects on annual grass control in penauts (Arachis hypogaea). Weed Technol. 1991, 5, 321–324. [Google Scholar] [CrossRef]
- Wanamarta, G.; Penner, D.; Kels, J.J. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 1989, 37, 400–404. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Harker, K.N.; Clayton, G.W.; O’Donovan, J.T. Broadleaf herbicide effects on clethodim and quizalofop-p efficacy on volunteer wheat (Triticum aestivum). Weed Technol. 2006, 20, 221–226. [Google Scholar] [CrossRef]
- Nice, G.; Johnson, B.; Bauman, T. Amine or Ester, Which Is Better? Purdue University Extension, Weed Science: West Lafayette, IN, USA, 2004; Available online: https://www.panna.org/sites/default/files/2,4-D%20Amine%20or%20Ester%202004-Purdue.pdf (accessed on 12 November 2019).
- Schortgen, G.P. Enhancing Weed Control by Reducing Hard Water Antagonism of 2,4-D in Spray Tank Mixtures. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2017. [Google Scholar]
- Thelen, K.D.; Jackson, E.P.; Penner, D. 2,4-D interactions with glyphosate and sodium bicarbonate. Weed Technol. 1995, 9, 301–305. [Google Scholar] [CrossRef]
- Ou, J.; Thompson, C.R.; Stahlman, P.W.; Bloedow, N.; Jugulam, M. Reduced translocation of glyphosate and dicamba in combination contributes to poor control of Kochia scoparia: Evidence of herbicide antagonism. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Bromilow, R.H.; Chamberlain, K.; Tench, A.J.; Williams, R.H. Phloem translocation of strong acids-glyphosate, substituted phosphonic and sulfonic acids-in Ricinus communis L. Pest Manag. Sci. 1993, 37, 39–47. [Google Scholar] [CrossRef]
- Amrhein, N.; Schab, J.; Steinrucken, H. The mode of action of the herbicide glyphosate. Naturwissenschaffen 1980, 67, 356–357. [Google Scholar] [CrossRef]
- De Maria, N.; Becerril, J.M.; Garcia-Plazaola, H.A.; Felipe, M.; Fernandez-Pascual, M. New insights of glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. J. Agric. Food Chem. 2006, 54, 2621–2628. [Google Scholar] [CrossRef] [Green Version]
Treatment | Application Method | Herbicide Active Ingredients(s) |
---|---|---|
1 | single application | BAPMA salt of dicamba |
2 | single application | DGA salt of dicamba with vapor grip |
3 | single application | choline salt of 2,4-D |
4 | single application | DMA salt of 2,4-D Amine |
5 | single application | clethodim with NIS |
6 | tank mix | BAPMA salt of dicamba and clethodim with NIS |
7 | mix-in-line | BAPMA salt of dicamba and clethodim with NIS |
8 | separate boom | BAPMA salt of dicamba and clethodim with NIS |
9 | tank mix | DGA salt of dicamba with vapor grip and clethodim with NIS |
10 | mix-in-line | DGA salt of dicamba with vapor grip and clethodim with NIS |
11 | separate boom | DGA salt of dicamba with vapor grip and clethodim with NIS |
12 | tank mix | choline salt of 2,4-D and clethodim with NIS |
13 | mix-in-line | choline salt of 2,4-D and clethodim with NIS |
14 | separate boom | choline salt of 2,4-D and clethodim with NIS |
15 | tank mix | DMA salt of 2,4-D Amine and clethodim with NIS |
16 | mix-in-line | DMA salt of 2,4-D Amine and clethodim with NIS |
17 | separate boom | DMA salt of 2,4-D Amine and clethodim with NIS |
Treatment | Application Method | Herbicide Active Ingredient(s) |
---|---|---|
1 | single application | BAPMA salt of dicamba |
2 | single application | DGA salt of dicamba with vapor grip |
3 | single application | choline salt of 2,4-D |
4 | single application | DMA salt of 2,4-D Amine |
5 | single application | glyphosate |
6 | tank mix | BAPMA salt of dicamba and glyphosate |
7 | mix-in-line | BAPMA salt of dicamba and glyphosate |
8 | separate boom | BAPMA salt of dicamba and glyphosate |
9 | tank mix | DGA salt of dicamba with vapor grip and glyphosate |
10 | mix-in-line | DGA salt of dicamba with vapor grip and glyphosate |
11 | separate boom | DGA salt of dicamba with vapor grip and glyphosate |
12 | tank mix | choline salt of 2,4-D and glyphosate |
13 | mix-in-line | choline salt of 2,4-D and glyphosate |
14 | separate boom | choline salt of 2,4-D and glyphosate |
15 | tank mix | DMA salt of 2,4-D Amine and glyphosate |
16 | mix-in-line | DMA salt of 2,4-D Amine and glyphosate |
17 | separate boom | DMA salt of 2,4-D Amine and glyphosate |
Herbicide Treatment 1 | Application Method | Black Belt Site-Year 1 Italian Ryegrass | R.R. Foil Site-Year 2 | ||||
---|---|---|---|---|---|---|---|
Italian Ryegrass | Broadleaf Signalgrass | ||||||
Obs 2 | Exp 3 | Obs | Exp | Obs | Exp | ||
------------------------------------ % ----------------------------- | |||||||
sethoxydim alone | 68 a | 93 a | 78 a | ||||
bentazon alone | 0 c | 0 c | 0 d | ||||
sethoxydim with bentazon | tank mix | 43 b | 68 | 43 b | 93 | 10 c | 78 |
sethoxydim with bentazon | mix-in-line | 35 b | 68 | 43 b | 93 | 18 b,c | 78 |
sethoxydim with bentazon | separate boom | 61 a | 68 | 83 a | 93 | 50 a,b | 78 |
Application Method 1 | R.R. Foil Site-Year 1 | Black Belt Site-Year 2 | R.R. Foil Site-Year 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Volunteer Corn | Browntop Millet | Italian Ryegrass | Italian Ryegrass | Broadleaf Signalgrass | ||||||
Obs 2 | Exp 3 | Obs | Exp | Obs | Exp | Obs | Exp | Obs | Exp | |
------------------------------------------------------------- % ------------------------------------------------------------- | ||||||||||
Clethodim Alone | 96 a | 49 a | 63 a | 93 a | 50 a | |||||
Dicamba or 2,4-D | 0 c | 0 c | 0 c | 0 d | 0 c | |||||
Tank Mix | 88 a | 96 | 27 a,b | 49 | 48 b | 63 | 75 b | 93 | 29 a,b | 50 |
Mix-in-Line | 60 b | 96 | 19 b | 49 | 37 b | 63 | 54 c | 93 | 14 b | 50 |
Separate Boom | 92 a | 96 | 34 a | 49 | 62 a | 63 | 89 a | 93 | 42 a | 50 |
Application Method 1 | R.R. Foil Site-Year 1 | Black Belt Site-Year 2 | R.R. Foil Site-Year 3 | |||||
---|---|---|---|---|---|---|---|---|
Browntop Millet | Italian Ryegrass | Italian Ryegrass | Broadleaf Signalgrass | |||||
Obs 2 | Exp 3 | Obs | Exp | Obs | Exp | Obs | Exp | |
------------------------------------------ % ---------------------------------------- | ||||||||
glyphosate alone | 100 a | 80 a | 96 a | 65 a | ||||
dicamba or 2,4-D | 0 c | 0 c | 0 d | 0 c | ||||
tank mix | 100 a | 100 | 54 a,b | 80 | 78 b | 96 | 39 b | 65 |
mix-in-line | 84 b | 100 | 50 b | 80 | 48 c | 96 | 18 b | 65 |
separate boom | 100 a | 100 | 69 a | 80 | 92 a | 96 | 65 a | 65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merritt, L.H.; Ferguson, J.C.; Brown-Johnson, A.E.; Reynolds, D.B.; Tseng, T.-M.; Lowe, J.W. Reduced Herbicide Antagonism of Grass Weed Control through Spray Application Technique. Agronomy 2020, 10, 1131. https://doi.org/10.3390/agronomy10081131
Merritt LH, Ferguson JC, Brown-Johnson AE, Reynolds DB, Tseng T-M, Lowe JW. Reduced Herbicide Antagonism of Grass Weed Control through Spray Application Technique. Agronomy. 2020; 10(8):1131. https://doi.org/10.3390/agronomy10081131
Chicago/Turabian StyleMerritt, Luke H., Jason Connor Ferguson, Ashli E. Brown-Johnson, Daniel B. Reynolds, Te-Ming Tseng, and John Wesley Lowe. 2020. "Reduced Herbicide Antagonism of Grass Weed Control through Spray Application Technique" Agronomy 10, no. 8: 1131. https://doi.org/10.3390/agronomy10081131
APA StyleMerritt, L. H., Ferguson, J. C., Brown-Johnson, A. E., Reynolds, D. B., Tseng, T. -M., & Lowe, J. W. (2020). Reduced Herbicide Antagonism of Grass Weed Control through Spray Application Technique. Agronomy, 10(8), 1131. https://doi.org/10.3390/agronomy10081131