Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France)
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Climate, Soil and Cultivation Practice Description
2.3. Genetic Conformity of Citrus Cultivars between EMBRAPA and INRAE-CIRAD Germplasm Collections Verified by Molecular Marker Genotyping
2.4. Essential Oil Extraction
2.5. Analytical GC
2.6. GC/MS Analysis
2.7. Component Identification
- (a)
- on comparison of their GC retention indices (RI) on polar and apolar columns, determined relative to the retention times of a series of n-alkanes with linear interpolation with those of authentic compounds and literature data [56];
- (b)
- (c)
2.8. Data Analysis
3. Results
3.1. Genetic Diversity of Samples and Conformity of Cultivars between the Two Collections
3.2. Yield of Peel and Leaf Essential Oils
3.3. Composition of Essential Oils
3.3.1. Leaf Essential Oils
3.3.2. Peel Essential Oils
3.4. Site-Specific Compounds
3.5. EO Composition Stability over Time and Temperature
4. Discussion
4.1. Organization of the Genetic Diversity of the Citrus Family Group
4.2. Environmental Effect on EO Yield and Composition
4.3. Consequences of Changes in EO Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khefifi, H.; Selmane, R.; Ben Mimoun, M.; Tadeo, F.; Morillon, R.; Luro, F. Abscission of Orange Fruit (Citrus sinensis (L.) Osb.) in the Mediterranean Basin Depends More on Environmental Conditions Than on Fruit Ripeness. Agronomy 2020, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of citrus fruiting. Braz. J. Plant Physiol. 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Tadeo, F.R.; Cercós, M.; Colmenero-Flores, J.M.; Iglesias, D.J.; Naranjo, M.A.; Rios, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; et al. Molecular physiology of development and quality of citrus. Adv. Bot. Res. 2008, 47, 147–223. [Google Scholar]
- Richardson, A.C.; Marsh, K.B.; Rae, E.A.M. Temperature effects on the composition of Satsuma Mandarins in New Zealand. In Proceedings of the International Society of Citriculture, Orlando, FL, USA, 3–7 December 2000; pp. 303–307. [Google Scholar]
- Hodgson, R.W. Horticultural varieties of citrus. In The Citrus Industry; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California Press: Riverside, CA, USA, 1967; Volume 1, pp. 431–591. [Google Scholar]
- Saunt, J. Citrus Varieties of the Word. An Illustrated Guide; Sinclair International Limited: Norwich, UK, 2000; pp. 90–97. [Google Scholar]
- Dhuique-Mayer, C.; Fanciullino, A.L.; Dubois, C.; Ollitrault, P. Effect of genotype and environment on citrus juice carotenoid content. J. Agric. Food Chem. 2009, 57, 9160–9168. [Google Scholar] [CrossRef] [PubMed]
- Swingle, W.; Reece, P. The botany of Citrus and its wild relatives. In The Citrus Industry; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California Press: Riverside, CA, USA, 1967; Volume 1, pp. 190–430. [Google Scholar]
- Dugo, G.; Bonaccorsi, I.; Sciarrone, D.; Costa, R.; Dugo, P.; Mondello, L.; Santi, L.; Fakhry, H.A. Characterization of Oils from the Fruits, Leaves and Flowers of the Bitter Orange Tree. J. Essent. Oil Res. 2011, 23, 45–59. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Wu, G.A.; Terol, J.F.; Ibáñez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xie, Y.; Liu, C.; Chen, S.; Hu, S.; Xie, Z.; Deng, X.; Xu, J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem. 2017, 230, 316–326. [Google Scholar] [CrossRef]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Lota, M.L.; De Rocca Serra, D.; Tomi, F.; Casanova, J. Chemical variability of peel and leaf essential oils of sour orange. Flavour Fragr. J. 2001, 16, 89–96. [Google Scholar] [CrossRef]
- Lota, M.L.; De Rocca Serra, D.; Tomi, F.; Casanova, J. Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochem. Syst. Ecol. 2001, 29, 77–104. [Google Scholar] [CrossRef]
- Lota, M.L.; de Rocca Serra, D.; Tomi, F.; Jacquemond, C.; Casanova, J. Volatile components of peel and leaf oils of lemon and lime species. J. Agric. Food Chem. 2002, 50, 796–805. [Google Scholar] [CrossRef]
- Fanciullino, A.L.; Tomi, F.; Luro, F.; Desjobert, J.M.; Casanova, J. Chemical variability of peel and leaf oils of mandarins. Flavour Fragr. J. 2006, 21, 359–367. [Google Scholar] [CrossRef]
- Luro, F.; Venturini, N.; Costantino, G.; Paolini, J.; Ollitrault, P.; Costa, J. Genetic and chemical diversity of citron (Citrus medica L.) based on nuclear and cytoplasmic markers and leaf essential oil composition. Phytochemistry 2012, 77, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, D.; Cheng, Y.; Deng, X.; Chen, F.; Fang, L.; Ma, Z.; Xu, J. Chemotaxonomic study of Citrus, Poncirus and Fortunella genotypes based on peel oil volatile compounds—Deciphering the genetic origin of Mangshanyegan (Citrus nobilis Lauriro). PLoS ONE 2013, 8, e58411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güney, M.; Oz, A.T.; Kafkas, E. Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques. J. Sci. Food Agric. 2015, 95, 1268–1273. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Zhang, G.; Pilon, A.C.; Hulman, D.V.; Xie, R.; Xi, W.; Zhou, Z.; Sumner, L.W. Metabolites profiles of essential oils in citrus peels and their taxonomic implications. Metabolomics 2015, 11, 952–963. [Google Scholar] [CrossRef]
- Sutour, S.; Luro, F.; Bradesi, P.; Casanova, J.; Tomi, F. Chemical composition of the fruit oils of five Fortunella species grown in the same pedoclimatic conditions in Corsica (France). Nat. Prod. Commun. 2016, 11, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Paoli, M.; de Rocca Serra, D.; Tomi, F.; Luro, F.; Bighelli, A. Chemical composition of the leaf essential oil of grapefruits (Citrus paradisi Macf.) in relation with the genetic origin. J. Essent. Oil Res. 2016, 28, 265–271. [Google Scholar] [CrossRef]
- Boelens, H.; Jimenez, R. The chelical composition of the peel oil from Unripe and Ripe fruits of bitter orange, Citrus aurantium L. ssp. amara engl. Flavour Fragr. J. 1989, 4, 139–142. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Protopapadakis, E.E.; Papadopoulou, P.; Papanicolaou, D.; Panou, C.; Vamvakias, M. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. J. Agric. Food Chem. 2002, 1, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Frizzo, C.D.; Lorenzo, D.; Dellacassa, E. Composition and seasonal variation of the essential oils from two mandarin cultivars of southern Brazil. J. Agric. Food Chem. 2004, 52, 3036–3041. [Google Scholar] [CrossRef]
- Boussaada, O.; Chemli, R. Seasonal Variation of Essential Oil Composition of Citrus Aurantium, L. var. amara. J. Essent. Oil Bear. Plants 2007, 10, 109–120. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; McCollum, G.; Plotto, A.; Manthey, J.A.; Widmer, W.W.; Luzio, G.; Cameron, R. Changes in volatile and non-volatile flavor chemicals of “Valencia” orange juice over the harvest seasons. Foods 2016, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenu, G.; Carai, A.; Foddai, M.; Azara, E.; Careddu, S.; Usai, M. Composition and seasonal variation of Citrus monstruosa essential oil from Sardinia. Int. J. Essent. Oil Therap. 2010, 4, 23–25. [Google Scholar]
- Bourgou, S.; Rahali, F.Z.; Ourghemmi, I.; Tounsi, M.S. Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. Sci. World J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Verzera, A.; Trozzi, A.; Gazea, F.; Cicciarello, G.; Cotroneo, A. Effects of rootstock on the composition of bergamot (Citrus bergamia Risso et Poiteau) essential oil. J. Agric. Food Chem. 2003, 51, 206–210. [Google Scholar] [CrossRef]
- Darjazi, B.B. The Effect of Sour Orange, Swingle Citrumelo and Troyer Citrange Rootstocks on the Peel Components of Kumquat (Fortunella Margarita). J. Med. Plants Byprod. 2017, 1, 11–116. [Google Scholar]
- Darjazi, B.B.; Rustaiyan, A.; Talaei, A.; Khalighi, A.; Hayatbakhsh, E.; Taghizad, R. The effects of rootstock on the volatile flavor components of Page mandarin [(C. reticulata var. Dancy × C. paradisi var. Duncan) × C. clementina] juice and peel. Iran. J. Chem. Chem. Eng. 2009, 28, 99–111. [Google Scholar]
- Benjamin, G.; Tietel, Z.; Porat, R. Effects of rootstock/scion combinations on the flavor of citrus fruit. J. Agric. Food Chem. 2013, 61, 11286–11294. [Google Scholar] [CrossRef]
- Dala Paula, B.M.; Plotto, A.; Bai, J.; Manthey, J.A.; Baldwin, E.A.; Ferrarezi, R.S.; Gloria, M.B.A. Effect of Huanglongbing or Greening Disease on Orange Juice Quality, a Review. Front. Plant Sci. 2019, 9, 1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Yang, H.; Zhao, W.; Plotto, A.; Bourcier, E.; Irey, M.; Baldwin, E. Symptoms of huanglongbing-affected oranges and associated effects on volatile profiles in peel oil, Proceedings of the 5th International Research Conference on Huanglongbing, Florida, 2017. J. Citrus Pathol. 2017, 3, 45. [Google Scholar]
- Xu, B.M.; Baker, G.L.; Sarnoski, P.J.; Goodrich-Schneider, R.M. A comparison of the volatile components of cold pressed Hamlin and Valencia (Citrus sinensis (L.) Osbeck) orange oils affected by Huanglongbing. J. Food Qual. 2017, 6793986. [Google Scholar] [CrossRef]
- Deterre, S.; Rega, B.; Delarue, J.; Teillet, E.; Giampaoli, P. Classification of commercial bitter orange essential oils (Citrus aurantium L.), based on a combination of chemical and sensory analyses of specific odor markers. J. Essent. Oil Res. 2014, 26, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Dugo, G.; Cotroneo, A.; Bonaccorsi, I.; Trozzi, A. 2011 Composition of the volatile fraction of citrus peel oils. In Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants and Biological Activity; Dugo, G., Mondello, L., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–162. [Google Scholar]
- Kirbaslar, F.G.; Kirbaslar, S.I. Composition of Cold-Pressed Bitter Orange Peel Oil from Turkey. J. Essent. Oil Res. 2003, 15, 6–9. [Google Scholar] [CrossRef]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation; Grumezescu, A., Holban, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 379–419. [Google Scholar]
- Curk, F.; Ollitrault, F.; Garcia-Lor, A.; Luro, F.; Navarro, L.; Ollitrault, P. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann. Bot. 2016, 117, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, D.; Curk, F.; Evrard, J.C.; Froelicher, Y.; Ollitrault, P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid ‘Giant Key’ Lime; Outlook for Triploid Lime Breeding. Front. Plant Sci. 2020, 11, 939. [Google Scholar] [CrossRef]
- Luro, F.; Bloquel, E.; Tomu, B.; Costantino, G.; Tur, I.; Riolacci, S.; Varamo, F.; Ollitrault, P.; Froelicher, Y.; Curk, F.; et al. The INRA-CIRAD citrus germplasm collection of San Giuliano, Corsica. In AGRUMED: Archaeology and History of Citrus Fruit; Zech-Matterne, V., Girolamo, F., Eds.; Publications du Centre Jean Bérard: Naples, Italy, 2018; pp. 243–261. [Google Scholar]
- Garcia Neves, C.; do Jordão Amaral, D.O.; de Barbosa Paula, M.F.; de Santana Nascimento, L.; Costantino, G.; Sampaio Passos, O.; do Amaral Santos, M.; Ollitrault, P.; da Silva Gesteira, A.; Luro, F.; et al. Characterization of tropical mandarin collection: Implications for breeding related to fruit quality. Sci. Hortic. 2018, 239, 289–299. [Google Scholar] [CrossRef]
- Jacquemond, C.; Benaouf, G.; Curk, F. Conduire le verger: Itinéraires techniques. In Les Clémentiniers et Autres Petits Agrumes; Jacquemond, C., Curk, F., Heuzet, M., Eds.; Quae Editions Collection Savoir-Faire: Versailles, France, 2013; pp. 247–278. [Google Scholar]
- Sousa Santana Vieira, D.D.; Emiliani, G.; Bartolini, P.; Podda, A.; Centritto, M.; Luro, F.; Del Carratore, R.; Morillon, R.; Gesteira, A.; Maserti, B. L-type lectin gene is involved in the response to hormonal treatment and water deficit in Volkamer lemon. J. Plant Physiol. 2017, 218, 94–99. [Google Scholar] [CrossRef]
- Kijas, J.M.H.; Thomas, M.R.; Fowler, J.C.S.; Roose, M.L. Integration of trinucleotide microsatellites into a linkage map of citrus. Theor. Appl. Genet. 1997, 94, 701–706. [Google Scholar] [CrossRef]
- Aleza, P.; Froelicher, Y.; Schwarz, S.; Agusti, M.; Hernandez, M.; Juarez, J.; Luro, F.; Morillon, R.; Navarro, L.; Ollitrault, P. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann. Bot. 2011, 108, 37–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froelicher, Y.; Dambier, D.; Costantino, G.; Lotfy, S.; Didout, C.; Beaumont, V.; Brottier, P.; Risterucci, A.M.; Luro, F.; Ollitrault, P. Characterization of microsatellite markers in Citrus reticulata Blanco. Mol. Ecol. Notes 2008, 8, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Luro, F.; Costantino, G.; Terol, J.; Argout, X.; Allario, T.; Wincker, P.; Talon, M.; Ollitrault, P.; Morillon, R. Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genom. 2008, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, J.; Froelicher, Y.; Aleza, P.; Juárez, J.; Navarro, L.; Ollitrault, P. Multilocus half-tetrad analysis and centromere mapping in citrus: Evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 2011, 107, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lor, A.; Curk, F.; Snoussi-Trifa, H.; Morillon, R.; Ancillo, G.; Luro, F.; Navarro, L.; Ollitrault, P. A nuclear phylogeny: SNPs, indels and SSRs deliver new insights into the relationships in the “true citrus fruit trees” group (Citrinae, Rutaceae) and the origin of cultivated species. Ann. Bot. 2012, 111, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ollitrault, P.; Terol, J.; Garcia-Lor, A.; Berard, A.; Chauveau, A.; Froelicher, Y.; Belzile, C.; Morillon, R.; Navarro, L.; Brunel, D.; et al. SNP mining in C. clementine BAC end sequences; transferability in the citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. Genomics 2012, 13, 13. [Google Scholar]
- Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Perrier, X.; Ruiz, M.; Scalabrin, S.; Terol, J.; et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotechnol. 2014, 32, 656–662. [Google Scholar] [CrossRef]
- McLafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectral Data, 4th ed.; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- McLafferty, F.W.; Stauffer, D.B. Wiley Registry of Mass Spectral Data, 6th ed.; Mass Spectrometry Library Search System Bench-Top/PBM Version 3.10d; Palisade Co.: Newfield, NY, USA, 1994. [Google Scholar]
- König, W.A.; Hochmuth, D.H.; Joulain, D. Terpenoids and Related Constituents of Essential Oils, Library of MassFinder 2.1; Institute of Organic Chemistry, University of Hamburg: Hamburg, Germany, 2001. [Google Scholar]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; EB-Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ. Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tomi, F.; Bradesi, P.; Bighelli, A.; Casanova, J. Computer-aided identification of individual components of essential oils using carbon-13 NMR spectroscopy. J. Magn. Reson. Anal. 1995, 1, 25–34. [Google Scholar]
- Tomi, F.; Casanova, J. 13C NMR as a tool for identification of individual, components of essential oils from Labiatae. Acta Hortic. 2006, 723, 185–192. [Google Scholar] [CrossRef]
- Bighelli, A.; Casanova, J. Analytical tools for analysing Cymbopogon oils. In Essential Oil Bearing Grasses—Cymbopogons; Akhila, A., Ed.; Taylor and Francis: Abingdon, UK, 2009. [Google Scholar]
- Perrier, X.; Flori, A.; Bonnot, F. Methods for data analysis. In Genetic Diversity of Cultivated Tropical Plants; Hamon, S., Seguin, M., Perrier, X., Glaszmann, J.C., Eds.; CIRAD: Montpellier, France, 2003; pp. 43–76. [Google Scholar]
- Perrier, X.; Jacquemoud-Collet, J. Darwin Software. 2006. Available online: http://darwin.cirad.fr/darwin5.0.158 (accessed on 26 August 2019).
- Lota, M.L. Les Huiles Essentielles D’Agrumes: Caractérisation par RMN du Carbone-13, Cpg-ik et CPG/SM. Ph.D. Thesis, Université Pascal Paoli de Corse, Corte, France, 2000; pp. 1–293. [Google Scholar]
- Albertini, M.-V.; Carcouet, E.; Pailly, O.; Gambotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef]
- Ollitrault, F.; Terol, J.; Martin, A.A.; Pina, J.A.; Navarro, L.; Talon, M.; Ollitrault, P. Development of indel markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. Am. J. Bot. 2012, 99, e268–e273. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, A.; Salhi-Hannachi, A.; Luro, F.; Vignes, H.; Mournet, P.; Ollitrault, P. Genotyping By Sequencing reveals the interspecific C. maxima/C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 2016, 12, e0185618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmin, R. Construction de la Qualité de la Clémentine de Corse Sous Indication Géographique Protégée. Analyse des Pratiques Agricoles et du Système Sociotechnique. Ph.D. Thesis, Université de Corse Pascal Paoli, Corte, France, 2016; pp. 1–429. [Google Scholar]
- Loreto, F.; Schnitzler, J.P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Cheung, W.H.K.; Pasamontes, A.; Peirano, D.J.; Zhao, W.; Grafton-Cardwell, E.E.; Kapaun, T.; Yokomi, R.K.; Simmons, J.; Doll, M.; Fiehn, O.; et al. Volatile organic compound (VOC) profiling of Citrus tristeza virus infection in sweet orange citrus varietals using thermal desorption gas chromatography time of flight mass spectrometry (TD-GC/ TOF-MS). Metabolomics 2015, 11, 1514–1525. [Google Scholar] [CrossRef]
- Velikova, V.; La Mantia, T.; Lauteri, M.; Michelozzi, M.; Nogues, I.; Loreto, F. The impact of winter flooding with saline water on foliar carbon uptake and the volatile fraction of leaves and fruits of lemon (Citrus × limon L. Burm. f.) trees. Funct. Plant Biol. 2012, 39, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Pallozzi, E.; Tsonev, T.; Marino, G.; Copolovici, L.; Niinemets, Ü.; Loreto, F.; Centritto, M. Isoprenoid emissions, photosynthesis and mesophyll conductance in response to blue light in Populus × canadensis, Quercus ilex and Citrus reticulata. Environ. Exp. Bot. 2013, 95, 50–58. [Google Scholar] [CrossRef]
- Lourkisti, R.; Froelicher, Y.; Herbette, S.; Morillon, R.; Tomi, F.; Gibernau, M.; Giannettini, J.; Berti, L.; Santini, J. Triploid citrus genotypes have a better tolerance to natural chilling conditions of photosynthetic capacities and specific leaf volatile organic compounds. Front. Plant Sci. 2020, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.; da Souza, L.D. Caracterização Físico-Hídrica de Solos da Area do Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical; Embrapa Mandioca e Fruticultura: Cruz das Almas, Brazil, 2001; p. 56. [Google Scholar]
- Fiuza, T.D.S.; Tresvenzol, L.M.F.; Lopes, L.T.A.; Sá, S.; Ferri, P.H.; Sampaio, B.L.; Paula, J.R.D. Chemical composition and variability of essential oils from the fruit peels of Citrus medica L. and mineral analysis of the fruit peels and soils. J. Pharmacol. Phytochem. 2015, 3, 43–49. [Google Scholar]
- Manunta, A. Influenza del pH del substrato sulla composizione dell’olio essenziale di Rosmarinus officinalis L. Studi Sassar. 1986, 32, 111–118. [Google Scholar]
- Palà-Paul, J.; Usano-Alemany, J.; Soria, A.C.; Pèrez-Alonso, M.; Brophy, J.J. Essential oil composition of Eryngium campestre L. growing in different soil types. A preliminary study. Nat. Prod. Commun. 2008, 3, 1121–1126. [Google Scholar]
- Boira, H.; Blanquer, A. Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. Syst. Ecol. 1998, 26, 811–822. [Google Scholar] [CrossRef]
- Satta, M.; Tuberoso, C.I.G.; Angioni, A.; Pirisi, F.M.; Cabras, P. Analysis of the essential oil of Helichrysum italicum G. Don. ssp. microphyllum (Willd) Nym. J. Essent. Oil Res. 1999, 11, 711–715. [Google Scholar] [CrossRef]
- De Feo, V.; Bruno, M.; Tahiri, B.; Napolitano, F.; Senatore, F. Chemical composition and antibacterial activity of essential oils from Thymus spinulosus Ten (Laminaceae). J. Agric. Food Chem. 2003, 51, 3849–3853. [Google Scholar] [CrossRef] [PubMed]
- Gazim, Z.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Nascimento, I.A.; Ferreira, G.A.; Cortez, D.A.G. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Codd in Southern Brazil. Molecules 2010, 15, 5509–5524. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Varkey, T.K.; Mathew, J.; Baby, S. Chemical Variability of Citrus maxima Essential Oils from South India. Asian J. Chem. 2014, 26, 2207–2210. [Google Scholar] [CrossRef]
- Corell, M.; Castillo Garcia, M.; Cermeno, P. Effect of the deficit watering in the production and quality of the essential oil, in the cultivation of Salvia officinalis L. Acta Hortic. 2007, 826, 281–288. [Google Scholar] [CrossRef]
- Petropoulos, S.; Daferera, D.; Polissiou, M.; Passam, H. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci. Hortic. 2008, 115, 393–397. [Google Scholar] [CrossRef]
- Dunford, N.T.; Vazquez, R.S. Effect of water stress on plant growth and thymol and carvacrol concentrations in Mexican oregano grown under controlled conditions. J. Appl. Hortic. 2005, 7, 20–22. [Google Scholar] [CrossRef]
- Baghalian, K.; Abdoshah, S.; Khalighi-Sigaroodi, F.; Paknejad, F. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 2011, 49, 201–207. [Google Scholar] [CrossRef]
- Malti, C.E.W.; Boussaïd, M.; Belyagoubi, L.; Paoli, M.; Gibernau, M.; Tomi, T.; Atik Bekkara, F.; Bekhechi, C. Chemical Variability of the Essential Oil of Pituranthos scoparius from Algeria. Chem. Biodivers. 2018, 15, e1800149. [Google Scholar] [CrossRef] [PubMed]
- Surburg, H.; Panten, J. Common Fragrance and Flavour Materials: Preparation, Properties and Uses; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Miyazaki, T.; Plotto, A.; Baldwin, E.A.; Reyes-De-Corcuera, J.I.; Gmitter, F.G., Jr. Aroma characterization of tangerine hybrids by gas-chromatography–olfactometry and sensory evaluation. J. Sci. Food Agric. 2012, 92, 727–735. [Google Scholar] [CrossRef] [PubMed]
Group | Cultivar | Taxonomy (Tanaka) | Corsican Id. | Brazilian Id. | Rootstock a | Analyses | |||
---|---|---|---|---|---|---|---|---|---|
Corsica | Bahia | Div b | LEO | PEO | |||||
Sour orange | Granito | C. aurantium L. | ICVN0110015 | Bag(2)12-71 | CC | RL | x | x | x |
Citron | Etrog | C. medica L. | ICVN0100709 | Bag(2)31-183 | VL | RL | x | x | x |
Lemon | Feminello | C. limon (L.) Burm. | ICVN0100180 | Bag(2)32-192 | SO | RL | x | x | x |
Lemon | Eureka | C. limon (L.) Burm. | ICVN0100004 | Bag(2) | SO | RL | x | x | x |
Lime | Tahiti | C. latifolia Tan. | ICVN0100058 | Bag(5) | SO | RL | x | x | x |
Clementine | Tomatera | C. clementina Hort. ex Tan. | ICVN0100535 | Bag(2)23-133 | TO | RL | x | x | x |
Mandarin | Dancy | C. tangerina Hort. ex Tan. | ICVN0100051 | Bag(1)15-586 | TO | RL | x | x | x |
Mandarin | Fairchild | C. reticulata Blanco | ICVN0100030 | Bag(2)18-104 | TO | RL | x | x | |
Mandarin | Willowleaf | C. deliciosa Ten. | ICVN0100133 | Bag(2)17-667 | TO | RL | x | x | x |
Mandarin | Murcott | C. reticulata Blanco | ICVN0100601 | Bag(1)16-634 | CC | RL | x | x | |
Mandarin | Sunki | C. sunki Hort. ex Tan. | ICVN0100705 | Bag(1)452 | TO | RL | x | x | x |
Mandarin | Page | C. reticulata Blanco | ICVN0100159 | Bag(1)15-585 | TO | RL | x | x | x |
Mandarin | Hybrida | C. reticulata Blanco | ICVN0100714 | TO | RL | x | x | ||
Mandarin | Nasnaran | C. amblycarpa (Hassk.) Ochse | ICVN0100896 | Bag(4)2-9 | TO | RL | x | x | |
Orange | Hamlin | C. sinensis (L.) Osb. | ICVN0100041 | Bag(2)9-52 | TO | RL | x | ||
Orange | Valencia late | C. sinensis (L.) Osb. | ICVN0100246 | Bag(2)10-57 | TO | RL | x | x | x |
Grapefruit | Pink ruby | C. paradisi Macf | ICVN0100605 | Bag(2)25-150 | CC | RL | x | x | |
Pummelo | Reinking | C. maxima (Burm.) Merr. | ICVN0100323 | TO | x | ||||
Pummelo | Siamese | C. maxima (Burm.) Merr. | ICVN0101126 | TO | x | ||||
Pummelo | Tahiti | C. maxima (Burm.) Merr. | ICVN0100727 | TO | x | ||||
Micrantha | C. micrantha Wester | ICVN0101115 | VL | x | |||||
Lime | Mexican | C. aurantifolia (Christm.) Swing. | ICVN0100140 | CC | x |
Scaffold | Marker Id. | SSR Type | Accession Number | Forward Sequence | Reverse Sequence | AT a (°C) | Size Range b (bp) | Position c | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | IDEMA | Indel | CTCTTTCTGCTTCCTGACATC | GCCGGTGAATAAAACACAAC | 55 | 263–277 | 7406793 | Garcia-Lor et al., 2013 | |
2 | Ci04H06 | (GA)n | FR677579 | CAAAGTGGTGAAACCTG | GGACATAGTGAGAAGTTGG | 55 | 184–196 | 8097269 | Cuenca et al., 2011 |
2 | Ci03C08 | (GA)n | FR677576 | GCTTCTTACATTCCTCAAA | CAGAGACAGCCAAGAGA | 55 | 200–225 | 27339948 | Cuenca et al., 2011 |
2 | MEST46 | (CAA)n | DY266484 | GGTGAGCATCTGGACGACTT | GAACCAGAATCAGAACCCGA | 55 | 230–256 | 33532354 | Garcia-Lor et al., 2012 |
2 | Ci05A05 | (GA)n | FR677580 | TGGGCTTGTAGACAGTTA | CGGAACAACTAAAACAAT | 50 | 144–179 | 34232309 | Cuenca et al., 2011 |
3 | CAC23 | (CAC)n | TTGCCATTGTAGCATGTTGG | ATCACAATTACTAGCAGCGCC | 55 | 240–260 | 210444 | Kijas et al., 1997 | |
3 | MEST131 | (GCCCCA)n | DY276912 | GCTGTCACGTTGGGTGTATG | TACCTCCACGTGTCAAACCA | 55 | 120–150 | 50550652 | Garcia-Lor et al., 2012 |
4 | Ci03D12a | (GT)n(GA)n | FR677577 | CCCACAACCATCACC | GCCATAAGCCCTTTCT | 50 | 240–280 | 25569961 | Aleza et al., 2011 |
5 | MEST88 | (TC)n | DY271576 | ATGAGAGCCAAGAGCACGAT | GCCTGTTTGCTTTCTCTTTCTC | 55 | 99–130 | 36034362 | Garcia-Lor et al., 2012 |
6 | MEST192 | (AT)n | DY283129 | CTTGGCACCATCAACACATC | CGCGGATCATCTAGCATACA | 55 | 200–240 | 17474047 | Aleza et al., 2011 |
6 | MEST488 | (CT)n | DY297637 | CTTTGCGTGTTTGTGCTGTT | CACGCTCTTGACTTTCTCCC | 55 | 133–164 | 21253670 | Garcia-Lor et al., 2012 |
6 | IDPSY | Indel | CCTGTCGACATTCAGGTTAG | CTCATCACATCTTCGGTCTC | 55 | 246–249 | 21393019 | Garcia-Lor et al., 2013 | |
6 | Ci01C06 | (CT)n | FR692356 | TGGAGACACAAAGAAGAA | GGACCACAACAAAGACAG | 50 | 131–170 | 24790953 | Cuenca et al., 2011 |
7 | MEST107 | (AGA)n | DY274062 | CCCCATCCTTTCAACTTGTG | GCTGAGATGGGGATGAAAGA | 55 | 183–201 | 210493 | Garcia-Lor et al., 2012 |
7 | Ci03B07 | (GT)n | FR7677573 | TGAGGGACTAAACAGCA | CACCTTTCCCTTCCA | 55 | 263–279 | 11545443 | Garcia-Lor et al., 2012 |
8 | Ci01F04a | (CT)nCC(CT)n | AM489736 | TGCTGCTGCTGTTGTTGTTCT | AAGCATTTAGGGAGGGTCACT | 55 | 190–228 | 1063542 | Froelicher et al., 2008 |
8 | Ci02F07 | (GT)n | AJ567406 | TGCTGGTTTTCAGATACTT | GCAGCGTTTGTTTTCT | 55 | 188–215 | 15053136 | Froelicher et al., 2008 |
8 | MEST15 | (GAG)n | FC912829 | GCCTCGCATTCTCTTGACTC | TTATTACGAAGCGGAGGTGG | 55 | 192–210 | 24850303 | Garcia-Lor et al., 2012 |
Type | Cultivar | PEO | LEO | ||
---|---|---|---|---|---|
Corsica | Bahia | Corsica | Bahia | ||
Citron | Etrog | 0.22 | 0.19 | 0.21 | 0.12 |
Lemon | Feminello | 1.00 | 0.29 | 0.32 | 0.35 |
Lemon | Eureka | 1.00 | 0.20 | 0.30 | ND |
Lime | Tahiti | 0.63 | 0.16 | 0.27 | 0.10 |
Clementine | Tomatera | 0.32 | 0.35 | 0.33 | 0.13 |
Mandarin | Dancy | 0.61 | 0.26 | 0.35 | 0.34 |
Mandarin | Fairchild | 0.28 | 0.47 | 0.10 | 0.15 |
Mandarin | Willowleaf | 0.50 | 0.41 | 0.29 | 0.23 |
Mandarin | Murcott | 0.57 | 0.50 | 0.20 | 0.16 |
Mandarin | Sunki | 0.30 | 0.09 | 0.15 | 0.15 |
Mandarin | Page | 0.25 | 0.25 | 0.18 | 0.10 |
Mandarin | Hybrida | 0.45 | 0.25 | ND | ND |
Mandarin | Nasnaran | 1.00 | 0.48 | 0.30 | 0.12 |
Sour orange | Granito | 0.45 | 0.47 | 0.24 | 0.23 |
Orange | Hamlin | 1.45 | 1.11 | 0.15 | 0.12 |
Orange | Valencia late | 0.38 | 0.33 | 0.15 | 0.10 |
Grapefruit | Pink ruby | 0.20 | 0.21 | 0.10 | 0.23 |
Total set * | 0.57 ± 0.35 | 0.35 ± 0.23 | 0.23 ± 0.08 | 0.18 ± 0.08 | |
Citron family * | 0.71 ± 0.37 | 0.21 ± 0.06 | 0.28 ± 0.05 | 0.19 ± 0.14 | |
Mandarin family * | 0.48 ± 0.24 | 0.34 ± 0.14 | 0.24 ± 0.09 | 0.17 ± 0.08 |
LEOs | All Cultivars | Mandarin Family | Citron Family | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | Compounds | Bahia | Corsica | Bahia | Corsica | Bahia | Corsica | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
929 | α–pinene | 0.96 | 0.89 | 1.19 | 0.87 | 1.29 | 0.80 | 1.61 | 0.94 | 0.20 | 0.06 | 0.66 | 0.37 |
963 | sabinene | 13.75 | 20.12 | 12.46 | 15.32 | 16.85 | 18.29 | 16.97 | 17.06 | 0.75 | 0.36 | 2.75 | 1.07 |
970 | β pinene | 5.60 | 12.62 | 8.95 | 15.06 | 7.42 | 16.00 | 10.41 | 20.04 | 2.74 | 1.90 | 8.80 | 8.61 |
979 | myrcene | 1.14 | 0.88 | 1.68 | 1.15 | 0.97 | 0.84 | 1.69 | 1.20 | 0.78 | 0.39 | 0.98 | 0.05 |
1007 | 3-carene | 1.27 | 2.39 | 0.82 | 1.23 | 1.14 | 2.52 | 0.89 | 1.53 | 0.00 | 0.00 | 0.33 | 0.09 |
1010 | α–terpinene | 0.16 | 0.17 | 1.04 | 1.12 | 0.15 | 0.13 | 1.30 | 1.45 | 0.00 | 0.00 | 0.56 | 0.40 |
1011 | p-cymene | 1.94 | 2.09 | 0.77 | 0.87 | 2.45 | 1.33 | 0.85 | 1.23 | 0.39 | 0.15 | 0.65 | 0.01 |
1020 | limonene | 10.63 | 13.81 | 13.84 | 12.20 | 3.60 | 2.72 | 5.82 | 2.42 | 25.95 | 14.76 | 29.49 | 9.30 |
1020 | β-phellandrene | 0.53 | 0.84 | 0.55 | 0.50 | 2.43 | 6.53 | 0.34 | 0.34 | 1.25 | 1.29 | 0.66 | 0.43 |
1035 | (E)-β-ocimene | 0.99 | 1.54 | 4.30 | 3.20 | 1.10 | 1.77 | 5.33 | 3.24 | 0.84 | 1.13 | 1.70 | 0.40 |
1046 | γ-terpinene | 1.83 | 4.26 | 3.34 | 4.03 | 4.58 | 6.91 | 5.26 | 4.54 | 0.28 | 0.04 | 0.44 | 0.10 |
1070 | p-cymenene | 0.23 | 0.33 | 0.01 | 0.03 | 0.38 | 0.42 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.00 |
1082 | linalool | 7.02 | 19.41 | 5.40 | 15.54 | 19.92 | 22.47 | 15.20 | 16.07 | 1.53 | 10.11 | 2.05 | 0.79 |
1129 | citronellal | 7.58 | 19.57 | 4.60 | 14.01 | 9.29 | 24.21 | 8.49 | 21.39 | 3.55 | 3.56 | 2.22 | 1.09 |
1161 | terpinen-4-ol | 1.46 | 1.83 | 2.55 | 2.97 | 1.44 | 1.58 | 3.14 | 2.71 | 0.43 | 0.09 | 0.54 | 0.27 |
1170 | α-terpineol | 1.07 | 2.10 | 1.27 | 2.50 | 0.56 | 0.66 | 0.51 | 0.42 | 0.43 | 0.27 | 0.79 | 0.36 |
1208 | nerol | 0.70 | 1.15 | 0.85 | 1.25 | 0.00 | 0.00 | 0.01 | 0.03 | 1.93 | 1.42 | 1.86 | 1.71 |
1213 | neral | 6.35 | 10.72 | 4.35 | 6.61 | 0.03 | 0.10 | 0.09 | 0.14 | 20.48 | 8.67 | 13.77 | 2.08 |
1213 | thymyl methyl oxide | 0.50 | 1.35 | 0.83 | 2.47 | 0.66 | 1.67 | 1.55 | 3.31 | 0.00 | 0.00 | 0.00 | 0.00 |
1232 | geraniol | 0.85 | 1.30 | 0.76 | 1.48 | 0.07 | 0.23 | 0.02 | 0.03 | 1.37 | 1.01 | 0.68 | 0.49 |
1242 | geranial | 10.18 | 15.54 | 8.25 | 11.12 | 0.01 | 0.03 | 0.19 | 0.22 | 24.80 | 15.36 | 18.00 | 2.91 |
1244 | linalyl acetate | 2.46 | 8.55 | 1.90 | 7.85 | 0.07 | 0.17 | 0.00 | 0.00 | 0.15 | 0.29 | 0.00 | 0.00 |
1261 | thymol | 0.72 | 2.22 | 0.69 | 2.11 | 1.04 | 2.84 | 1.28 | 2.83 | 0.11 | 0.24 | 0.00 | 0.00 |
1341 | neryl acetate | 1.34 | 1.41 | 2.32 | 2.76 | 0.05 | 0.15 | 0.32 | 0.32 | 2.37 | 2.16 | 7.19 | 2.69 |
1359 | geranyl acetate | 1.35 | 1.65 | 1.63 | 2.22 | 0.19 | 0.33 | 0.22 | 0.13 | 2.21 | 1.06 | 3.42 | 2.34 |
1380 | Me N-methylanthranilate | 5.30 | 19.02 | 5.06 | 18.24 | 17.16 | 30.88 | 9.39 | 24.85 | 0.00 | 0.00 | 0.00 | 0.00 |
1673 | β-sinensal | 0.10 | 0.33 | 0.57 | 0.77 | 0.22 | 0.53 | 0.53 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00 |
1725 | α-sinensal | 0.06 | 0.13 | 0.43 | 0.39 | 0.14 | 0.18 | 0.55 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 |
PEOs | All Cultivars | Mandarin Family | Citron Family | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corsica | Bahia | Corsica | Bahia | Corsica | Bahia | ||||||||
RI | Compounds | Mean | SD | Mean | SD | Mean | SD | Mean | SD | MEAN | SD | Mean | SD |
929 | α-pinene | 0.65 | 0.50 | 0.82 | 0.59 | 0.57 | 0.35 | 0.61 | 0.30 | 0.94 | 0.71 | 1.55 | 0.95 |
963 | sabinene | 0.75 | 0.99 | 0.71 | 0.99 | 0.36 | 0.25 | 0.41 | 0.34 | 0.94 | 0.49 | 0.93 | 0.58 |
970 | β-pinene | 3.14 | 4.46 | 2.49 | 3.39 | 0.75 | 0.68 | 1.47 | 1.77 | 7.51 | 4.74 | 4.25 | 3.30 |
977 | octanal | 0.10 | 0.19 | 0.45 | 0.49 | 0.16 | 0.23 | 0.51 | 0.47 | 0.00 | 0.00 | 0.09 | 0.16 |
979 | myrcene | 1.45 | 0.23 | 1.60 | 0.14 | 1.47 | 0.13 | 1.64 | 0.08 | 1.18 | 0.20 | 1.47 | 0.06 |
1010 | α-terpinene | 0.32 | 0.26 | 0.21 | 0.23 | 0.22 | 0.19 | 0.22 | 0.22 | 0.42 | 0.29 | 0.26 | 0.21 |
1011 | p-cymene | 0.78 | 1.28 | 1.87 | 4.08 | 0.29 | 0.49 | 0.50 | 1.01 | 2.51 | 1.43 | 6.22 | 6.82 |
1020 | limonene | 79.45 | 26.14 | 83.71 | 12.65 | 89.01 | 8.85 | 88.92 | 6.12 | 54.61 | 13.27 | 68.52 | 10.44 |
1046 | γ-terpinene | 4.02 | 6.11 | 2.71 | 3.84 | 3.24 | 5.66 | 2.47 | 4.18 | 9.96 | 2.67 | 6.04 | 4.28 |
1077 | terpinolene | 0.37 | 0.34 | 0.26 | 0.20 | 0.29 | 0.32 | 0.24 | 0.18 | 0.62 | 0.37 | 0.28 | 0.10 |
1082 | linalool | 1.47 | 1.90 | 0.87 | 0.85 | 2.25 | 2.85 | 1.16 | 1.16 | 0.79 | 0.53 | 0.47 | 0.75 |
1129 | citronellal | 0.68 | 0.98 | 0.53 | 0.74 | 0.63 | 0.32 | 0.38 | 0.26 | 0.42 | 0.28 | 0.28 | 0.55 |
1161 | terpinen-4-ol | 0.77 | 1.15 | 0.45 | 0.51 | 0.24 | 0.14 | 0.39 | 0.26 | 0.99 | 0.84 | 0.36 | 0.24 |
1170 | α-terpineol | 1.11 | 1.55 | 0.43 | 0.38 | 0.45 | 0.33 | 0.33 | 0.17 | 2.23 | 2.34 | 0.55 | 0.45 |
1213 | neral | 1.19 | 1.70 | 0.39 | 0.46 | 0.38 | 0.27 | 0.24 | 0.35 | 3.68 | 1.86 | 0.91 | 0.59 |
1232 | geraniol | 0.26 | 0.60 | 0.05 | 0.08 | 0.09 | 0.23 | 0.04 | 0.08 | 0.65 | 1.01 | 0.09 | 0.10 |
1242 | geranial | 1.48 | 2.34 | 0.43 | 0.21 | 0.36 | 0.28 | 0.28 | 0.27 | 4.82 | 2.70 | 1.03 | 1.15 |
1341 | neryl acetate | 0.44 | 0.55 | 0.14 | 0.14 | 0.14 | 0.14 | 0.07 | 0.12 | 1.14 | 0.53 | 0.22 | 0.14 |
1359 | geranyl acetate | 0.43 | 0.43 | 0.20 | 0.23 | 0.14 | 0.14 | 0.17 | 0.25 | 0.96 | 0.35 | 0.24 | 0.27 |
1380 | Me N-methylanthranilate | 0.08 | 0.27 | 0.03 | 0.10 | 0.19 | 0.41 | 0.05 | 0.13 | 0.00 | 0.00 | 0.04 | 0.09 |
1431 | trans-α-bergamotene | 0.22 | 0.39 | 0.12 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.48 | 0.32 | 0.14 |
1495 | β-bisabolene | 0.18 | 0.42 | 0.11 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.61 | 0.39 | 0.30 |
IK apol | Compounds | Site | Etrog citron | Tahiti lime | Lemon Feminello | Lemon Eureka | Grapefruit Pink | Sour orange Granito | Orange Hamlin | Orange Valencia late | Mandarin Willowleaf | Mandarin Dancy | Mandarin Page | Mandarin Fairchild | Mandarin Sunki | Mandarin Hybrida | Clementine | Tangor Murcott | Mandarin Nasnaran |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PEOs | |||||||||||||||||||
958 | 6-methyl-hept-5-en-2-one | Bahia | 0.9 | 0.1 | |||||||||||||||
1074 | trans linalool oxide THF form | Bahia | 0.2 | ||||||||||||||||
1143 | p-mentha-1,5-dien-8-ol | Corsica | 0.9 | ||||||||||||||||
1146 | isoneral | Corsica | 0.1 | ||||||||||||||||
1147 | borneol | Corsica | 0.2 | ||||||||||||||||
1157 | p-cymen-8-ol | Corsica | 0.3 | ||||||||||||||||
1192 | octyl acetate | Bahia | 0.7 | 0.3 | 0.8 | 0.2 | 0.4 | 0.1 | |||||||||||
1196 | trans-carveol | Bahia | 0.3 | 0.4 | 0.1 | ||||||||||||||
1222 | carvone | Bahia | 1.6 | 0.1 | 0.7 | ||||||||||||||
1332 | α-terpinyl acetate | Bahia | 0.3 | 0.4 | |||||||||||||||
1333 | citronellyl acetate | Bahia | 0.2 | 0.7 | 0.2 | ||||||||||||||
1334 | δ–elemene | Bahia | 0.2 | 0.4 | |||||||||||||||
1375 | α-copaene | Bahia | 0.3 | 0.8 | 0.4 | 0.4 | |||||||||||||
1479 | β-selinene | Corsica | 0.4 | ||||||||||||||||
1480 | germacrene D | Bahia | 0.2 | 0.6 | 0.2 | ||||||||||||||
1489 | bicyclogermacrene | Bahia | 0.3 | 0.2 | 0.2 | 0.6 | |||||||||||||
1572 | caryophyllene oxide | Bahia | 0.7 | 0.1 | |||||||||||||||
1624 | τ-cadinol | Bahia | 0.1 | 0.1 | |||||||||||||||
1772 | nootkatone | Corsica | 0.3 | ||||||||||||||||
LEOs | |||||||||||||||||||
1051 | octanol | Corsica | 0.3 | ||||||||||||||||
1074 | trans linalool oxide THF form | Bahia | 0.7 | 0.2 | 0.6 | 0.6 | |||||||||||||
1125 | cis-verbenol | Bahia | 0.2 | ||||||||||||||||
1179 | myrtenol | Bahia | 0.2 | 0.6 | |||||||||||||||
1192 | octyl acetate | Bahia | 0.1 | 0.5 | 0.5 | 0.5 | 0.1 | 0.5 | 0.2 | 0.2 | |||||||||
1196 | trans-carveol | Bahia | 0.5 | 0.3 | 0.5 | 0.2 | 0.6 | ||||||||||||
1222 | carvone | Bahia | 0.3 | 0.5 | 0.2 | ||||||||||||||
1267 | bornyl acetate | Bahia | |||||||||||||||||
1284 | undecanal | Corsica | 0.2 | 0.2 | 0.2 | 0.2 | |||||||||||||
1532 | β-elemol | Bahia | 0.2 | 0.2 | 0.5 | 0.2 |
Year | Month | Fruiting Phases | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
June | July | August | September | October | November | December | January | February | I + II | III | All | |
2016/2017 | 21.9 | 26.1 | 23.6 | 21.0 | 16.4 | 12.9 | 10 | 9.6 | 10.6 | 23.8 | 13.4 | 16.9 |
1998/1999 | 21.5 | 24.9 | 23.5 | 20.5 | 16.3 | 11.3 | 8.7 | 9.1 | 8.1 | 23.4 | 12.3 | 16.0 |
1997/1998 | 21.3 | 23.1 | 24.1 | 21.8 | 17.2 | 12.7 | 10.8 | 9.8 | 10.3 | 22.9 | 13.8 | 16.5 |
1996/1997 | 21.1 | 23.4 | 23.4 | 18.4 | 15.8 | 12.9 | 9.8 | 10.3 | 10.7 | 22.6 | 13 | 15.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luro, F.; Garcia Neves, C.; Costantino, G.; da Silva Gesteira, A.; Paoli, M.; Ollitrault, P.; Tomi, F.; Micheli, F.; Gibernau, M. Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy 2020, 10, 1256. https://doi.org/10.3390/agronomy10091256
Luro F, Garcia Neves C, Costantino G, da Silva Gesteira A, Paoli M, Ollitrault P, Tomi F, Micheli F, Gibernau M. Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy. 2020; 10(9):1256. https://doi.org/10.3390/agronomy10091256
Chicago/Turabian StyleLuro, François, Claudia Garcia Neves, Gilles Costantino, Abelmon da Silva Gesteira, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, Fabienne Micheli, and Marc Gibernau. 2020. "Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France)" Agronomy 10, no. 9: 1256. https://doi.org/10.3390/agronomy10091256
APA StyleLuro, F., Garcia Neves, C., Costantino, G., da Silva Gesteira, A., Paoli, M., Ollitrault, P., Tomi, F., Micheli, F., & Gibernau, M. (2020). Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy, 10(9), 1256. https://doi.org/10.3390/agronomy10091256