Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Trial Environments
2.2. Genetic Materials
2.3. Field Evaluation
2.3.1. Management of Drought and Optimal Environments
2.3.2. Management of Striga-Infested Fields
2.3.3. DNA Extraction and Genotyping
2.4. Data Collection
2.5. Data Analyses
- Step 1
- All inbreds that formed hybrids with negative SCA effects on crossing with a tester were assigned to the heterotic group of that tester, whereas inbreds with hybrids that had positive SCA effects with all the testers were regarded as “not classified” since they belonged to an unknown heterotic group;
- Step 2
- Since some inbreds were found to belong to two or more heterotic groups, the values of the SCA effects with the different testers were considered, and the inbreds were retained in the group for which the SCA effect was least (highest negative).
3. Results
3.1. Performance of Hybrids under Striga-Infested, Drought, and Combined Research Environments
3.2. Heterotic Grouping of Inbreds and Relationship among Grouping Methods
3.3. Efficiencies of Heterotic Grouping Methods
4. Discussions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munodawafa, A. The Effect of Rainfall Characteristics and Tillage on Sheet Erosion and Maize Grain Yield in Semiarid Conditions and Granitic Sandy Soils of Zimbabwe. Appl. Environ. Soil Sci. 2012, 2012, 243815. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, M.; Menkir, A. Assessment of drought tolerant maize (Zea mays L.) inbred lines for grain yield and other traits under managed stress condition. Niger. J. Gen. 2014, 28, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Yallou, C.G.; Obeng-Antwi, K.; Alidu, H.; Talabi, A.O.; Annor, B.; Oyekunle, M.; Akaogu, I.C.; Aderounmu, M. Yield Gains in Extra-Early Maize Cultivars of Three Breeding Eras under Multiple Environments. Agron. J. 2017, 109, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Heisey, P.W.; Edmeades, G.O. World Maize Facts and Trends 1997/98: Maize Production in Drought-Stressed Environments: Technical Options and Research Resource Allocation. 1999. Available online: https://repository.cimmyt.org/handle/10883/759?show=full (accessed on 28 June 2020).
- Ludlow, M.M.; Muchow, R.C. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 1990, 43, 107–153. [Google Scholar]
- Mashingaidze, K. Maize research and development. In Zimbabwe’s Agricultural Revolution; Rukuni, M., Eicher, C.K., Eds.; University of Zimbabwe Publications Office: Harare, Zimbabwe, 1994; pp. 208–218. [Google Scholar]
- Mugo, S.N.; Njoroge, K. Alleviating the effects of drought on maize production in the moisture stress areas of Kenya through escape and tolerance. In Developing Drought and Low-N Tolerant Maize; Edmeades, G.O., Bänziger, M., Mickelson, H.R., Peña-Valdivia, C.B., Eds.; CIMMYT: El Batán, Spain; Mexico City, Mexico, 1997; pp. 475–480. [Google Scholar]
- Edmeades, G.O.; Bolanos, J.; Chapman, S.C.; Lafitte, H.R.; Banziger, M. Selection improves drought tolerance in tropical maize populations: Gains in biomass, grain yield and harvest index. Crop Sci. 1999, 39, 1306–1315. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Akinwale, R.O.; Fakorede, M.A.B. Selection of early maturing maize inbred lines for hybrid production using multiple traits under Striga-infested and Striga-free environments. Maydica 2010, 55, 261–274. [Google Scholar]
- Xu, H.; Lu, Y.; Xie, Z. Effects of silicon on maize photosynthesis and grain yield in black soils. Emir. J. Food Agric. 2012, 28, 779–785. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Edmeades, G.O.; Loffler, C.; Schussler, J.R.; Ibanez, M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica 2006, 51, 369–381. [Google Scholar]
- Oyekunle, M. Genetic Analysis and Molecular Characterization or Early Maturing Maize (Zea mays L.) Inbred Lines for Drought Tolerance. Ph.D. Thesis, Department of Agronomy, University of Ibadan, Ibadan, Nigeria, 2012. [Google Scholar]
- Ejeta, G. Breeding for Striga Resistance in Sorghum: Exploitation of an Intricate Host Parasite Biology. Crop Sci. 2007, 47, 216–227. [Google Scholar] [CrossRef]
- Yallou, C.G.; Menkir, A.; Adetimirin, V.O.; Kling, J.G. Combining ability of maize inbred lines containing genes from Zea diploperennis for resistance to Striga hermonthica (Del.) Benth. Plant Breed. 2009, 128, 143–148. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Fontem, L.A. S1 Family Selection in Early-Maturing Maize Populations in Striga-Infested and Striga-Free Environments. Crop Sci. 2005, 48, 1984–1994. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Yallou, C.G.; Haruna, A.; Talabi, A.O.; Akaogu, I.C.; Annor, B.; Adeoti, A. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Sci. 2016, 56, 2564–2578. [Google Scholar] [CrossRef]
- Elmyhun, M.; Liyew, C.; Shita, A.; Andualem, M. Combining ability performance and heterotic grouping of maize (Zea mays) inbred lines in testcross formation in Western Amhara, North West Ethiopia. Cogent Food Agric. 2020, 6, 1727625. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Oyekunle, M.; Akinwale, R.O.; Lum, F. Combining ability of early-maturing white maize inbred lines under stress and nonstress environments. Agron. J. 2011, 130, 544–557. [Google Scholar] [CrossRef]
- Oyekunle, M.; Badu-Apraku, B. Genetic analysis of grain yield and other traits of early-maturing maize inbreds under drought and well-watered conditions. J. Agron. Crop Sci. 2013, 200, 92–107. [Google Scholar] [CrossRef]
- Derera, J.; Tongoona, P.; Vivek, B.S.; Laing, M.D. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 2008, 162, 411–422. [Google Scholar] [CrossRef]
- Shull, G.H. The composition of a field of maize. Heredity 1908, 4, 296–301. [Google Scholar] [CrossRef]
- Meena, A.K.; Gurjar, D.; Patil, S.S.; Kumhar, B.L. Concept of Heterotic Group and its Exploitation in Hybrid Breeding. Int. J. Curr. Microbiol.Appl. Sci. 2017, 6, 61–73. [Google Scholar] [CrossRef]
- Shull, G.H. Beginnings of the heterosis concept. In Heterosis; Gowen, J.W., Ed.; Iowa State College Press: Ames, IA, USA, 1952; pp. 14–48. [Google Scholar]
- Stuber, C.W. Heterosis in plant breeding. Plant Breed. Rev. 1994, 12, 227–251. [Google Scholar]
- Fan, X.M.; Bi, Y.; Zhang, Y.; Jeffers, D.; Yin, X.F.; Kang, M. Improving Breeding Efficiency of a Hybrid Maize Breeding Program Using a Three Heterotic-Group Classification. Agron. J. 2018, 110, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Lee, M. DNA markers and plant breeding programs. Adv. Agron. 1995, 55, 265–344. [Google Scholar]
- Hallauer, A.R.; Russel, W.A.; Lamkey, K.R. Corn breeding. In Corn and Corn Improvement; Sprague, G.F., Dudley, J.W., Eds.; American Society of Agronomy: Madison, WI, USA, 1988; pp. 941–963. [Google Scholar]
- Wen, W.; Guo, T.; Tovar, V.H.C.; Li, H.; Yan, J.; Taba, S. The strategy and potential utilisation of temperate germplasm for tropical germplasm improvement: A case study of maize (Zea mays L.). Mol. Breed. 2012, 29, 951–962. [Google Scholar] [CrossRef]
- Wu, J.C.; Xu, C.X.; Chen, H.M.; Tan, J.; Han, X.R.; Huang, B.H.; Fan, X.M. Studies on combining ability and heterotic grouping of 24 quality protein maize inbreds and four temperate representative inbreds of Chinese major heterotic groups. Sci. Agric. Sin. 2007, 40, 1288–1296. [Google Scholar]
- Fan, X.M.; Zhang, Y.M.; Yao, W.H.; Chen, H.M.; Tan, J.; Xu, C.X.; Han, X.L.; Luo, L.M.; Kang, M.S. Classifying maize inbred lines into heterotic groups using a factorial mating design. Agron. J. 2009, 101, 106–112. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Oyekunle, M.; Fakorede, M.A.B.; Vroh, I.; Akinwale, R.O.; Aderounmu, M. Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica 2013, 192, 413–433. [Google Scholar] [CrossRef]
- Wegary, D.; Vivek, B.; Labuschagne, M. Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica 2013, 191, 205–216. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Gedil, M.; Annor, B.; Talabi, A.O.; Akaogu, I.C.; Oyekunle, M.; Akinwale, R.O.; Fasanmade, T.Y. Heterotic patterns of IITA and CIMMYT Early maturing Yellow Maize Inbreds under Contrasting Environments. Agron. J. 2016, 108, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Shieh, G.J.; Thseng, F.S. Genetic diversity of Tainan white maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica 2006, 124, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Benchimol, L.L.; De Souza, C.L.; Garcia, A.A.F.; Kono, P.M.S.; Mangolin, C.A.; Barbosa, A.M.M.; Coelho, A.S.G.; De Souza, A.P. Genetic diversity in tropical maize inbred lines: Heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breed. 2008, 119, 491–496. [Google Scholar] [CrossRef]
- Lanza, L.L.B.; De Souza, C.L., Jr.; Ottoboni, L.M.M.; Vieira, M.L.C.; De Souza, A.P. Genetic distance of inbred lines and prediction of maize single cross performance using RAPD markers. Theor. Appl. Gen. 1997, 94, 1023–1030. [Google Scholar] [CrossRef]
- Balestre, M.; Von Pinho, R.G.; Souza, J.C.; Lima, J.L. Comparison of maize similarity and dissimilarity genetic coefficients based on microsatellite markers. Genet. Mol. Res. 2008, 7, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Menkir, A.; Melake-Berhan, A.; The, A.C.; Ingelbrecht, I.; Adepoju, A. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theor. Appl. Gen. 2004, 108, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Barata, C.; Carena, M. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 2006, 151, 339–349. [Google Scholar] [CrossRef]
- Fan, X.M.; Tan, J.; Huang, B.H.; Liu, F. Analyses of combining ability and heterotic patterns of quality protein maize inbreds. Acta Agron. Sin. 2001, 27, 986–992. [Google Scholar]
- Liu, Z.Q.; Pu, Z.J.; Pei, Y. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L. Plant Breed. 2008, 118, 119–123. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Badu-Apraku, B.; Fakorede, M.A.B.; Vroh-bi, I. Heterotic grouping of tropical early maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crop. Res. 2014, 156, 8–62. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Gedil, M.; Talabi, A.O.; Annor, B.; Oyekunle, M.; Akinwale, R.O.; Fasanmade, T.Y.; Akaogu, I.C.; Aderounmu, M. Heterotic responses of IITA and CIMMYT early white maize inbred lines under multiple stress environments. Euphytica 2015, 206, 245–262. [Google Scholar] [CrossRef]
- Amegbor, I.K.; Badu-Apraku, B.; Annor, B. Combining ability and heterotic patterns of extra-early maturing white maize inbreds with genes from Zea diploperennis under multiple environments. Int. J. Plant Breed. 2017, 213, 24. [Google Scholar] [CrossRef]
- Olayiwola, M.O. Genetic Analysis of Maize (Zea mays L.) Inbred Lines and Hybrid Performance under Artificial Stem Borer Infestation, Low Nitrogen and Non-Stress Environments. Ph.D. Thesis, Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta, Nigeria, 2018. [Google Scholar]
- Chemeli, J. Heterotic Grouping of Selected Inbred Lines of Maize (Zea mays L.) Using Two Testers in Kiambu and Embu Counties, Kenya. Master’s Thesis, Department of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya, 2016. [Google Scholar]
- Singode, A.; Manivannan, A.; Ahmad, B.; Srivastava, E.; Mahajan, V. Heterotic Grouping in Early Maturing Indian Maize Lines. Int. J. Agric. Innov. Res. 2017, 6, 57–62. [Google Scholar]
- Arifin, N.S.; Nugraha, A.A.; Waluyo, B.; Ardiarini, N.R.; Azrai, M. Grouping in heterotic pool of maize inbred lines based on numerical and graphical analysis of combining ability. SABRAO J. Breed. Gen. 2018, 50, 475–493. [Google Scholar]
- Ifie, B.E. Genetic Analysis of Striga Resistance and Low Soil Nitrogen Tolerance in Early Maturing Maize (Zea mays L.) Inbred Lines. Ph.D. Thesis, University of Ghana, Accra, Ghana, 2013. [Google Scholar]
- Kim, S.K. Breeding maize for Striga tolerance and development of a field infestation technique. In Combating Striga in Africa, Proceedings of the International Workshop on Combating Striga in Africa, Ibadan, Nigeria, 22–24 August 1988; Kim, S.K., Ed.; IITA: Ibadan, Nigeria; ICRISAT: Hyderabad, India; IDRC: Ottawa, ON, Canada, 1991; pp. 96–108. [Google Scholar]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.; Mitchell, S.M. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. Btassel: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.S. Measures of genetic similarity and genetic distance. In Studies in Genetics VII; Wheeler, M.R., Ed.; University of Texas Public: Austin, TX, USA, 1972; Volume 7213, pp. 145–153. [Google Scholar]
- Liu, K.J.; Muse, S.V. Power Marker: Integrated analysis environment for genetic marker data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badu-Apraku, B.; Lum, A.F.; Fakorede, M.A.B.; Menkir, A.; Chabi, Y.; The, C.; Abdulai, M.; Jacob, S.; Agbaje, S. Performance of cultivars derived from recurrent selection for grain yield and Striga resistance in early maize. Crop Sci. 2008, 48, 99–112. [Google Scholar] [CrossRef]
- SAS Institute. SAS System for Windows; Release 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Singh, R.H.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publisher: New Delhi, India, 1985; pp. 1–318. [Google Scholar]
- Baker, R.J. Issues in diallel analysis. Crop Sci. 1978, 18, 535–536. [Google Scholar] [CrossRef]
- Fan, X.M.; Chen, H.M.; Tan, J.; Xu, C.X.; Zhang, Y.M.; Huang, Y.X.; Kang, M.S. A new maize heterotic pattern between temperate and tropical germplasm. Agron. J. 2008, 100, 917–923. [Google Scholar] [CrossRef]
- Akaogu, I.C.; Badu-Apraku, B.; Adetimirin, V.O.; Vroh-Bi, I.; Oyekunle, M.; Akinwale, R.O. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments. J. Agric. 2013, 151, 519. [Google Scholar] [CrossRef]
- Ruswandi, D.M.; Supriatna, J.; Makkulawu, A.T.; Waluyo, B.; Marta, H.; Suryadi, E.; Ruswandi, S. Determinations of combining ability and heterosis of grain yield components for maize based on line × tester analysis. Asian J. Crop Sci. 2015, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K. Genetics of Maize Tolerance of Striga hermonthica. Crop Sci. 1994, 34, 900–907. [Google Scholar] [CrossRef]
- Akanvou, L.; Doku, E.V.; Kling, J. Estimates of genetic variances and interrelationships of traits associated with Striga resistance in maize. Afr. Crop Sci. J. 1997, 5, 1–8. [Google Scholar] [CrossRef]
- Gethi, J.G.; Smith, M.E. Genetic responses of single crosses of maize to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze. Crop Sci. 2004, 44, 2068–2077. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Lum, A.F. Evaluation of experimental varieties from recurrent selection for Striga resistance in two extra-early maize populations in the savannahs of West and Central Africa. Exp. Agric. 2007, 43, 183–200. [Google Scholar] [CrossRef]
- Tengan, K.M.L.; Obeng-Antwi, K.; Akromah, R. Genetic variances, heritability, and correlation studies on selected phenotypic traits in a backcross breeding program involving normal and opaque-2 maize. Agric. Biol. J. N. Am. 2012, 3, 287–291. [Google Scholar] [CrossRef]
- Annor, B.; Badu-Apraku, B. Gene action controlling grain yield and other agronomic traits of extra-early quality protein maize under stress and non-stress conditions. Euphytica 2016, 212, 213–228. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Oyekunle, M. Genetic analysis of grain yield and other traits of extra-early yellow maize inbreds and hybrid performance under contrasting environments. Field Crop. Res. 2012, 129, 99–110. [Google Scholar] [CrossRef]
- Katsantonis, N.; Gagianas, A.; Fotiadis, N. Genetic control of nitrogen uptake, reduction and partitioning in maize (Zea mays L.). Maydica 1988, 33, 99–108. [Google Scholar]
- Ariyo, O.J. Stability of Performance of Okra as Influenced by Planting Date. Theor. Appl. Gen. 1987, 74, 83–86. [Google Scholar] [CrossRef]
- Kang, M.S. Using genotype-by-environment interaction for crop cultivar development. Adv. Agron. 1997, 62, 199–252. [Google Scholar]
- Dar, Z.A.; Lone, A.A.; Khuroo, N.S.; Ali, G.; Abidi, I.; Ahangar, M.A.; Wani, M.A.; Yasin, A.B.; Gazal, A.; Lone, R.A.; et al. Line × tester analysis in maize (Zea mays L.) for various morpho-agronomic traits under temperate conditions. Int.J. Curr. Microb. Appl. Sci. 2017, 6, 1430–1437. [Google Scholar] [CrossRef]
- Kumar, J.; Kumar, S. Line × tester analyses for yield and its components in indigenous maize (Zea mays L.) germplasm of Mid Hills, India. Agric. Sci. Res. J. 2014, 5, 50–56. [Google Scholar]
- Haussmann, B.J.G.; Hess, D.E.; Welz, H.G.; Geiger, H.H. Improved methodologies for breeding Striga resistance sorghums. Field Crop. Res. 2000, 66, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.; Bastians, L.; Kropff, M. Characterization of host tolerance to Striga hermonthica. Euphytica 2006, 147, 353–365. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Akinwale, R.O. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments. Field Crop. Res. 2011, 121, 186–194. [Google Scholar] [CrossRef]
- DeVries, J. The inheritance of Striga reactions in maize. In Breeding for Striga Resistance in Cereals, Proceedings of the International Workshop Organized by IITA, Ibadan, Nigeria, 4–8 September 2000; Haussmann, B.J.G., Hess, D.E., Koyama, M.L., Grivet, L., Rattunde, H.F.W., Geiger, H.H., Eds.; Magraf Verlag: Weikersheim, Germany, 2000; pp. 73–84. [Google Scholar]
- Ejeta, G.; Bulter, L.G.; Hess, D.E.; Vogler, R.K. Genetic and breeding Strategies for Striga Resistance in Sorghum. In Proceedings of the Fifth International Symposium on Parasitic Weeds, Nairobi, Kenya, 24–30 June 1991; Ransom, J.K., Ed.; CIMMYT: Mexico City, Mexico, 1991; pp. 539–544. [Google Scholar]
- Rodenburg, J.; Bastiaans, L.; Weltzien, E.; Hess, D.E. How can field selection for Striga resistance and tolerance in sorghum be improved? Field Crop. Res. 2005, 93, 34–50. [Google Scholar] [CrossRef] [Green Version]
ID | Designation | Reaction to Drought | Reaction to Striga | ID | Designation | Reaction to Drought | Reaction to Striga |
---|---|---|---|---|---|---|---|
G1 | ENT 13 | Tolerant | Resistant | G34 | TZEI 560 | Susceptible | - |
G2 | TZEI 10 | - | Resistant | G35 | TZEI 561 | Tolerant | - |
G3 | TZEI 124 | - | - | G36 | TZEI 562 | Tolerant | - |
G4 | TZEI 129 | Susceptible | - | G37 | TZEI 563 | Tolerant | - |
G5 | TZEI 23 | Susceptible | Tolerant | G38 | TZEI 567 | Susceptible | - |
G6 | TZEI 25 | - | - | G39 | TZEI 571 | Tolerant | - |
G7 | TZEI 416 | - | Susceptible | G40 | TZEI 572 | Tolerant | - |
G8 | TZEI 422 | - | Resistant | G41 | TZEI 574 | Tolerant | - |
G9 | TZEI 426 | - | Susceptible | G42 | TZEI 576 | Tolerant | - |
G10 | TZEI 447 | - | Susceptible | G43 | TZEI 578 | Tolerant | - |
G11 | TZEI 448 | - | Resistant | G44 | TZEI 582 | Tolerant | - |
G12 | TZEI 459 | - | Resistant | G45 | TZEI 584 | Tolerant | - |
G13 | TZEI 466 | - | Susceptible | G46 | TZEI 585 | Tolerant | - |
G14 | TZEI 492 | - | Resistant | G47 | TZEI 586 | Tolerant | - |
G15 | TZEI 496 | - | Resistant | G48 | TZEI 587 | Tolerant | - |
G16 | TZEI 502 | - | Resistant | G49 | TZEI 594 | Tolerant | - |
G17 | TZEI 503 | - | Resistant | G50 | TZEI 595 | Susceptible | - |
G18 | TZEI 511 | - | Resistant | G51 | TZEI 597 | Tolerant | - |
G19 | TZEI 517 | - | Resistant | G52 | TZEI 598 | Tolerant | - |
G20 | TZEI 519 | - | Susceptible | G53 | TZEI 599 | Tolerant | - |
G21 | TZEI 534 | Tolerant | - | G54 | TZEI 600 | Tolerant | - |
G22 | TZEI 539 | Tolerant | - | G55 | TZEI 601 | Tolerant | - |
G23 | TZEI 540 | Tolerant | - | G56 | TZEI 602 | Tolerant | - |
G24 | TZEI 544 | Tolerant | - | G57 | TZEI 603 | Tolerant | - |
G25 | TZEI 547 | Tolerant | - | G58 | TZEI 604 | Tolerant | - |
G26 | TZEI 549 | Susceptible | - | G59 | TZEI 608 | Tolerant | - |
G27 | TZEI 550 | Tolerant | - | G60 | TZEI 609 | Tolerant | - |
G28 | TZEI 551 | Tolerant | - | G61 | TZEI 610 | Tolerant | - |
G29 | TZEI 552 | Tolerant | - | G62 | TZEI 615 | Tolerant | - |
G30 | TZEI 554 | Tolerant | - | G63 | TZEI 617 | Tolerant | - |
G31 | TZEI 557 | Susceptible | - | G64 | TZEI 619 | Tolerant | - |
G32 | TZEI 558 | Tolerant | - | G65 | TZEI 620 | Tolerant | - |
G33 | TZEI 559 | Tolerant | - |
S/N | Observation | Mode of Determination |
---|---|---|
1 | Anthesis-silking interval (ASI) | Positive difference between DYS and DYA. |
2 | Number of ears per plant (EPP) | Dividing the total number of ears per plot by the number of plants harvested. |
3 | Ear aspect (EASP) | Composite trait that assesses the general appeal of the ears encompassing ear size, uniformity of size, color and texture, extent of grain filling, insect and disease damage, rated on a scale of 1–9 where, 1 = clean, uniform, large, and well-filled ears and 9 = only one or no ears or ears with undesirable features such as diseases, small ears, and ears with poorly filled grains [18,31]. |
Specific to Optimal Environment | ||
4 | Plant aspect (PASP) | Rated on a scale of 1–9, where 1 = excellent and 9 = poor [18,31]. |
Specific to Drought Environment | ||
5 | Stay-green character (otherwise called leaf death) | Plants in each experimental unit were rated together at 70 DAS, on a scale of 1–9 where 1 = 0–10% dead leaf area taken upwards from the base of the plant and 9 = 90–100% dead leaf area [31]. |
Specific to Striga-Infested Environment | ||
6 | Host-plant damage syndrome rating | Rated at 10 WAS, on a scale of 1–9 where 1 = no damage, indicating normal plant growth, and 9 = complete collapse or death of the maize plant [48]. |
7 | Number of emerged Striga plants | Physical counting of the number of emerged Striga plants associated with plants in an experimental unit taken at 10 WAS [56]. |
SOV | DF | Yield (× 105) | ASI | EPP | EASP | SDR | ESC | STGR |
---|---|---|---|---|---|---|---|---|
Striga-Infested Environment | ||||||||
Blk (Rep × E) | 90 | 30.74 (p < 0.01) | 2.52 (p < 0.01) | 0.02 (p < 0.05) | 2.90 (NS) | 0.64 (p < 0.01) | 71.11 (p < 0.01) | - |
Rep (E) | 3 | 39.20 (p < 0.05) | 4.92 (p < 0.05) | 0.09 (p < 0.01) | 4.73 (NS) | 1.87 (p < 0.01) | 831.03 (p < 0.01) | - |
Environment | 2 | 6784.15 (p < 0.01) | 189.04 (p < 0.01) | 1.00 (p < 0.01) | 147.22 (p < 0.01) | 1997.14 (p < 0.01) | 18216.81 (p < 0.01) | - |
Hybrid | 243 | 23.45 (p < 0.01) | 3.16 (p < 0.01) | 0.03 (p < 0.01) | 2.57 (NS) | 1.17 (p < 0.01) | 84.85 (p < 0.01) | - |
Hybrid × E | 486 | 18.56 (p < 0.01) | 2.44 (p < 0.01) | 0.03 (p < 0.01) | 2.76 (NS) | 1.10 (p < 0.01) | 79.44 (p < 0.01) | - |
GCALine | 60 | 31.03 (NS) | 3.87 (NS) | 0.03 (NS) | 2.80 (NS) | 1.03 (p < 0.01) | 94.28 (p < 0.01) | - |
GCATester | 3 | 110.45 (NS) | 4.09 (p < 0.05) | 0.21 (NS) | 3.32 (NS) | 9.92 (p < 0.01) | 1339.13 (p < 0.01) | - |
GCALine × E | 120 | 24.94 (p < 0.05) | 3.18 (p < 0.01) | 0.03 (p < 0.01) | 2.98 (NS) | 0.79 (p < 0.01) | 92.35 (p < 0.01) | - |
GCATester × E | 6 | 75.62 (p < 0.01) | 1.14 (NS) | 0.19 (p < 0.01) | 3.32 (NS) | 6.70 (p < 0.01) | 522.53 (p < 0.01) | - |
SCA | 180 | 19.29 (p < 0.01) | 2.88 (p < 0.05) | 0.03 (NS) | 2.45 (NS) | 1.06 (p < 0.01) | 59.06 (p < 0.01) | - |
SCA × E | 360 | 15.14 (p < 0.01) | 2.30 (p < 0.01) | 0.03 (p < 0.01) | 2.64 (NS) | 1.07 (p < 0.01) | 67.16 (p < 0.01) | - |
Error | 639 | 10.83 | 0.89 | 0.01 | 2.41 | 0.31 | 31.57 | - |
Drought Environment | ||||||||
Blk (Rep × E) | 60 | 32.39 (p < 0.01) | 1.54 (p < 0.01) | 0.14 (NS) | 2.60 (p < 0.01) | - | - | 1.82 (p < 0.01) |
Rep (E) | 2 | 11.90 (NS) | 11.98 (p < 0.01) | 0.22 (NS) | 13.65 (p < 0.01) | - | - | 5.77 (p < 0.01) |
Environment | 1 | 7193.95 (p < 0.01) | 291.89 (p < 0.01) | 19.20 (p < 0.01) | 228.52 (p < 0.01) | - | - | 874.31 (p < 0.01) |
Hybrid | 243 | 14.39 (p < 0.01) | 1.69 (p < 0.01) | 0.14 (p < 0.01) | 1.22 (p < 0.01) | - | - | 0.98 (p < 0.01) |
Hybrid × E | 486 | 11.93 (p < 0.01) | 1.16 (p < 0.01) | 0.13 (p < 0.01) | 0.96 (p < 0.01) | - | - | 0.90 (p < 0.01) |
GCALine | 60 | 20.23 (p < 0.05) | 2.44 (p < 0.01) | 0.14 (NS) | 1.16 (p < 0.01) | - | - | 1.37 (p < 0.01) |
GCATester | 3 | 72.12 (NS) | 1.70 (NS) | 0.33 (p < 0.05) | 12.69 (NS) | - | - | 0.89 (NS) |
GCALine × E | 60 | 11.60 (p < 0.01) | 1.28 (p < 0.01) | 0.11 (NS) | 0.90 (NS) | - | - | 1.14 (p < 0.01) |
GCATester × E | 3 | 191.05 (p < 0.01) | 2.74 (p < 0.01) | 0.20 (NS) | 15.02 (p < 0.01) | - | - | 6.12 (p < 0.01) |
SCA | 180 | 11.42 (p < 0.05) | 1.40 (p < 0.05) | 0.14 (NS) | 1.05 (p < 0.01) | - | - | 0.83(p < 0.05) |
SCA × E | 180 | 8.91 (p < 0.05) | 1.06 (p < 0.05) | 0.13 (NS) | 0.72 (NS) | - | - | 0.71 (p < 0.01) |
Error | 425 | 6.91 | 0.84 | 0.12 | 0.71 | - | - | 0.42 |
SOV | DF | Yield (× 105) | ASI | PASP | EPP | EASP |
---|---|---|---|---|---|---|
Optimal Environment | ||||||
Blk (Rep × E) | 120 | 36.25 (p < 0.01) | 1.92 (NS) | 0.64 (p < 0.01) | 0.09 (NS) | 0.59 (p < 0.01) |
Rep (E) | 4 | 715.16 (p < 0.01) | 1.03 (NS) | 1.62 (p < 0.01) | 0.10 (NS) | 1.97 (p < 0.01) |
Environment | 3 | 8148.05 (p < 0.01) | 641.12 (p < 0.01) | 39.80 (p < 0.01) | 2.72 (p < 0.01) | 82.02 (p < 0.01) |
Hybrid | 243 | 53.84 (p < 0.01) | 2.87 (p < 0.01) | 1.23 (p < 0.01) | 0.08 (NS) | 1.88 (p < 0.01) |
Hybrid × E | 486 | 15.72 (p < 0.01) | 2.24 (p < 0.01) | 0.50 (p < 0.01) | 0.09 (p < 0.01) | 0.55 (p < 0.01) |
GCALine | 60 | 79.98 (p < 0.01) | 4.32 (p < 0.01) | 1.39 (p < 0.01) | 0.06 (NS) | 3.02 (p < 0.01) |
GCATester | 3 | 1331.17 (p < 0.01) | 15.99 (NS) | 35.61 (p < 0.01) | 0.18 (NS) | 47.08 (p < 0.01) |
GCALine × E | 180 | 17.33 (p < 0.01) | 2.29 (p < 0.05) | 0.50 (p < 0.01) | 0.08 (NS) | 0.70 (p < 0.01) |
GCATester × E | 9 | 77.79 (p < 0.01) | 5.04 (p < 0.01) | 2.59 (p < 0.01) | 0.19 (p < 0.01) | 3.48 (p < 0.01) |
SCA | 180 | 22.57 (p < 0.01) | 2.11 (NS) | 0.59 (p < 0.05) | 0.08 (NS) | 0.71 (p < 0.01) |
SCA × E | 540 | 13.90 (p < 0.01) | 2.20 (p < 0.01) | 0.46 (p < 0.01) | 0.09 (NS) | 0.44 (p < 0.05) |
Error | 852 | 10.04 | 1.81 | 0.33 | 0.08 | 0.37 |
Combined Environment | ||||||
Blk (Rep × E) | 270 | 33.55 (p < 0.01) | 2.02 (p < 0.01) | 0.90 (p < 0.01) | 0.08 (p < 0.05) | 1.80 (p < 0.01) |
Rep (E) | 9 | 333.57 (p < 0.01) | 4.55 (p < 0.01) | 2.62 (p < 0.01) | 0.12 (NS) | 5.48 (p < 0.01) |
Environment | 8 | 6744.69 (p < 0.01) | 413.28 (p < 0.01) | 1064.49 (p < 0.01) | 4.60 (p < 0.01) | 107.60 (p < 0.01) |
Hybrid | 243 | 51.05 (p < 0.01) | 2.93 (p < 0.01) | 1.30 (p < 0.01) | 0.09 (p < 0.01) | 2.68 (p < 0.01) |
Hybrid × E | 486 | 17.30 (p < 0.01) | 2.21 (p < 0.01) | 0.84 (p < 0.01) | 0.08 (p < 0.01) | 1.40 (p < 0.01) |
GCALine | 60 | 76.19 (p < 0.01) | 4.57 (p < 0.01) | 1.53 (p < 0.01) | 0.09 (NS) | 3.69 (p < 0.01) |
GCATester | 3 | 886.36 (p < 0.01) | 10.55 (NS) | 13.44 (NS) | 0.19 (NS) | 41.41 (p < 0.01) |
GCALine × E | 480 | 21.07 (p < 0.01) | 2.59 (p < 0.01) | 0.81 (p < 0.01) | 0.07 (NS) | 1.54 (p < 0.01) |
GCATester × E | 24 | 149.67 (p < 0.01) | 3.92 (p < 0.01) | 7.45 (p < 0.01) | 0.21 (p < 0.01) | 6.75 (p < 0.01) |
SCA | 180 | 28.03 (p < 0.01) | 2.23 (p < 0.01) | 1.04 (p < 0.01) | 0.08 (NS) | 1.67 (p < 0.01) |
SCA × E | 1440 | 13.33 (p < 0.01) | 2.06 (NS) | 0.72 (p < 0.01) | 0.08 (p < 0.01) | 1.23 (p < 0.05) |
Error | 1917 | 9.60 | 1.47 | 0.34 | 0.07 | 1.13 |
Trait | Striga-Infested | Drought | Optimal | Combined Environment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% of Total SS | % of Total SS | % of Total SS | % of Total SS | |||||||||
GCAL | GCAT | SCA | GCAL | GCAT | SCA | GCAL | GCAT | SCA | GCAL | GCAT | SCA | |
Grain yield | 19.3 | 68.7 | 12 | 19.49 | 69.5 | 11.01 | 5.58 | 92.85 | 1.57 | 7.69 | 89.48 | 2.83 |
ASI | 35.7 | 37.73 | 26.57 | 44.04 | 30.69 | 25.27 | 19.27 | 71.32 | 9.41 | 26.34 | 60.81 | 12.85 |
PASP | - | - | - | - | - | - | 3.7 | 94.73 | 1.57 | 9.56 | 83.95 | 6.5 |
EPP | 11.11 | 77.78 | 11.11 | 22.95 | 54.1 | 22.95 | 18.75 | 56.25 | 25 | 25 | 52.78 | 22.22 |
EASP | 32.67 | 38.74 | 28.59 | 7.79 | 85.17 | 7.05 | 5.94 | 92.66 | 1.4 | 7.89 | 88.54 | 3.57 |
SDR | 8.58 | 82.6 | 8.83 | - | - | - | - | - | - | - | - | - |
ESC | 6.32 | 89.73 | 3.96 | - | - | - | - | - | - | - | - | - |
STGR | - | - | - | 44.34 | 28.8 | 26.86 | - | - | - | - | - | - |
Method | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Striga-infested | ||||
SCA | G1, G3, G10, G12, G24, G29, G33, G35, G37, G39, G45, G59, G60, G64 | G4, G8, G26, G27, (G25, G44) †††, G47, G50, G53, G54, (G57, G58) ††† | G2, G14, G31, G38, G40, G42, G48, G52, (G22, G56) †††, G61, G62, (G7, G43, G51) †, (G6, G9, G18, G36, G46) Ψ | G5, G13, G17, G21, G23, G30, G32, G34, G49, G55, G63, G65, (G11, G15, G16, G19, G20, G28, G41) Ʊ |
HGCAMT | G14, G17, G18, G26, G29, G31, G32, G34, G36, G39, G40, G55, (G57, G58, G59) †††, (G22, G56) ††† | G4, G3, G8, G9, G12, (G15, G16, G19) †††, G20, G27, G30, G35, G37, G41, G42, G45, G49, G50, G60, G61, G64, G65 | G1, G2, G5, G6, G10, G11, G13, G21, G23, G24, G28, G33, G38, G46, G47, G48, G52, G53, G54, G62, G63, (G7, G43, G51) †, (G25, G44) ††† | |
HSGCA | G3, G10, G12, G14, G24, G29, G35, G37, G39, G45, G59, G60, G64 | G31, G38, G40, G42, G43, G48, G61, G62, (G6, G9, G18, G36, G46) Ψ, (G22, G56) ††† | G8, G26, G27, G50, G54, (G57, G58) †††, G65, (G25, G44) ††† | G13, G17, G21, G23, G30, G32, G34, G49, G52, G55, G63, (G11, G15, G16, G19, G20, G28, G41) Ʊ |
Drought | ||||
SCA | G1, G13, G17, G21, G24, G27, G31, G35, G43, G45, G52, G54, G55, (G57, G58) ** †††, G62, G65, (G22, G56) ††† | G2, G3, G7, G14, G29, G32, G33, G34, G37, G47, G50, G51, G53, G59, (G6, G9, G18, G36, G46) Ψ | G4, G8, G12, G23, G26, G38, G39, G42, G48, G49, G63, G64 | G5, G10, G30, G40, G60, G61, (G11, G15, G16, G19, G20, G28, G41) Ʊ, (G25, G44) ††† |
HGCAMT | G4, G11, G21, G26, G30, G33, G36, G38, G43, G46, G55, G64, (G10, G12, G37, G50, G60) ₼, (G22, G56) ††† | G6, G7, G14, G17, G41, G52, G57, G62, G63, (G9, G20, G58) Ɛ, (G57, G58) ** ††† | G1, G2, G5, G3, G8, G13, (G15, G16, G19) †††, G18, G23, G24, G27, G28, G31, G32, G34, G35, G39, G40, G45, G47, G48, G51, G53, G54, G59, G61, G65, (G25, G44) ** ††† | |
HSGCA | G13, G14, G17, G21, G24, G27, G31, G35, G43, G45, G52, G54, (G57, G58) ** †††, G62, G65, (G22, G56) ††† | G3, G7, G29, G32, G33, G47, G51, G53, G59, (G6, G9, G18, G36, G46) Ψ | G8, G12, G23, G26, G34, G38, G39, G42, G48, G49, G63, G64 | G10, G40, G60, G61, (G11, G15, G16, G19, G20, G28, G41) Ʊ, (G25, G44) ††† |
Combined environment | ||||
SCA | G1, G12, G14, G17, G22, G29, G34, G35, G37, G45, G48, G55, G59, G64 | G2, G3, G6, G9, G21, G30, G31, G32, G33, G36, G38, G39, G43, G44, G53, G56, G61, G62 | G4, G8, G24, G25, G26, G27, G42, G46, G49, G50, G51, G54, G57, G58, G60, G63, G65 | G5, G7, G10, G11, G13, G15, G16, G18, G19, G20, G23, G28, G40, G41, G52 |
HGCAMT | G1, G4, G3, G7, G10, G13, G16, G23, G30, G33, G37, G42, G43, G45, G46, G47, G49, G50, G51, G53, G54, G60, G63, G64, G65 | G2, G6, G11, G21, G22, G25, G26, G27, G28, G29, G31, G32, G34, G35, G36, G39, G40, G41, G44, G48, G52, G55, G56, G57, G58, G59, G62 | G5, G8, G9, G12, G14, G15, G17, G18, G19, G20, G38, G61 | |
HSGCA | G12, G14, G17, G22, G29, G34, G35, G37, G45, G48, G55, G59, G64 | G6, G9, G21, G31, G32, G33, G36, G38, G39, G44, G47, G53, G56, G61, G62 | G8, G25, G26, G27, G42, G50, G54, G57, G58, G60, G63, G65 | G7, G10, G11, G13, G15, G16, G18, G19, G20, G23, G28, G40, G41, G43 |
SNP-GD | G1, G5, G6, G3, G4 | G2, G7, G9, G10, G11, G12, G13, G15, G17, G18, G19 | G39, G41, G21, G42, G22, G43, G23, G44,G24, G45, G25, G46, G26, G47, G27, G48, G28, G49, G29. G59, G30, G60, G31, G61, G32, G33, G62, G34, G63, G35, G64, G36, G65, G37 | G51, G52, G53, G54, G55, G56, (G57) |
Environment | HGCAMT | HSGCA | SCA | SNP-GD |
---|---|---|---|---|
Striga | 1,483,220.26 ** | 171,213.79 ns | 89,577.59 ns | 746,154.17 ns |
Drought | 97,634.09 ns | 353,589.42 * | 273,962.47 * | 175,796.37 ns |
Combined | 1,680,620.89 ** | 201,214.88 ns | 80,858.69 ns | 201,568.36 ns |
Heterotic Pattern | Striga | Drought | Combined | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HGCAMT | HSGCA | SCA | SNP-GD | HGCAMT | HSGCA | SCA | SNP-GD | HGCAMT | HSGCA | SCA | SNP-GD | |
1 × 2 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ** | ns | ns |
1 × 3 | ns | ns | ns | ** | ns | ** | ns | ns | ns | ns | ns | ns |
1 × 4 | - | ns | ns | ** | - | ** | ns | ns | - | ns | ns | ns |
2 × 3 | ** | ns | ns | ns | ns | ns | ns | ** | ** | ns | ns | ns |
2 × 4 | - | ns | ns | ns | - | ns | ns | ns | - | ** | ** | ns |
3 × 4 | - | ns | ns | ns | - | ns | ns | ns | - | ** | ns | ns |
Yield Group | Cross Type | Number of Hybrids | |||
---|---|---|---|---|---|
HGCAMT | HSGCA | SCA | SNP-GD | ||
Striga-infested environment | |||||
1 | Intergroup | 76 | 124 | 119 | 107 |
1 | Within group | 55 | 7 | 12 | 9 |
2 | Intergroup | 43 | 45 | 47 | 51 |
2 | Within group | 21 | 19 | 17 | 5 |
3 | Intergroup | 38 | 19 | 19 | 38 |
3 | Within group | 11 | 30 | 30 | 2 |
Inter-group crosses mean (kg/ha grain yield) | 3463.75 | 3753.39 | 3738.25 | 3559.4 | |
Within-group crosses mean (kg/ha grain yield) | 3754.84 | 2943.6 | 3032.27 | 3803.1 | |
Number of intergroup crosses | 157 | 188 | 185 | 196 | |
Number of within-group crosses | 87 | 56 | 59 | 16 | |
Breeding efficiency (%) | 48.41 | 65.96 | 64.32 | 54.59 | |
Drought | |||||
1 | Intergroup | 41 | 71 | 69 | 56 |
1 | Within group | 30 | 0 | 2 | 7 |
2 | Intergroup | 70 | 100 | 99 | 103 |
2 | Within group | 56 | 26 | 27 | 6 |
3 | Intergroup | 25 | 16 | 15 | 37 |
3 | Within group | 22 | 31 | 32 | 3 |
Intergroup crosses mean (kg/ha grain yield) | 3101.64 | 3316.92 | 3318.02 | 3109.47 | |
Within-group crosses mean (kg/ha grain yield) | 3111.76 | 2414.55 | 2470.41 | 3320.56 | |
Number of intergroup crosses | 136 | 187 | 183 | 196 | |
Number of within-group crosses | 108 | 57 | 61 | 16 | |
Breeding efficiency (%) | 30.15 | 37.97 | 37.7 | 28.57 | |
Across research environments | |||||
1 | Intergroup | 52 | 88 | 85 | 71 |
1 | Within group | 38 | 2 | 5 | 8 |
2 | Intergroup | 54 | 61 | 56 | 61 |
2 | Within group | 17 | 12 | 17 | 5 |
3 | Intergroup | 50 | 42 | 42 | 64 |
3 | Within group | 29 | 39 | 39 | 3 |
Intergroup crosses mean (kg/ha grain yield) | 3742.94 | 3907.55 | 3909.38 | 3760.42 | |
Within-group crosses mean (kg/ha grain yield) | 3779.46 | 3204.19 | 3290.94 | 3920.02 | |
Number of intergroup crosses | 156 | 191 | 183 | 196 | |
Number of within-group crosses | 84 | 53 | 61 | 16 | |
Breeding efficiency (%) | 33.33 | 46.07 | 46.45 | 36.22 |
Environments | HGCAMT | HSGCA | SCA | SNP-GD |
---|---|---|---|---|
Striga | 38.43 | 27.48 | 18.11 | 37.58 |
Drought | 30.00 | 32.50 | 31.70 | 28.32 |
Combined | 34.70 | 42.46 | 28.53 | 25.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyetunde, O.A.; Badu-Apraku, B.; Ariyo, O.J.; Alake, C.O. Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy 2020, 10, 1198. https://doi.org/10.3390/agronomy10081198
Oyetunde OA, Badu-Apraku B, Ariyo OJ, Alake CO. Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy. 2020; 10(8):1198. https://doi.org/10.3390/agronomy10081198
Chicago/Turabian StyleOyetunde, Oyeboade Adebiyi, Baffour Badu-Apraku, Omolayo Johnson Ariyo, and Christopher Olusanya Alake. 2020. "Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines" Agronomy 10, no. 8: 1198. https://doi.org/10.3390/agronomy10081198
APA StyleOyetunde, O. A., Badu-Apraku, B., Ariyo, O. J., & Alake, C. O. (2020). Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy, 10(8), 1198. https://doi.org/10.3390/agronomy10081198