Assessment of Environmental Burdens of Winter Wheat Production in Different Agrotechnical Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Life Cycle Assessment (LCA) Methodology
2.2.1. Goal and Scope Definition
2.2.2. Inventory Analysis
2.2.3. Life Cycle Impact Assessment (LCIA)
- Icat—an impact category indicator;
- mi—the amount of the i-th substance used or emitted;
- CFcati—an impact category characterisation factor for the substance.
2.2.4. Interpretation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). World Food and Agriculture. Statistical Pocketbook 2019; FAO: Rome, Italy, 2019; ISBN 978-92-5-131849-2. [Google Scholar]
- Statistics Poland. Production of Agricultural and Horticultural Crops in 2019; Statistics Poland: Warsaw, Poland, 2019. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00047/default/bar?lang=en (accessed on 10 May 2020).
- Eurostat. Agri-Environmental Indicator-Greenhouse Gas Emissions. Statistics Explained. 2019. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicators (accessed on 10 December 2019).
- Morris, N.; Miller, P.; Orson, J.H.; Froud-Williams, R. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Romaneckas, K.; Avižienytė, D.; Bogužas, V.; Šarauskis, E.; Jasinskas, A.; Marks, M. Impact of tillage systems on chemical, biochemical and biological composition of soil. J. Elem. 2016, 21, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Gajda, A.M.; Czyż, E.A.; Stanek-Tarkowska, J.; Furtak, K.M.; Grządziel, J. Effects of long-term tillage practices on the quality of soil under winter wheat. Plant Soil Environ. 2017, 63, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage intensity effects on soil structure indicators—A US meta-analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef] [Green Version]
- Pikuła, D. Environmental aspects of managing the organic matter in agriculture. Econ. Reg. Stud. 2015, 8, 98–112. [Google Scholar]
- European Environment Agency (EEA). Climate Change Adaptation in the Agriculture Sector in Europe. Available online: https://www.eea.europa.eu/publications/cc-adaptation-agriculture (accessed on 10 September 2019).
- Šimon, T.; Javurek, M.; Mikanová, O.; Vach, M. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil Till. Res. 2009, 105, 44–48. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swędrzyńska, D.; Sawińska, Z.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea (Pisum sativum L.). Acta Sci. Pol. Agricultura 2016, 15, 37–50. [Google Scholar]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Busari, M.; Kukal, S.; Kaur, A.; Bhatt, R.; Dulazi, A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Haliniarz, M.; Gawęda, D.; Bujak, K.; Frant, M.; Kwiatkowski, C. Yield of winter wheat depending on the tillage system and level of mineral fertilization. Acta Sci. Pol. Agricultura 2013, 12, 59–72. [Google Scholar]
- Małecka, I.; Blecharczyk, A.; Sawińska, Z.; Swędrzyńska, D.; Piechota, T. Winter wheat yield and soil properties response to long-term non-inversion tillage. J. Agric. Sci. Tech. 2015, 17, 1571–1584. [Google Scholar]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The effect of various tillage systems on productivity of narrow-leaved lupin-winter wheat-winter triticale-winter barley rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.; Ball, B.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, M.C.; Linquist, A.B.; Lundy, E.M.; Liang, X.; Groenigen, J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Caffrey, K.R.; Veal, M.V. Conducting an agricultural life cycle assessment: Challenges and perspectives. Sci. World J. 2013, 472431:1–472431:13. [Google Scholar] [CrossRef] [Green Version]
- Dijkman, T.J.; Basset-Mens, C.; Antón, A.; Nunez, M. LCA of food and agriculture. In Life Cycle Assessment: Theory and Pratice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 723–754. [Google Scholar]
- Brentrup, F.; Küsters, J.; Kuhlmann, H.; Lammel, J. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Hayashi, K.; Gaillard, G.; Nemecek, T. Life cycle assessment of agricultural production systems: Current issues and future perspectives. In Proceedings of the International Seminar on Technology Development for Good Agriculture Practice (GAP) in Asia and Oceania, Epochal Tsukuba, Japan, 25–26 October 2005; Hu, S.H., Bejosano-Gloria, C., Eds.; Food and Fertilizer Technology Center: Taipei, Taiwan, 2006; pp. 98–110. [Google Scholar]
- Holka, M.; Jankowiak, J.; Bieńkowski, J.F.; Dąbrowicz, R. Life cycle assessment (LCA) of winter wheat in an intensive crop production system in Wielkopolska region (Poland). Appl. Ecol. Environ. Res. 2016, 14, 535–545. [Google Scholar] [CrossRef]
- Syp, A.; Faber, A.; Borzęcka, M.; Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 2015, 24, 2197–2203. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Żyłowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138:1–110138:10. [Google Scholar] [CrossRef]
- Markuszewska, I. Intensification or extensification of Polish agriculture?—In searching of directions of changes. A case study: The North-Western Region of Poland. J. Agribus. Rural Dev. 2015, 1, 67–73. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 14040:2006. Environmental Management–Life Cycle Assessment–Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization (ISO). ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Ecoinvent Center Ecoinvent Database Website. Available online: http://www.ecoinvent.ch/ (accessed on 20 September 2019).
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-403-7. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2 Energy. Task Force on National Greenhouse Gas Inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html (accessed on 20 September 2019).
- Van Beek, C.L.; Brouwer, L.; Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst 2003, 67, 233–244. [Google Scholar] [CrossRef]
- Dijkman, T.J.; Birkved, M.; Hauschild, M.Z. PestLCI 2.0: A second generation model for estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 2012, 17, 973–986. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-9213-806-6. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Jr., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Van Oers, L.; De Koning, A.; Guinée, J.B.; Huppes, G. Abiotic Resource Depletion in LCA. Improving Characterisation Factors for Abiotic Resource Depletion as Recommended in the New Dutch LCA Handbook; RWS-DWW: Delft, the Netherlands, 2002; Available online: http://www.leidenuniv.nl/cml/ssp/projects/lca2/report_abiotic_depletion_web.pdf (accessed on 10 May 2020).
- Huijbregts, M.A.J.; Verkuijlen, S.W.E.; Heijungs, R.; Reijnders, L. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment. J. Ind. Ecol. 2001, 4, 75–92. [Google Scholar] [CrossRef]
- Andersson-Sköld, Y.; Grennfelt, P.; Pleijel, K. Photochemical ozone creation potentials: A study of different concepts. J. Air Waste Manag. Assoc. 1992, 42, 1152–1158. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 1998, 32, 2429–2441. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2002. [Google Scholar]
- Sleeswijk, A.W.; van Oers, L.F.C.M.; Guinée, J.B.; Struijs, J.; Huijbregts, M.A.J. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Van Acker, K. EU-average impacts of wheat production. A meta-analysis of life cycle assessments. J. Ind. Ecol. 2015, 20, 132–144. [Google Scholar] [CrossRef]
- Charles, R.; Jolliet, O.; Gaillard, G.; Pellet, D. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agric. Ecosyst. Environ. 2006, 113, 216–225. [Google Scholar] [CrossRef]
- Sørensen, C.G.; Halberg, N.; Oudshoorn, F.W.; Petersen, B.M.; Dalgaard, R. Energy inputs and GHG emissions of tillage systems. Biosyst. Eng. 2014, 120, 2–14. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-efficiency in measuring the sustainable production of agricultural crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Aryal, J.P.; Sapkota, T.B.; Jat, M.L.; Bishnoi, D.K. On-farm economic and environmental impact of zero-tillage wheat: A case of North-West India. Exp. Agric. 2014, 51, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lu, X.; Liao, Y. Conservation tillage increases carbon sequestration of winter wheat-summer maize farmland on Loess Plateau in China. PLoS ONE 2018, 13, e0199846:1–e0199846:16. [Google Scholar] [CrossRef]
- Memon, M.S.; Guo, J.; Tagar, A.A.; Perveen, N.; Ji, C.; Memon, S.A.; Memon, N. The effects of tillage and straw incorporation on soil organic carbon status, rice crop productivity, and sustainability in the rice-wheat cropping system of eastern China. Sustainability 2018, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Simmons, A.; Muir, S.; Brock, P.; Herridge, D. Life cycle assessment of grain cropping. In Proceedings of the 17th ASA Conference, Hobart, Australia, 21–24 September 2015; Acuña, T., Moeller, C., Parsons, D., Harrison, M., Eds.; ASA Inc.: Warragul, Australia, 2015; pp. 131–134. [Google Scholar]
- Yan, M.; Cheng, K.; Luo, T.; Yan, Y.; Pan, G.; Rees, R.M. Carbon footprint of grain crop production in China-based on farm survey data. J. Clean. Prod. 2015, 104, 130–138. [Google Scholar] [CrossRef]
- Romeiko, X.X. A comparative life cycle assessment of crop systems irrigated with the groundwater and reclaimed water in Northern China. Sustainability 2019, 11, 2743. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F. Life cycle assessment of crop production. In Green Technologies in Food Production and Processing; Boye, J.I., Arcand, Y., Eds.; Springer: Boston, MA, USA, 2012; pp. 61–82. ISBN 978-1-4614-1587-9. [Google Scholar]
- Fallahpour, F.; Aminghafouri, A.; Ghalegolab Behbahani, A.; Bannayan, M. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Tuomisto, H.; Hodge, I.; Riordan, P.; Macdonald, D. Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production. Ann. Appl. Biol. 2012, 161, 116–126. [Google Scholar] [CrossRef]
- Brock, P.; Madden, P.; Schwenke, G.; Herridge, D. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales: A life cycle assessment approach. Crop Pasture Sci. 2012, 63, 319–329. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Impact assessment of abiotic resource consumption conceptual considerations. Int. J. Life Cycle Assess. 2002, 7, 301–307. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Skowrońska, M.; Filipek, T. Life cycle assessment of fertilizers: A review. Int. Agrophysics 2014, 28, 101–110. [Google Scholar] [CrossRef]
Farm Number | Tillage System | UAA (ha) | Voivodeship | District | Commune |
---|---|---|---|---|---|
1 | CT | 7.84 | Wielkopolska | Kalisz | Ceków |
2 | CT | 73.06 | Wielkopolska | Kościan | Krzywiń |
3 | CT | 30.21 | Wielkopolska | Krotoszyn | Koźmin Wielkopolski |
4 | CT | 38.44 | Wielkopolska | Leszno | Rydzyna |
5 | CT | 26.84 | Wielkopolska | Wolsztyn | Siedlec |
6 | RT | 105.55 | Wielkopolska | Konin | Kleczew |
7 | RT | 98.69 | Wielkopolska | Międzychód | Międzychód |
8 | RT | 101.52 | Wielkopolska | Międzychód | Sieraków |
9 | RT | 18.53 | Wielkopolska | Ostrów | Nowe Skalmierzyce |
10 | RT | 156.33 | Wielkopolska | Września | Kołaczkowo |
11 | NT | 372.00 | Wielkopolska | Gostyń | Borek Wielkopolski |
12 | NT | 165.63 | Wielkopolska | Koło | Chodów |
13 | NT | 44.50 | Wielkopolska | Ostrów | Raszków |
14 | NT | 975.00 | Wielkopolska | Szamotuły | Szamotuły |
15 | NT | 51.00 | Wielkopolska | Wągrowiec | Wągrowiec |
Tillage System | Tillage Practices |
---|---|
CT | Skimming, harrowing, ploughing to a depth of 25–30 cm, seedbed preparation with a cultivating aggregate, followed by the use of a sowing machine. |
RT | Post-harvest tillage using implements such as a stubble cultivator or disc harrow to a depth of 10–20 cm, and the use of cultivating and sowing aggregate. |
NT | Sowing directly into the untilled soil, which has retained the previous crop residues, using a direct seed drill. |
Specification | Tillage System | ||
---|---|---|---|
CT | RT | NT | |
Winter wheat sowing area, ha | 8.3 (2.3–21.0) | 21.6 (1.3–44.9) | 75.0 (2.0–260.0) |
Grain wheat yield, Mg ha−1 | 7.6 (5.8–9.4) | 6.9 (5.4–9.4) | 6.6 (5.3–9.0) |
N fertilization, kg N ha−1 | 117.6 (78.8–160.8) | 130.1 (66.0–214.4) | 147.2 (82.0–269.4) |
P fertilization kg P2O5 ha−1 | 26.6 (0–46.0) | 48.0 (0–80.0) | 33.4 (0–60.0) |
K fertilization, kg K2O ha−1 | 35.6 (0–60.0) | 99.3 (56.0–129.0) | 104.5 (0–287.0) |
Herbicides, kg a.s. ha−1 | 1.32 (0.05–2.91) | 0.88 (0.03–2.52) | 0.52 (0.06–1.50) |
Fungicides, kg a.s. ha−1 | 0.60 (0.01–1.23) | 0.63 (0.40–0.93) | 0.57 (0.22–0.95) |
Insecticides, kg a.s. ha−1 | 0.06 (0–0.20) | 0.10 (0–0.20) | 0.04 (0–0.20) |
Growth regulators, kg a.s. ha−1 | 0.05 (0–0.29) | 0.55 (0–1.45) | 0.30 (0–1.13) |
Process | References |
---|---|
Production of seeds | [33] |
Production of agrochemicals | [33] |
Production and use of agricultural machinery | [33] |
Use of mineral fertilizers | [34,35,36] |
Use of plant protection products | [37] |
Fuel combustion | [38] |
Crop residue management | [39] |
Impact Category Indicator | Abbreviation | Unit | Methodology | References |
---|---|---|---|---|
Abiotic depletion potential for fossil fuel | ADP fossil | MJ | CML 2001 | [40] |
Abiotic depletion potential for minerals | ADP min | kg Sb eq. | CML 2001 | [40] |
Acidification potential | AP | kg SO2 eq. | CML 2001 | [41] |
Eutrophication potential | EP | kg PO4 eq. | CML 2001 | [41] |
Global warming potential for time horizon of 100 years | GWP 100 | kg CO2 eq. | CML 2001 | [39] |
Photochemical ozone creation potential | POCP | kg C2H4 eq. | CML 2001 | [42,43] |
Impact Category Indicator | Tillage System | ||
---|---|---|---|
CT | RT | NT | |
ADP fossil, MJ kg−1 | 2.17 | 2.73 | 2.48 |
ADP min, kg Sb eq. kg−1 | 1.58 × 10−6 | 1.87 × 10−6 | 1.77 × 10−6 |
AP, kg SO2 eq. kg−1 | 2.72 × 10−3 | 3.47 × 10−3 | 5.14 × 10−3 |
EP, kg PO4 eq. kg−1 | 1.16 × 10−3 | 1.47 × 10−3 | 1.89 × 10−3 |
GWP 100, kg CO2 eq. kg−1 | 0.31 | 0.39 | 0.40 |
POCP, kg C2H4 eq. kg−1 | 5.19 × 10−5 | 6.73 × 10−5 | 6.19 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holka, M.; Bieńkowski, J. Assessment of Environmental Burdens of Winter Wheat Production in Different Agrotechnical Systems. Agronomy 2020, 10, 1303. https://doi.org/10.3390/agronomy10091303
Holka M, Bieńkowski J. Assessment of Environmental Burdens of Winter Wheat Production in Different Agrotechnical Systems. Agronomy. 2020; 10(9):1303. https://doi.org/10.3390/agronomy10091303
Chicago/Turabian StyleHolka, Małgorzata, and Jerzy Bieńkowski. 2020. "Assessment of Environmental Burdens of Winter Wheat Production in Different Agrotechnical Systems" Agronomy 10, no. 9: 1303. https://doi.org/10.3390/agronomy10091303
APA StyleHolka, M., & Bieńkowski, J. (2020). Assessment of Environmental Burdens of Winter Wheat Production in Different Agrotechnical Systems. Agronomy, 10(9), 1303. https://doi.org/10.3390/agronomy10091303