Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Statistical Analysis
2.3. AMMI Analysis
3. Results
3.1. Model Diagnosis
3.2. Mega-Environments (MEs) Delineation and Description
3.3. Selection or Recommendation of the Best Accessions
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almeida, N.F.; Leitão, S.T.; Krezdorn, N.; Rotter, B.; Winter, P.; Rubiales, D.; Vaz Patto, M.C. Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biol. 2014, 14, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz Patto, M.C.; Skiba, B.; Pang, E.C.K.; Ochatt, S.J.; Lambein, F.; Rubiales, D. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica 2006, 147, 133–147. [Google Scholar] [CrossRef]
- Girma, D.; Korbu, L. Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: An unfulfilled promise. Plant Breed. 2012, 131, 231–236. [Google Scholar] [CrossRef]
- Kumar, S.; Bejiga, G.; Ahmed, S.; Nakkoul, H.; Sarker, A. Genetic improvement of grass pea for low neurotoxin (B-ODAP) content. Food Chem. Toxicol. 2011, 3, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Gonςalves, L.; Rubiales, D.; Vaz Patto, M.C. Grass pea prospective at the Mediterranean Basin. Legume Perspect. 2015, 10, 8–9. [Google Scholar]
- Lambein, F.; Travella, S.; Kuo, Y.; Van Montagu, M.; Heidje, M. Grass pea (Lathyrus sativus L.): Orphan crop, nutraceutical or just plain food? Planta 2019, 250, 821–838. [Google Scholar] [CrossRef] [Green Version]
- De-la-Rosa, L.; Martí, I. Morphological characterization of Spanish genetic resources of Lathyrus sativus L. Lathyrus Lathyrism Newsl. 2001, 2, 31–34. [Google Scholar]
- Tavoletti, S.; Iommarini, L.; Crinò, P.; Granati, E. Collection and evaluation of grass pea (Lathyrus sativus L.) germplasm of central Italy. Plant Breed. 2005, 124, 388–391. [Google Scholar] [CrossRef]
- Piergiovanni, A.R.; Lupo, F.; Zaccardelli, M. Environmental effect on yield, composition and technological seed traits of some Italian ecotypes of grass pea (Lathyrus sativus L.). J. Sci. Food Agric. 2011, 91, 122–129. [Google Scholar] [CrossRef]
- Grela, E.R.; Rybiński, W.; Matras, J.; Sobolewska, S. Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2012, 59, 1687–1703. [Google Scholar] [CrossRef] [Green Version]
- Aci, M.M.; Lupini, A.; Badagliacca, G.; Mauceri, A.; Lo Presti, E.; Preiti, G. Genetic diversity among Lathyrus ssp. based on agronomic traits and molecular markers. Agronomy 2020, 10, 1182. [Google Scholar] [CrossRef]
- Dixit, G.P.; Parihar, A.K.; Bohra, A.; Singh, N.P. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J. 2016, 4, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Hillocks, R.J.; Maruthi, M.N. Grass pea (Lathyrus sativus): Is there a case for further crop improvement? Euphytica 2012, 186, 647–654. [Google Scholar] [CrossRef]
- Fikre, A.; Negwo, T.; Kuo, Y.H.; Lambein, F.; Ahmed, S. Climatic, edaphic and altitudinal factors affecting yield and toxicity of Lathyrus sativus grown at five locations in Ethiopia. Food Chem. Toxicol. 2011, 49, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.J.; Jiang, J.L.; Ke, L.M.; Cheng, W.; Li, F.M.; Li, Z.X.; Wang, C.Y. Factors affecting beta-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol. 2011, 49, 543–549. [Google Scholar] [CrossRef]
- Getahun, H.; Lambein, F.; Vanhoorne, M.; Van der Stuyft, P. Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine. Lancet 2003, 362, 1808–1810. [Google Scholar] [CrossRef]
- Buta, M.B.; Emire, S.A.; Posten, C.; André, S.; Greiner, R. Reduction of β-ODAP and IP6 contents in Lathyrus sativus L. seed by high hydrostatic pressure. Food Res. Int. 2019, 120, 73–82. [Google Scholar] [CrossRef]
- Gauch, H.G. Model selection and validation for yield trials with interaction. Biometrics 1988, 88, 705–715. [Google Scholar] [CrossRef]
- Flores, F.; Moreno, M.T.; Cubero, J.I. A comparison of univariate and multivariate methods to analyze G*E interaction. Field Crops Res. 1998, 56, 271–286. [Google Scholar] [CrossRef]
- McIntosh, M.S. Analysis of combined experiments. Agron. J. 1983, 75, 153–155. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of a yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Gauch, H.G. A simple protocol for AMMI analysis of yield trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Iglesias-García, R.; Prats, E.; Flores, F.; Amri, M.; Mikic, A.; Rubiales, D. Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop Past. Sci. 2017, 68, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Burgueño, J.; Crossa, J.; Vargas, M. SAS Programs for Graphing GE and GGE Biplots; Biometrics and Statistics Unit, CIMMYT, Int.: México City, Mexico, 2003. [Google Scholar]
- Malik, W.A.; Forkman, J.; Piepho, H.P. Testing multiplicative terms in AMMI and GGE models for multienvironment trials with replicates. Theor. App. Gen. 2019, 132, 2087. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar]
- Gollob, H.F. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 1968, 33, 73–115. [Google Scholar] [CrossRef]
- Hanbury, C.D.; Siddique, K.H.M.; Galwey, N.W.; Cocks, P.S. Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean type environments. Euphytica 1999, 110, 45–60. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Rubiales, D. Lathyrus diversity: Available resources with relevance to crop improvement. Ann. Bot. 2014, 113, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 2011, 125, 92–97. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity. Front. Plant Sci. 2016, 7, 1409. [Google Scholar] [CrossRef] [Green Version]
- Rubiales, D.; Alcántara, C.; Pérez-de-Luque, A.; Gil, J.; Sillero, J.C. Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomie 2003, 23, 359–362. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Cubero, J.I.; Sillero, J.C. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 2003, 22, 865–872. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Flores, F.; Rubiales, D. Differences in crenate broomrape parasitism dynamics on three legume crops using a Thermal Time Model. Front. Plant Sci. 2016, 7, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-de-Luque, A.; Sillero, J.C.; Moral, A.; Cubero, J.I.; Rubiales, D. Effect of sowing date and host resistance on the establishment of Orobanche crenata in faba bean and common vetch. Weed Res. 2004, 44, 282–288. [Google Scholar] [CrossRef]
- Rubiales, D. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 2003, 160, 459–461. [Google Scholar] [CrossRef]
Environm | Location | Soil Type | Soil pH | Latitude | Longit. | Altit. (m) | Season | AvTmax (°C) | AvTmin (°C) | Rain (mm) |
---|---|---|---|---|---|---|---|---|---|---|
CAMP08 | Campillo, Spain | Vertisol | 7.5–8 | 37°20′ N | 4°51′ W | 461 | 2007–08 | 18.8 | 7.8 | 264 |
TOM09 | Tomejil, Spain | Vertisol | 7–7.5 | 37°30′ N | 5°57′ W | 12 | 2008–09 | 22.6 | 7.5 | 219 |
CORD09 | Córdoba, Spain | Fluvisol | 6.5–7 | 37°50′ N | 4°50′ W | 90 | 2008–09 | 21.7 | 7.9 | 280 |
ESC08 | Escacena, Spain | Fluvisol | 7–7.5 | 37°25′ N | 6°15′ W | 88 | 2007–08 | 20.7 | 10.1 | 391 |
ESC09 | Escacena, Spain | Fluvisol | 7–7.5 | 37°25′ N | 6°15′ W | 88 | 2008–09 | 21.4 | 9.4 | 252 |
KAFR08 | Kafr El-Sheik, Egypt | Entisol | 7.5–8 | 30°47′ N | 30°59′ E | 0 | 2007–08 | 23.9 | 5.4 | 276 B |
KAFR09 | Kafr El-Sheik, Egypt | Entisol | 7.5–8 | 30°47′ N | 30°59′ E | 0 | 2008–09 | 23.4 | 8.3 | 193 B |
Grain Yield (kg ha−1) in Different Environments | |||||||||
---|---|---|---|---|---|---|---|---|---|
SPAIN | EGYPT | ||||||||
Accession | Synom. | CAMP08 | CORD09 | ESC08 | ESC09 | TOM09 | KAFR08 | KAFR09 | Mean |
Ls1 | Sel190 | 533 | 926 | 667 | 1567 | 2903 | 2599 | 2343 | 1648 |
Ls2 | Sel288 | 340 | 1021 | 667 | 1747 | 4468 | 2189 | 2069 | 1786 |
Ls3 | Sel289 | 340 | 1370 | 645 | 1614 | 3631 | 2302 | 1889 | 1685 |
Ls4 | Sel290 | 507 | 978 | 440 | 1786 | 4398 | 1903 | 2267 | 1754 |
Ls5 | Sel299 | 355 | 900 | 520 | 1638 | 4238 | 2465 | 1908 | 1718 |
Ls6 | Sel387 | 467 | 934 | 300 | 1692 | 4402 | 1459 | 1569 | 1546 |
Ls7 | Sel390 | 393 | 873 | 457 | 1620 | 4220 | 2737 | 2717 | 1860 |
Ls8 | Sel449 | 320 | 1238 | 889 | 1984 | 4724 | 2237 | 1995 | 1912 |
Ls9 | SelB111 | 311 | 942 | 600 | 1708 | 4343 | 2076 | 1884 | 1695 |
Ls10 | SelB222 | 140 | 1556 | 1534 | 2343 | 3963 | 4999 | 4800 | 2762 |
Ls11 | Sel2177 | 607 | 2011 | 908 | 1619 | 4325 | 4789 | 4087 | 2621 |
Ls12 | Sel2119 | 207 | 685 | 329 | 1436 | 4035 | 1373 | 1507 | 1368 |
Ls13 | SelETH-7 | 307 | 985 | 400 | 1745 | 4374 | 1214 | 1674 | 1528 |
Ls14 | SelETH-15 | 160 | 716 | 334 | 1472 | 4146 | 1604 | 978 | 1344 |
Ls15 | Sel945 | 440 | 534 | 806 | 1637 | 2565 | 2800 | 2787 | 1653 |
Ls16 | Sel1784 | 613 | 515 | 1045 | 2688 | 3892 | 3427 | 5092 | 2468 |
Ls17 | Sel1942 | 338 | 840 | 480 | 1590 | 4256 | 2117 | 1861 | 1640 |
Ls18 | Sel1959 | 547 | 1197 | 1227 | 1464 | 4083 | 4808 | 3399 | 2389 |
Ls19 | Lisa | 810 | 753 | 703 | 1988 | 4985 | 3988 | 3567 | 2399 |
Mean | 407 | 999 | 682 | 1755 | 4103 | 2689 | 2547 | 1883 | |
SE | 30 | 57 | 52 | 50 | 117 | 208 | 178 | 76 |
Accession | CAMP08 | CORD09 | ESC08 | ESC09 | TOM09 | KAFR08 | KAFR09 | Mean |
---|---|---|---|---|---|---|---|---|
Ls1 | 0.13 | 0.48 | 0.37 | 0.34 | 0.0 | 0.50 | 0.56 | 0.40 |
Ls2 | 0.23 | 1.15 | 0.63 | 0.66 | 0.0 | 2.18 | 0.86 | 0.95 |
Ls3 | 0.10 | 0.40 | 0.30 | 0.47 | 0.0 | 0.38 | 0.19 | 0.31 |
Ls4 | 0.37 | 1.12 | 0.50 | 0.49 | 0.0 | 2.52 | 1.47 | 1.08 |
Ls5 | 0.10 | 1.02 | 0.70 | 0.79 | 0.0 | 2.07 | 1.94 | 1.10 |
Ls6 | 0.33 | 1.58 | 0.63 | 0.68 | 0.0 | 3.61 | 3.30 | 1.69 |
Ls7 | 0.17 | 0.98 | 0.50 | 0.51 | 0.0 | 0.99 | 0.69 | 0.64 |
Ls8 | 0.00 | 0.80 | 0.57 | 0.40 | 0.0 | 1.02 | 1.18 | 0.66 |
Ls9 | 0.03 | 0.98 | 0.60 | 0.59 | 0.0 | 1.54 | 1.51 | 0.88 |
Ls10 | 0.10 | 1.63 | 0.50 | 0.53 | 0.0 | 0.99 | 1.00 | 0.79 |
Ls11 | 0.10 | 0.83 | 0.40 | 0.39 | 0.03 | 2.40 | 1.64 | 0.96 |
Ls12 | 0.27 | 1.18 | 0.63 | 0.68 | 0.0 | 3.20 | 3.30 | 1.54 |
Ls13 | 0.13 | 0.97 | 0.50 | 0.45 | 0.0 | 1.26 | 1.32 | 0.77 |
Ls14 | 0.27 | 1.17 | 0.60 | 0.67 | 0.0 | 2.59 | 2.47 | 1.29 |
Ls15 | 0.17 | 0.93 | 0.63 | 0.38 | 0.0 | 2.21 | 1.72 | 1.01 |
Ls16 | 0.20 | 1.15 | 0.53 | 0.55 | 0.0 | 1.65 | 1.49 | 0.93 |
Ls17 | 0.40 | 1.22 | 0.50 | 0.74 | 0.0 | 3.28 | 2.47 | 1.43 |
Ls18 | 0.03 | 0.28 | 0.57 | 0.46 | 0.0 | 0.85 | 0.70 | 0.48 |
Ls19 | 0.50 | 0.98 | 0.83 | 1.40 | 0.65 | 3.09 | 3.00 | 1.63 |
Mean | 0.19 | 0.99 | 0.55 | 0.59 | 0.04 | 1.91 | 1.62 | 0.98 |
SE | 0.03 | 0.08 | 0.02 | 0.03 | 0.03 | 0.14 | 0.14 | 0.05 |
Source | DF | SS | MS | % Variation |
---|---|---|---|---|
Environment (E) | 6 | 594,938,551 | 99,156,425 *** | 76 A |
Replication/E | 14 | 10,326,066 | 737,576 | |
Genotype (G) | 18 | 68,746,582 | 3,819,254 *** | 9 A |
G*E | 108 | 113,679,415 | 1,052,587 *** | 15 A |
IACP1 | 23 | 82,737,353 | 3,597,276 *** | 73 B |
IACP2 | 21 | 14,543,665 | 692,555 | 13 B |
Residual | 64 | 16,398,397 | 256,224 | |
Error | 252 | 120,081,873 | 476,515 | |
Total | 398 | 907,772,488 |
Source | DF | SS | MS | % Variation |
---|---|---|---|---|
Environment (E) | 6 | 171 | 28.5 *** | 60 A |
Replication/E | 14 | 3 | 0.19 | |
Genotype (G) | 18 | 48 | 2.64 *** | 17 A |
G*E | 108 | 64 | 0.58 *** | 23 A |
IACP1 | 23 | 54 | 2.32 *** | 84 B |
IACP2 | 21 | 5 | 0.23 | 8 B |
Residual | 64 | 5 | 0.08 | |
Error | 252 | 38 | 0.15 | |
Total | 398 | 322 |
AMMI1 Rank for Grain Yield | AMMI1 Rank for Number Broomrapes Per Plant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Environment | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
CAMP08 | Ls11 | Ls19 | Ls10 | Ls8 | Ls16 | Ls18 | Ls3 | Ls1 | Ls18 | Ls11 | Ls8 | Ls5 |
CORD09 | Ls11 | Ls10 | Ls19 | Ls8 | Ls16 | Ls18 | Ls3 | Ls1 | Ls18 | Ls8 | Ls7 | Ls11 |
ESC08 | Ls10 | Ls11 | Ls19 | Ls8 | Ls16 | Ls18 | Ls18 | Ls3 | Ls11 | Ls1 | Ls8 | Ls15 |
ESC09 | Ls10 | Ls11 | Ls19 | Ls16 | Ls8 | Ls18 | Ls3 | Ls1 | Ls18 | Ls11 | Ls8 | Ls13 |
KAFR08 | Ls10 | Ls11 | Ls16 | Ls18 | Ls19 | Ls15 | Ls3 | Ls1 | Ls18 | Ls7 | Ls10 | Ls8 |
KAFR09 | Ls10 | Ls11 | Ls16 | Ls18 | Ls19 | Ls15 | Ls3 | Ls1 | Ls18 | Ls7 | Ls10 | Ls8 |
TOM09 | Ls8 | Ls13 | Ls6 | Ls2 | Ls4 | Ls9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiales, D.; Emeran, A.A.; Flores, F. Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy 2020, 10, 1295. https://doi.org/10.3390/agronomy10091295
Rubiales D, Emeran AA, Flores F. Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy. 2020; 10(9):1295. https://doi.org/10.3390/agronomy10091295
Chicago/Turabian StyleRubiales, Diego, Amero A. Emeran, and Fernando Flores. 2020. "Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments" Agronomy 10, no. 9: 1295. https://doi.org/10.3390/agronomy10091295
APA StyleRubiales, D., Emeran, A. A., & Flores, F. (2020). Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy, 10(9), 1295. https://doi.org/10.3390/agronomy10091295