Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Region
2.2. Research Methods
- (a)
- The Huglin index (HI), a heliothermic index that takes into account daily average and maximum temperatures from April to September. It has a factor that provides adjustment for latitude-dependent daylight hours (40 to 50 degrees N) [35];
- (b)
- The Winkler index calculated for the grape growing season based on the daily minima and maxima of the temperature, where one degree-day equals an excess of 10 °C over the daily average temperature [36].
3. Results and Discussion
3.1. Orographic and Climate Conditions of the Region
3.2. Agroclimatic Indices
3.3. Microclimate Zoning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, G.V. Climate change in the western United States grape growing regions. Acta Hortic. 2005, 689, 41–60. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2010; p. 400. [Google Scholar]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Costa, R.; Fraga, H.; Fonseca, A.; de Cortazar-Atauri, I.G.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine region: Modelling and climate change projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Gladstones, J.S. Climate and Australian viticulture. In Viticulture, 2nd ed.; Dry, P.R., Coombe, B.G., Eds.; Winetitles Pty Ltd.: Adelaide, Australia, 2004; Volume 1, pp. 90–118. [Google Scholar]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed trends in winegrape maturity in Australia. Glob. Chang. Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate change and crop exposure to adverse weather: Changes to frost risk and grapevine flowering conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2013. [Google Scholar]
- Fraga, H. Viticulture and winemaking under climate change. Agronomy 2019, 9, 783. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.J.; Malheiro, A.C.; Pinto, J.G.; Jones, G.V. Macroclimate and viticultural zoning in Europe: Observed trends and atmospheric forcing. Clim. Res. 2012, 51, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, M.N.; Taboada, J.J.; Lorenzo, J.F.; Ramos, A.M. Influence of climax grape production and wine quality in the Rias Baixas, north-western Spain. Reg. Environ. Chang. 2013, 13, 887–896. [Google Scholar] [CrossRef]
- Cook, B.I.; Wolkovich, E.M. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 2016, 6, 715–720. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R. Future effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Chang. 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Savicć, S.; Vukoticć, M. Viticulture Zoning in Montenegro. Bull. UASVM Hortic. 2018, 75, 73–86. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Climate change and winegrape quality in Australia. Clim. Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Schultze, S.R.; Sabbatini, P.; Luo, L. Effects of a warming trend on cool climate viticulture in Michigan, USA. Springer Plus 2016, 5, 1119. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; Duff, A.A.; Hall, A.; Myers, J.W. Spatial analysis of climate in winegrape growing regions in the western United States. Am. J. Enol. Vitic. 2010, 61, 313–326. [Google Scholar]
- Ricce, W.S.; Roberto, S.R.; Tonietto, J.; Caramori, P.H. Agroclimatic zoning for winemaking grape production in the State of Parana. Agron. Sci. Biotechnol. 2018, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Hale, C.R.; Buttrose, M.S. Effect of temperature on ontogeny of berries of Vitis vinifera L. cv. Cabernet Sauvignon. J. Am. Soc. Hortic. Sci. 1974, 99, 390–394. [Google Scholar]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Toth, J.P.; Vegvari, Z. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res. 2016, 22, 64–72. [Google Scholar] [CrossRef]
- Webb, L.B.; Watterson, I.; Bhend, J.; Whetton, P.H.; Barlow, E.W.R. Global climate analogues for winegrowing regions in future periods: Projections of temperature and precipitation. Aust. J. Grape Wine Res. 2013, 19, 331–341. [Google Scholar] [CrossRef]
- Gaál, M.; Moriondo, M.; Bindi, M. Modelling the impact of climate change on the Hungarian wine regions using Random Forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [Google Scholar] [CrossRef]
- Dunn, M.; Rounsevell, M.D.A.; Boberg, F.; Clarke, E.; Christensen, J.; Madsen, M.S. The future potential for wine production in Scotland under high-end climate change. Reg. Environ. Chang. 2019, 19, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Department of Agriculture of the City of Sevastopol. Available online: http://www.depcxsev.ru/ (accessed on 14 August 2020).
- Government of Sevastopol. Official Portal of Public Authorities. Available online: https://sev.gov.ru/city/selhoz/ (accessed on 14 August 2020).
- Borisenko, M.N.; Ivanchenko, V.I.; Baranova, N.V.; Rybalko, E.A. The influence of agroclimatic resources of the Republic of Crimea on optimizing the placement of table grape varieties. Vinograd. i Vinodel. 2016, XLVI, 20–23. [Google Scholar]
- Rybalko, E.A.; Baranova, N.V.; Borisova, V.Y. Research of the dynamics and development of the spatial distribution forecast of heat supply of the Crimean peninsula. Monit. Syst. Environ. 2019, 3, 96–101. [Google Scholar] [CrossRef]
- Socioeconomic Development Strategy of the City of Sevastopol; Legislative assembly of the city of Sevastopol: Sevastopol, Russia, 2017; 171p.
- Rybalko, E.A. Adaptation of the mathematical model of the spatial distribution of heat supply in the territory in order to efficiently place industrial vineyards on the territory of the Crimean peninsula. Vinograd. i Vinodel. 2014, 2, 10–11. [Google Scholar]
- Rybalko, E.A.; Baranova, N.V. Development of a simulation model of frost susceptibility spatial distribution on the territory of the Republic of Crimea as applied to viniculture. Monit. Syst. Environ. 2016, 4, 101–105. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine General Assembly (OIV). Resolution OIV-VITI 423-2012; Rev 1; International Organization of Vine and Wine General Assembly (OIV): Izmir, Turkey, 2012. [Google Scholar]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. CR Acad. Agric. 1978, 64, 1117–1126. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kliwer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Catania, C.D.; Martín Uliarte, E.; Monte, R.F.D.; Avagnina de del Monte, S.; Antelo Bruno, L.; Molina, J.; Mendoza, O.; Flores, N.; Kohlberg, E.J.; Tonietto, J.; et al. Clima, Zonification y Tipicidad del Vino en Regiones Vitivinicolas Iberoamericanas; Tonietto, J., Ruiz, V.S., Gomez-Miguel, V.D., Eds.; CYTED: Madrid, Spain, 2012; 411p. [Google Scholar]
- Tonietto, J. Les Macroclimats Viticoles Mondiaux et L’influence du Mésoclimat sur la Typicité de la Syrah et du Muscat de Hambourg Dans le sud de la France: Méthodologie de Caráctérisation. Ph.D. Thesis, Ecole Nationale Supérieure Agronomique, Montpellier, France, 1999; 233p. [Google Scholar]
- Seljaninov, G.T. Agroclimatic Map of the World; Gidrometeoizdat: Leningrad, Russia, 1966; 12p. [Google Scholar]
- Rybalko, E.A.; Baranova, N.V.; Borisova, V.Y. Patterns of spatial variation of the Huglin index in the conditions of the Crimean peninsula. Vinodel. i Vinograd. 2020, 1, 18–23. [Google Scholar]
- Jones, G.V. Climate and Terroir: Impacts of Climate Variability and Change on Wine; Macqueen, R.W., Meinert, L.D., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2006; pp. 1–14. [Google Scholar]
- Nesbitt, A.; Kemp, B.; Steele, C.; Lovett, A.; Dorling, S. Impact of recent climate change and weather variability on the viability of UK viticulture—Combining weather and climate records with producers’ perspectives. Aust. J. Grape Wine Res. 2016, 22, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Mishenko, Z.A. Agricultural mapping of the continents. In Agricultural Meteorology. Cagm. Report NO. 23; World Meteoral. Organiz: Jeneva, Switzerland, 1984; 131p. [Google Scholar]
- Hidalgo, L. Tratado de Viticultura General; Mundi-Prensa: Madrid, Spain, 2002; 1235p. [Google Scholar]
- Jackson, R.S. Wine science: Principles and Applications, 4th ed.; Academic Press: Amsterdam, The Netherlands, 2014; 978p. [Google Scholar]
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; Garcia, A.; Honorio, F. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region. Theor. Appl. Climatol. 2015, 124, 1033–1043. [Google Scholar] [CrossRef]
- Carlo, P.D.; Aruffo, E.; Brune, W.H. Precipitation intensity under a warming climate is threatening some Italian premium wines. Sci. Tot. Environ. 2019, 685, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Dokuchaeva, E.N. Grape Varieties. Directory; Dokuchaeva, E.N., Ed.; Harvest Publ.: Kiev, Ukraine, 1986; pp. 41–42. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Jones, G.V.; Martínez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: The contribution of local knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
Variables | Value (Units) | Trend (Significance) |
---|---|---|
Average annual air temperature | 11.1 °C | +0.5 °C/10 years (p < 0.01) |
Average temperature for the growing season | 17.7 °C | +0.5 °C/10 years (p < 0.01) |
Maximum air temperature for the growing season | 23.0 °C | +0.09 °C/10 years |
Minimum air temperature for the growing season | 13.1 °C | +0.9 °C/10 years (p < 0.01) |
Average annual precipitation amount | 445 mm | −26 mm/10 years |
Precipitation amount for the growing season | 198 mm | −25 mm/10 years (p < 0.05) |
Index (Units) | Class Limits | Area (ha) | Area (%) | ||
---|---|---|---|---|---|
Selyaninov hydrothermal coefficient (HTC) | <0.6 | 37,858 | 43.9 | ||
0.6–0.7 | 23,285 | 27 | |||
0.7–0.8 | insufficient hydration | 11,909 | 13.8 | ||
0.8–0.9 | 6352 | 7.4 | |||
0.9–1.0 | 3435 | 4 | |||
>1.0 | normal hydration | 3334 | 3.9 | ||
Huglin index (HI, °C) | <1200 | Too cool | 0.6 | 0 | |
1200–1500 | Very cool | 28 | 0.03 | ||
1500–1800 | Cool | 453 | 0.52 | ||
1800–2100 | Temperate | 2690 | 3.08 | ||
2100–2400 | Warm temperate | 12,962 | 14.85 | ||
2400–2700 | Warm | 63,017 | 72.18 | ||
2700–3000 | Very warm | 7155 | 8.19 | ||
>3000 | Too hot | 1005 | 1.15 | ||
Winkler index (WI, °C) | <850 | Too cool | 16 | 0.02 | |
850–1389 | Region 1 | 5357 | 6.14 | ||
1389–1667 | Region 2 | 21,886 | 25.07 | ||
1667–1944 | Region 3 | 57,503 | 65.86 | ||
1944–2222 | Region 4 | 2418 | 2.77 | ||
2222–2700 | Region 5 | 130 | 0.15 | ||
>2700 | Too hot | 0 | 0 |
Ecotope No. | Average Absolute Minimum, °C | Sum of Active Air Temperatures Above 10 °C | Ecotope Area | |
---|---|---|---|---|
ha | % | |||
1 | >−15 | >3900 | 5111 | 5.855 |
2 | >−15 | 3500–3900 | 48,437 | 55.492 |
3 | >−15 | 3100–3500 | 17,409 | 19.945 |
4 | >−15 | 2700–3100 | 5866 | 6.720 |
5 | −17.5–−15 | 3500–3900 | 1714 | 1.964 |
6 | −17.5–−15 | 3100–3500 | 4008 | 4.592 |
7 | −17.5–−15 | 2700–3100 | 1552 | 1.778 |
8 | −17.5–−15 | 2300–2700 | 2170 | 2.486 |
9 | −20–−17.5 | 3500–3900 | 3 | 0.003 |
10 | −20–−17.5 | 3100–3500 | 54 | 0.062 |
11 | −20–−17.5 | 2700–3100 | 165 | 0.189 |
12 | −20–−17.5 | 2300–2700 | 184 | 0.211 |
13 | <−20 | <2700 | 614 | 0.703 |
Ecotope No. | Recommended Grape Varieties | |
---|---|---|
In Terms of Frost Resistance | In Terms of Ripening Time | |
1 | low, medium and high frost resistance | very early to late |
2 | low, medium and high frost resistance | very early to medium-late |
3 | low, medium and high frost resistance | very early to mid-season |
4 | low, medium and high frost resistance | very early to early |
5 | low and high frost resistance | very early to medium-late |
6 | low and high frost resistance | very early to mid-season |
7 | low and high frost resistance | very early to early |
8 | low and high frost resistance | very early |
9 | high frost resistance | very early to medium-late |
10 | high frost resistance | very early to mid-season |
11 | high frost resistance | very early to early |
12 | high frost resistance | very early |
13 | not recommendable |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vyshkvarkova, E.V.; Rybalko, E.A.; Baranova, N.V.; Voskresenskaya, E.N. Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture. Agronomy 2020, 10, 1226. https://doi.org/10.3390/agronomy10091226
Vyshkvarkova EV, Rybalko EA, Baranova NV, Voskresenskaya EN. Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture. Agronomy. 2020; 10(9):1226. https://doi.org/10.3390/agronomy10091226
Chicago/Turabian StyleVyshkvarkova, Elena V., Evgeniy A. Rybalko, Natalia V. Baranova, and Elena N. Voskresenskaya. 2020. "Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture" Agronomy 10, no. 9: 1226. https://doi.org/10.3390/agronomy10091226
APA StyleVyshkvarkova, E. V., Rybalko, E. A., Baranova, N. V., & Voskresenskaya, E. N. (2020). Favorability Level Analysis of the Sevastopol Region’s Climate for Viticulture. Agronomy, 10(9), 1226. https://doi.org/10.3390/agronomy10091226