Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nitrogen Use Efficiency and N Management Approach
3.2. Grain Yield and N Management Approach
3.3. Profitability of Optical Sensors and Opportunities for Improvement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, D. Nitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Rao, A.; Smith, J.; Parr, J.; Papendick, R. Considerations in estimating nitrogen recovery efficiency by the difference and isotopic dilution methods. Fert. Res. 1992, 33, 209–217. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V.J.A.j. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. GCB Bioenerg. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Miao, Y.; Li, J.; Shi, L.; Xu, J.; Ye, Y.; Liu, C.; Yang, Z. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crop. Res. 2008, 105, 48–55. [Google Scholar] [CrossRef]
- Omara, P.; Aula, L.; Raun, W.R. Nitrogen uptake efficiency and total soil nitrogen accumulation in long-term beef manure and inorganic fertilizer application. Int. J. Agron. 2019, 2019. [Google Scholar] [CrossRef]
- Dahnke, W.; Swenson, L.; Goos, R.J.; Leholm, A. Choosing a Crop Yield Goal; North Dakota State University: Fargo, ND, USA, 1988; SF–822. [Google Scholar]
- Raun, W.; Figueiredo, B.; Dhillon, J.; Fornah, A.; Bushong, J.; Zhang, H.; Taylor, R. Can yield goals be predicted? Agron. J. 2017, 109, 2389–2395. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Stone, M.L. Independence of yield potential and crop nitrogen response. Precis. Agric. 2011, 12, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.; Raun, W. Nitrogen response index as a guide to fertilizer management. J. Plant Nutr. 2003, 26, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.B.; Martin, K.; Freeman, K.; Teal, R.; Girma, K.; Arnall, D.; Hodgen, P.; Mosali, J.; Raun, W.; Solie, J. Mid-season recovery from nitrogen stress in winter wheat. J. Plant Nutr. 2006, 29, 727–745. [Google Scholar] [CrossRef]
- Godwin, R.; Wood, G.; Taylor, J.; Knight, S.; Welsh, J. Precision farming of cereal crops: A review of a six year experiment to develop management guidelines. Biosyst. Eng. 2003, 84, 375–391. [Google Scholar] [CrossRef]
- Butchee, K.S.; May, J.; Arnall, B. Sensor based nitrogen management reduced nitrogen and maintained yield. Crop Manag. 2011, 10, 1–5. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Zhang, F.; Cui, Z.; Li, R.; Chen, X.; Zhang, H.; Schroder, J.; Raun, W.; Jia, L. In-season optical sensing improves nitrogen-use efficiency for winter wheat. Soil Sci. Soc. Am. J. 2009, 73, 1566–1574. [Google Scholar] [CrossRef] [Green Version]
- Colaço, A.F.; Bramley, R.G. Do crop sensors promote improved nitrogen management in grain crops? Field Crop. Res. 2018, 218, 126–140. [Google Scholar] [CrossRef]
- Zillmann, E.; Graeff, S.; Link, J.; Batchelor, W.D.; Claupein, W. Assessment of cereal nitrogen requirements derived by optical on-the-go sensors on heterogeneous soils. Agron. J 2006, 98, 682–690. [Google Scholar] [CrossRef]
- Boyer, C.N.; Brorsen, B.W.; Solie, J.B.; Raun, W.R. Profitability of variable rate nitrogen application in wheat production. Precis. Agric. 2011, 12, 473–487. [Google Scholar] [CrossRef]
- Alcoz, M.M.; Hons, F.M.; Haby, V.A.J.A.J. Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen. Agron. J. 1993, 85, 1198–1203. [Google Scholar] [CrossRef]
- Brown, B.D.; Petrie, S. Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crop. Res. 2006, 96, 260–268. [Google Scholar] [CrossRef]
- Dhillon, J.; Eickhoff, E.; Aula, L.; Omara, P.; Weymeyer, G.; Nambi, E.; Oyebiyi, F.; Carpenter, T.; Raun, W. Nitrogen management impact on winter wheat grain yield and estimated plant nitrogen loss. Agron. J. 2019, 112, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Sowers, K.E.; Pan, W.L.; Miller, B.C.; Smith, J.L. Nitrogen use efficiency of split nitrogen applications in soft white winter wheat. Agron. J. 1994, 86, 942–948. [Google Scholar] [CrossRef]
- Yadav, S.N.; Peterson, W.; Easter, K.W. Do farmers overuse nitrogen fertilizer to the detriment of the environment? Resour. Econ. 1997, 9, 323–340. [Google Scholar] [CrossRef]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop. Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Flowers, M.; Weisz, R.; Heiniger, R. Quantitative approaches for using color infrared photography for assessing in-season nitrogen status in winter wheat. Agron. J. 2003, 95, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Stamatiadis, S.; Schepers, J.; Evangelou, E.; Tsadilas, C.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Spyropoulos, N.; Dalezios, N.; Eskridge, K. Variable-rate nitrogen fertilization of winter wheat under high spatial resolution. Precis. Agric. 2018, 19, 570–587. [Google Scholar] [CrossRef]
- Aula, L.; Dhillon, J.S.; Omara, P.; Wehmeyer, G.B.; Freeman, K.W.; Raun, W.R. World Sulfur Use Efficiency for Cereal Crops. Agron. J. 2019, 111, 2485–2492. [Google Scholar] [CrossRef] [Green Version]
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. Environment World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosyst. Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Hodgen, P.; Raun, W.; Johnson, G.; Teal, R.; Freeman, K.; Brixey, K.; Martin, K.; Solie, J.; Stone, M. Relationship between response indices measured in-season and at harvest in winter wheat. J. Plant Nutr. 2005, 28, 221–235. [Google Scholar] [CrossRef]
- Tubaña, B.; Arnall, D.; Holtz, S.; Solie, J.; Girma, K.; Raun, W. Effect of treating field spatial variability in winter wheat at different resolutions. J. Plant Nutr. 2008, 31, 1975–1998. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crop. Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Biermacher, J.T.; Epplin, F.M.; Brorsen, B.W.; Solie, J.B.; Raun, W.R. Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat. Precis. Agric. 2009, 10, 213–230. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, I.; Raun, W. Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. J. Agric. Sci. Camb. 2007, 145, 215–222. [Google Scholar] [CrossRef]
- Bijay-Singh; Sharma, R.; Jaspreet-Kaur; Jat, M.L.; Martin, K.L.; Yadvinder-Singh; Varinderpal-Singh; Chandna, P.; Choudhary, O.P.; Gupta, R.K.; et al. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sust. Dev. 2011, 31, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Sulochna; Alam, M.P.; Ali, N.; Singh, S. Nitrogen Management by Using Optical Sensor in Wheat in Jharkhand. Curr. J. Appl. Sci. Tech. 2018, 31, 1–5. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Li, F.; Gao, X.; Liu, B.; Lu, D.; Chen, X. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precis. Agric. 2017, 18, 2–18. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Yadvinder-Singh; Thind, H.; Kumar, A.; Choudhary, O.; Gupta, R.; Vashistha, M. Site-specific fertilizer nitrogen management using optical sensor in irrigated wheat in the Northwestern India. Agric. Res. 2017, 6, 159–168. [Google Scholar] [CrossRef]
- Ranney, R. An organic carbon-organic matter conversion equation for Pennsylvania surface soils. Soil Sci. Soc. Am. J. 1969, 33, 809–811. [Google Scholar] [CrossRef] [Green Version]
- Solari, F.; Shanahan, J.F.; Ferguson, R.B.; Adamchuk, V.I. An active sensor algorithm for corn nitrogen recommendations based on a chlorophyll meter algorithm. Agron. J. 2010, 102, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture-Economic Research Service (USDA). Fertilizer Use and Price. Available online: https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx (accessed on 8 April 2019).
- Zhu, X.; Guo, W.; Ding, J.; Li, C.; Feng, C.; Peng, Y. Enhancing nitrogen use efficiency by combinations of nitrogen application amount and time in wheat. J. Plant Nutr. 2011, 34, 1747–1761. [Google Scholar] [CrossRef]
- Hooper, P.; Zhou, Y.; Coventry, D.R.; McDonald, G.K. Use of nitrogen fertilizer in a targeted way to improve grain yield, quality, and nitrogen use efficiency. Agron. J. 2015, 107, 903–915. [Google Scholar] [CrossRef]
- Teal, R.K.; Freeman, K.; Girma, K.; Arnall, D.; Lawles, J.; Martin, K.; Mullen, R.; Raun, W. Effect of tillage and anhydrous ammonia application on nitrogen use efficiency of hard red winter wheat. J. Sustain. Agric. 2007, 30, 51–67. [Google Scholar] [CrossRef]
- Thomason, W.; Raun, W.; Johnson, G. Winter wheat fertilizer nitrogen use efficiency in grain and forage production systems. J. Plant Nutr. 2000, 23, 1505–1516. [Google Scholar] [CrossRef]
- Yi, Q.; He, P.; Zhang, X.; Yang, L.; Xiong, G. Optimizing fertilizer nitrogen for winter wheat production in Yangtze River region in China. J. Plant Nutr. 2015, 38, 1639–1655. [Google Scholar] [CrossRef]
- Kanampiu, F.K.; Raun, W.R.; Johnson, G.V. Effect of nitrogen rate on plant nitrogen loss in winter wheat varieties. J. Plant Nutr. 1997, 20, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, Y.A.; Kelly, J.; Chim, B.K.; Rutto, E.; Waldschmidt, K.; Mullock, J.; Torres, G.; Desta, K.G.; Raun, W. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. J. Plant Nutr. 2013, 36, 749–761. [Google Scholar] [CrossRef]
- Montemurro, F.; Convertini, G.; Ferri, D. Nitrogen application in winter wheat grown in Mediterranean conditions: Effects on nitrogen uptake, utilization efficiency, and soil nitrogen deficit. J. Plant Nutr. 2007, 30, 1681–1703. [Google Scholar] [CrossRef]
- Lees, H.; Raun, W.; Johnson, G. Increased plant nitrogen loss with increasing nitrogen applied in winter wheat observed with 15nitrogen. J. Plant Nutr. 2000, 23, 219–230. [Google Scholar] [CrossRef]
- Zhao, H.; Si, L. Effects of topdressing with nitrogen fertilizer on wheat yield, and nitrogen uptake and utilization efficiency on the Loess Plateau. Acta Agric. Scand. Sect. Soil Plant Sci. 2015, 65, 681–687. [Google Scholar] [CrossRef]
- Girma, K.; Freeman, K.W.; Teal, R.; Arnall, D.B.; Tubana, B.; Holtz, S.; Raun, W.R.; Science, S. Analysis of yield variability in winter wheat due to temporal variability, and nitrogen and phosphorus fertilization. Arch. Agron. Soil Sci. 2007, 53, 435–442. [Google Scholar] [CrossRef]
- Syers, J.; Johnston, A.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. FAO Fertil. Plant Nutr. Bull. 2008, 18, 108. [Google Scholar]
- Xue, C.; Matros, A.; Mock, H.-P.; Mühling, K.-H. Protein composition and baking quality of wheat flour as affected by split nitrogen application. Front. Plant Sci. 2019, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Batal, A.; Dale, N.; Persia, M.J.I. TX: Informa Ingredient analysis table: 2012 edition. Feedstuffs Ref. Issue Buy. Guide 2011, 83, 16–17. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing (R-4.0.1); R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Dhital, S.; Raun, W. Variability in optimum nitrogen rates for maize. Agron. J. 2016, 108, 2165–2173. [Google Scholar] [CrossRef] [Green Version]
- Thomason, W.; Phillips, S.; Davis, P.; Warren, J.; Alley, M.; Reiter, M. Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precis. Agric. 2011, 12, 666–681. [Google Scholar] [CrossRef]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crop. Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Ma, G.; Liu, W.; Li, S.; Zhang, P.; Wang, C.; Lu, H.; Wang, L.; Xie, Y.; Ma, D.; Kang, G. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain. Front. Plant Sci. 2019, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Xuejun, L.; Fusuo, Z. Nitrogen fertilizer induced greenhouse gas emissions in China. Curr. Opin. Environ. Sustain. 2011, 3, 407–413. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Johnson, G.V. Soil-plant buffering of inorganic nitrogen in continuous winter wheat. Agron. J. 1995, 87, 827–834. [Google Scholar] [CrossRef]
- Rasmussen, P.; Rohde, C. Tillage, soil depth, and precipitation effects on wheat response to nitrogen. Soil Sci. Soc. Am. J. 1991, 55, 121–124. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W. Diagnostic tests for site-specific nitrogen recommendations for winter wheat. Agron. J. 2004, 96, 608–614. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Z.; Zhang, N.; Li, X. Nitrate pollution of groundwater in northern China. Agric. Ecosyst. Environ. 1996, 59, 223–231. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Samborski, S.M.; Gozdowski, D.; Stępień, M.; Walsh, O.S.; Leszczyńska, E. On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. Eur. J. Agron. 2016, 74, 56–67. [Google Scholar] [CrossRef]
- Raun, W.; Solie, J.; Stone, M.; Martin, K.; Freeman, K.; Mullen, R.; Zhang, H.; Schepers, J.; Johnson, G. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant. Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef] [Green Version]
- Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An approach to precise nitrogen management using hand-held crop sensor measurements and winter wheat yield mapping in a mediterranean environment. Sensors 2015, 15, 5504–5517. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Haider, K. Denitrification-and Nitrate Leaching-Losses in an Intensively Cropped Watershed. Z. Pflanzenernähr. Bodenkd. 1992, 155, 135–141. [Google Scholar] [CrossRef]
- Raun, W.R.; Dhillon, J.; Aula, L.; Eickhoff, E.; Weymeyer, G.; Figueirdeo, B.; Lynch, T.; Omara, P.; Nambi, E.; Oyebiyi, F. Unpredictable nature of environment on nitrogen supply and demand. Agron. J. 2019, 111, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Walsh, O.S.; Klatt, A.; Solie, J.; Godsey, C.; Raun, W. Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.). Precis. Agric. 2013, 14, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Crain, J.; Ortiz-Monasterio, I.; Raun, B. Evaluation of a reduced cost active NDVI sensor for crop nutrient management. J. Sens 2012, 2012. [Google Scholar] [CrossRef]
- Roberts, D.C.; Brorsen, B.W.; Solie, J.B.; Raun, W.R. The effect of parameter uncertainty on whole-field nitrogen recommendations from nitrogen-rich strips and ramped strips in winter wheat. Agric. Syst. 2011, 104, 307–314. [Google Scholar] [CrossRef]
- Llewellyn, R.; Ouzman, J. Adoption of Precision Agriculture-Related Practices: Status, Opportunities and the Role of Farm Advisers; Report for Grains Research and Development Corporation; CSIRO: Canberra, Australia, December 2014. [Google Scholar]
- Schneider, M.; Wagner, P. Prerequisites for the adoption of new technologies–the example of precision agriculture. Poljoprivredna Tehnika(Agricultural Engineering) 2015, 2007, 9–14. [Google Scholar]
- Bushong, J.T.; Mullock, J.L.; Miller, E.C.; Raun, W.R.; Klatt, A.R.; Arnall, D.B. Development of an in-season estimate of yield potential utilizing optical crop sensors and soil moisture data for winter wheat. Precis. Agric. 2016, 17, 451–469. [Google Scholar] [CrossRef]
- Lukina, E.; Freeman, K.; Wynn, K.; Thomason, W.; Mullen, R.; Stone, M.; Solie, J.; Klatt, A.; Johnson, G.; Elliott, R. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J. Plant Nutr. 2001, 24, 885–898. [Google Scholar] [CrossRef]
- Shiratsuchi, L.; Ferguson, R.; Shanahan, J.; Adamchuk, V.; Rundquist, D.; Marx, D.; Slater, G. Water and nitrogen effects on active canopy sensor vegetation indices. Agron. J. 2011, 103, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Mauzerall, D.L.; Davidson, E.A.; Kanter, D.R.; Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Environ. Qual. 2015, 44, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ibrahim, S. Wheat grain yield and nitrogen uptake prediction using atLeaf and GreenSeeker portable optical sensors at jointing growth stage. Inform. Process. Agric 2019. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Guttieri, M.J.; Frels, K.; Regassa, T.; Waters, B.M.; Baenziger, P.S. Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. Euphytica 2017, 213, 87. [Google Scholar] [CrossRef] [Green Version]
Source | Country | CM-N ¶ | SOC (g kg −1) † | N Rates (kg ha−1) | NUE (%) | Grain Yield (kg ha−1) | |||
---|---|---|---|---|---|---|---|---|---|
OS ‡ | CM § | OS | CM | OS | CM | ||||
Raun et al. [5] | USA | Preplant | 9.5 | 65 | 90 | 23 | 22 | 2292 | 2063 |
Morris et al. [13] | USA | Preplant | 13.3 | 67 | 90 | 64 | 71 | 4936 | 5234 |
8.2 | 68 | 90 | 47 | 52 | 4527 | 4276 | |||
6.2 | 129 | 90 | 25 | 23 | 2612 | 2082 | |||
13.3 | 153 | 90 | 34 | 48 | 4391 | 3751 | |||
8.2 | 133 | 90 | 32 | 36 | 3556 | 3766 | |||
6.2 | 142 | 90 | 44 | 38 | 4625 | 3909 | |||
Butchee et al. [15] | USA | Topdress | NA †† | 45 | 56 | 35 | 28 | 3071 | 3058 |
43 | 66 | 31 | 22 | 3468 | 3461 | ||||
Li et al. [16] | China | 2-way split | 5.7 | 94 | 432 | 52 | 14 | 4909 | 4952 |
5.7 | 40 | 312 | 71 | 12 | 5966 | 6034 | |||
Boyer et al. [19] | USA | Preplant | NA | 69 | 90 | 20 | 14 | 2267 | 2228 |
Stamatiadis et al. [27] a | Greece | 2-way split | 7.2 | 136 | 217 | 58 | 44 | 5891 | 5815 |
Hodgen et al. [30] | USA | Preplant | NA | 76 | 90 | 46 | 39 | 2457 | 2480 |
49 | 90 | 27 | 17 | 3373 | 3480 | ||||
69 | 90 | 33 | 39 | 3503 | 4083 | ||||
52 | 90 | 2.5 | −1.4 | 750 | 630 | ||||
Tubaña et al. [31] | USA | Preplant | NA | 41 | 90 | 24 | 21 | 1628 | 1697 |
90 | 90 | 40 | 28 | 4179 | 3628 | ||||
36 | 90 | 32 | 14 | 3330 | 3705 | ||||
34 | 90 | 43 | 37 | 4253 | 4689 | ||||
39 | 90 | 36 | 17 | 1945 | 2081 | ||||
53 | 90 | 40 | 35 | 2637 | 2308 | ||||
Cao et al. [32] | China | 2-way split | 2.1 | 123 | 300 | 69 | 33 | 6800 | 7400 |
Biermacher et al. [33] | USA | Preplant | NA | 69 | 90 | 35 | 24 | 3324 | 3200 |
Ortiz-Monasterio and Raun [34] b | Mexico | 2-way split | NA | 138 | 220 | - # | - | 7130 | 7360 |
138 | 198 | - | - | 6970 | 7150 | ||||
115 | 197 | - | - | 7280 | 7480 | ||||
150 | 250 | - | - | 8050 | 7900 | ||||
92 | 184 | - | - | 7440 | 7570 | ||||
160 | 197 | - | - | 7300 | 7000 | ||||
148 | 230 | - | - | 7680 | 7770 | ||||
Bijay-Singh et al. [35] | India | 2-way split | 4.1 | 77 | 150 | 59 | 41 | 3660 | 4410 |
105 | 150 | 48 | 38 | 4240 | 4560 | ||||
107 | 150 | 76 | 58 | 5270 | 4570 | ||||
111 | 120 | 51 | 49 | 4450 | 4570 | ||||
Sulochna et al [36] | India | 3-way split | 140 | 180 | 38 | 26 | 4839 | 4560 | |
Cao et al. [37] | China | 2-way split | NA | 229 | 300 | - | - | 7957 | 7722 |
217 | 300 | - | - | 7777 | 7722 | ||||
216 | 300 | - | - | 8062 | 8517 | ||||
213 | 300 | - | - | 7578 | 8517 | ||||
240 | 300 | - | - | 9490 | 9319 | ||||
268 | 300 | - | - | 9717 | 9319 | ||||
Bijay-Singh et al. [38] | India | 2-way split | 0.4 | 88 | 120 | 53 | 39 | 4000 | 4010 |
87 | 120 | 52 | 39 | 3920 | 4010 | ||||
85 | 120 | 65 | 45 | 3960 | 3910 | ||||
75 | 120 | 24 | 13 | 2080 | 2010 | ||||
Mean | 5.4 | 109 | 162 | 42.0 | 31.6 | 4884 | 4893 | ||
Standard error | 0.7 | ±8.7 | 13.3 | ±2.8 | ±2.6 | ±324 | ±332 | ||
CV (%) §§ | 74.2 | 54.8 | 56.2 | 39.2 | 48.3 | 45.5 | 46.5 |
Source | CM-N ¶¶ | Location | SOC † (g kg−1) | N Rate (kg ha−1) | NUE (%) | Yield (Mg ha−1) |
---|---|---|---|---|---|---|
Zhu et al. [42] | 2-way split | China | 5.0 | 360 | 20.8 | 6.2 |
Hooper et al. [43] | 2-way split | Australia | 13.3 | 200 | 17.0 | 2.8 |
13.3 | 200 | 17.2 | 2.7 | |||
Teal et al. [44] | Preplant | USA | NA ‡ | 185 | 19.3 | 3.7 |
NA | 185 | 21.7 | 3.6 | |||
Thomason et al. [45] | Preplant | USA | 10.6 | 134 | 23.8 | 2.2 |
11.0 | 112 | 44.8 | 3.9 | |||
Yi et al. [46] | 3-way split | China | 9.5 | 225 | 22.8 | 4.2 |
9.5 | 240 | 8.2 | 1.8 | |||
Kanampiu et al. [47] | Preplant | USA | 6.4 | 120 | 17.5 | 2.2 |
7.4 | 180 | 7.2 | 1.1 | |||
Mohammed et al. [48] | 2-way split | USA | NA | 200 | 23.2 | 3.6 |
Montemurro et al. [49] | 2-way split | Italy | 16.2 | 180 | 13.8 | 3.0 |
Lees et al. [50] | Preplant | USA | 9.2 | 135 | 28.7 | 1.6 |
4.7 | 112 | 64.8 | 4.0 | |||
Zhao and Li [51] | 2-way split | China | 6.2 | 198 | 27.7 | 4.3 |
6.2 | 198 | 32.0 | 4.8 | |||
6.2 | 198 | 51.0 | 6.8 | |||
Girma et al. [52] | Preplant | USA | NA | 168 | 14.6 | 2.5 |
Mean § | 9.0 | 186 | 25.1 | 3.4 | ||
Standard error | 0.9 | ±12.9 | ±3.3 | ±339 | ||
CV (%) §§ | 38.0 | 30.2 | 58 | 43.2 |
Description | DIF ‡ | SE § | t Value | p-Value |
---|---|---|---|---|
Optical sensor vs. Conventional methods | ||||
Grain yield | −0.01 | ±0.05 | −0.17 | 0.86 |
N rate | 53 | ±10.0 | −5.30 | <0.01 |
NUE | 10.4 | ±2.3 | 4.44 | <0.01 |
Differences between Regions | ||||
Grain yield | ||||
Optical sensors: U.S. vs. Asia | −2.6 | ±0.6 | −4.6 | <0.01 |
Conventional methods: U.S. vs. Asia | −2.8 | ±0.6 | −4.8 | <0.01 |
N rate | ||||
Optical sensors: U.S. vs. Asia | −67 | ±18.3 | −3.37 | <0.01 |
Conventional methods: U.S. vs. Asia | −139 | ±23.2 | −5.99 | <0.01 |
NUE | ||||
Optical sensors: U.S. vs. Asia | −20.8 | ±5.0 | −4.17 | <0.01 |
Conventional methods: U.S. vs. Asia | −4.2 | ±5.5 | −0.77 | 0.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aula, L.; Omara, P.; Nambi, E.; Oyebiyi, F.B.; Raun, W.R. Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency. Agronomy 2020, 10, 1157. https://doi.org/10.3390/agronomy10081157
Aula L, Omara P, Nambi E, Oyebiyi FB, Raun WR. Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency. Agronomy. 2020; 10(8):1157. https://doi.org/10.3390/agronomy10081157
Chicago/Turabian StyleAula, Lawrence, Peter Omara, Eva Nambi, Fikayo B. Oyebiyi, and William R. Raun. 2020. "Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency" Agronomy 10, no. 8: 1157. https://doi.org/10.3390/agronomy10081157
APA StyleAula, L., Omara, P., Nambi, E., Oyebiyi, F. B., & Raun, W. R. (2020). Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency. Agronomy, 10(8), 1157. https://doi.org/10.3390/agronomy10081157