Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimentation
- W1 = Dry weight (g) m−2 at the beginning of interval;
- W2 = Dry weight (g) m−2 at the end of the interval;
- t2 − t1 = The time interval between the two consecutive samplings;
- GA = Ground area occupied by plants at each sampling.
2.3. Statistical Analysis
3. Results
3.1. Crop Growth Rate from Transplanting to Tillering
3.2. Crop Growth Rate from Tillering to Heading
3.3. Crop Growth Rate from Heading to Physiological Maturity
3.4. Total Rice Biomass/Biological Yield at Harvest
4. Discussion
4.1. Crop Growth Rate at Different Growth Stages
4.2. Biomass Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Confalonieri, R.; Bocchi, S. Evaluation of Crop Syst for simulating the yield of flooded rice in northern Italy. Eur. J. Agron. 2005, 23, 315–326. [Google Scholar] [CrossRef]
- Amanullah; Inamullah; Alkahtani, J.; Elshikh, M.S.; Alwahibi, M.S.; Muhammad, A.; Imran; Khalid, S. Phosphorus and Zinc Fertilization improve productivity and profitability of rice cultivars under rice-wheat system. Agronomy 2020, 10, 1085. [Google Scholar] [CrossRef]
- Swaminathan, M. Can science and technology feed the world in 2025? Field Crop. Res. 2007, 104, 3–9. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Agcaoili-Sombilla, M.; Perez, N.D. Global Food Projections to 2020: Implications for Investment; Food, Agriculture, and Environment Discussion. Paper No. 5; IFPRI: Washington, DC, USA, 1995. [Google Scholar]
- Amanullah; Inamullah; Alwahibi, M.S.; Elshikh, M.S.; Alkahtani, J.; Muhammad, A.; Khalid, S.; Imran; Ahmad, M.; Khan, N.; et al. Phosphorus and zinc fertilization improve zinc biofortification in grains and straw of coarse vs. fine rice genotypes. Agronomy 2020, 10, 1155. [Google Scholar] [CrossRef]
- Amanullah; Inamullah; Shah, Z.; Khalil, S.K. Phosphorus and zinc interaction influence leaf area index in fine versus coarse rice (Oryza sativa L.) genotypes in Northwest Pakistan. J. Plant Stress Physiol. 2016, 2, 1–8. [Google Scholar]
- Jan, A.; Wasim, M.; Amanullah. Interactive effects of zinc and nitrogen application on wheat growth and grain yield. J. Plant Nutr. 2013, 36, 1506–1520. [Google Scholar] [CrossRef]
- Amanullah; Inamullah. Preceding rice genotypes, residual phosphorus and zinc influence harvest index and biomass yield of subsequent wheat crop under rice-wheat system. Pak. J. Botany 2015, 47, 265–273. [Google Scholar]
- Amanullah; Inamullah. Residual phosphorus and zinc influence wheat productivity under rice–wheat cropping system. SpringerPlus 2016, 5, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Rose, T.J.; Impa, S.M.; Rose, M.T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S.E.; Wissuwa, M. Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Ann. Bot. 2012, 112, 331–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Mirvat, E.G.; Mohamed, M.H.; Tawfik, M.M. Effect of phosphorus fertilizer and foliar spraying with zinc on growth, yield and quality of groundnut under recLAPHmed sandy soils. J. Appl. Sci. Res. 2006, 2, 491–496. [Google Scholar]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Khorgamy, A.; Farnia, A. Effect of phosphorus and zinc fertilisation on yield and yield components of chickpea cultivars. Afr. Crop Sci. Conf. Proc. 2009, 9, 205–208. [Google Scholar]
- Salimpour, S.; Khavazi, K.; Nadian, H.; Besharati, H.; Miransari, H. Enhancing phosphorus availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010, 4, 330–334. [Google Scholar]
- Quijano-Guerta, C.; Kirk, G.J.D.; Portugal, A.; Bartolome, V.; McLaren, G. Tolerance of rice germplasm to zinc deficiency. Field Crop. Res. 2002, 76, 123–130. [Google Scholar] [CrossRef]
- Singh, B.; Natesan, S.K.A.; Singh, B.K.; Usha, K. Improving zinc efficiency of cereals under zinc deficiency. Curr. Sci. 2003, 88, 36–44. [Google Scholar]
- Tahir, M.; Kausar, M.A.; Ahmad, R.; Bhatti, S.A. Micronutrient status of Faisalabad and Sheikhupura soils. Pak. J. Agric. Res. 1991, 12, 134–140. [Google Scholar]
- Qadar, A. Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations, and phosphorus/zinc ratio in their leaves. J. Plant Nutr. 2002, 25, 457–473. [Google Scholar] [CrossRef]
- Weng, J.H.; Chen, C.Y. Photosynthetic Characteristics, Dry Matter Production and Grain Yield of the First and the Second Rice Crops in Taiwan; TARI Special Publication, No. 16; Taiwan Agricultural Research Institute: Wufeng, Taichung, Taiwan, 1984; pp. 153–164. [Google Scholar]
- Wu, G.; Wilson, L.T.; McClung, A.M. Contribution of Rice Tillers to Dry Matter Accumulation and Yield. Agron. J. 1907, 90, 317–323. [Google Scholar] [CrossRef]
- Ying, J.; Peng, S.; He, Q.; Yang, H.; Yang, C.; Visperas, R.M.; Cassman, K.G. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crop. Res. 1998, 57, 71–84. [Google Scholar] [CrossRef]
- Amanullah; Inamullah. DMP and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci. 2016, 23, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Amanullah; Stewart, B.A. DMP, growth analysis and water use efficiency response of oats (Avena sativa L.) to excessive nitrogen and phosphorus application. J. Agric. Sci. Technol. 2013, 15, 479–489. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedures of Statistics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Haldar, M.; Mandal, L.N. Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice. Plant Soil 1981, 59, 415–425. [Google Scholar] [CrossRef]
- Alam, M.M.; Ali, M.H.; Hasanuzzaman, M.; Nahar, K.; Islam, M.R. DMP in hybrid and inbred rice varieties under variable doses of phosphorus. Int. J. Sustain. Agric. 2009, 1, 10–19. [Google Scholar]
- Fageria, N.; Slaton, N.; Baligar, V. Nutrient Management for Improving Lowland Rice Productivity and Sustainability. Adv. Agron. 2003, 80, 63–152. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V. Nutrient Availability. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: San Diego, CA, USA, 2005; pp. 63–71. [Google Scholar]
- Yadi, R. Role of zinc fertilizer on grain yield and some qualities parameters in Iranian rice genotypes. Ann. Biol. 2012, 3, 4519–4527. [Google Scholar]
- Amanullah; Rahman, H.; Shah, Z.; Shah, P. Effects of plant density and N on growth dynamics, light interception and yield of maize. Arch. Agron. Soil Sci. 2008, 54, 401–411. [Google Scholar] [CrossRef]
- Sharma, A.P.; Singh, S.P. Genotypic variation in photosynthesis and yield components in rice. Indian J. Plant Phys. 1994, 37, 188–189. [Google Scholar]
- Evans, L.T. The physiological basis of crop yield. In Crop Physiology; Evans, L.T., Ed.; Cambridge University Press: London, UK, 1975. [Google Scholar]
- Akinrinde, E.; Gaizer, T. Differences in the Performance and Phosphorus-Use Efficiency of Some Tropical Rice (Oryza sativa L.) Varieties. Pak. J. Nutr. 2006, 5, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Wiangsamut, B.; Lafarge, T.A.; Mendoza, T.C.; Pasuquin, E.M. Aagronomic traits and yield components associated with broadcasted and transplanted high-yielding rice genotypes. Crop Prod. 2013, 2, 19–30. [Google Scholar]
- Fageria, N.K.; Filho, M.P.B. Dry-Matter and Grain Yield, Nutrient Uptake, and Phosphorus Use-Efficiency of Lowland Rice as Influenced by Phosphorus Fertilization. Commun. Soil Sci. Plant Anal. 2007, 38, 1289–1297. [Google Scholar] [CrossRef]
- Fageria, N.K.; Santos, A.B.; Heinemann, A.B. Lowland Rice Genotypes Evaluation for Phosphorus Use Efficiency in Tropical Lowland. J. Plant Nutr. 2011, 34, 1087–1095. [Google Scholar] [CrossRef]
- Fageria, N.K.; Dos Santos, A.B.; Cobucci, T. Zinc Nutrition of Lowland Rice. Commun. Soil Sci. Plant Anal. 2011, 42, 1719–1727. [Google Scholar] [CrossRef]
- Khan, P.; Memon, M.Y.; Imtiaz, M.; Depar, N.; Aslam, M.; Memon, M.S.; Shah, J.A. Determining the zinc requirements of rice genotype sarshar evolved at NIA Tandojam. Sarhad J. Agric. 2012, 28, 1–7. [Google Scholar]
- Rahman, K.M.M.; Chowdhury, M.A.K.; Sharmeen, F.; Sarkar, A.; Hye, M.A.; Biswas, G.C. Effect of zinc and phosphorus on yield of Oryza sativa (cv. br-11). Bangladesh Res. Pub. J. 2011, 5, 351–358. [Google Scholar]
- Lal, B.; Majumdar, B.; Venkatesh, M.S. Individual and interactive effects of phosphorus and zinc in lowland rice. Indian J. Hill Farming 2000, 13, 44–46. [Google Scholar]
- Tanaka, A.; Osaki, M. Growth and behavior of photosynthesized 14 C in various crops in relation to productivity. Soil Sci. Plant Nutr. 1983, 29, 147–158. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V.; Clark, R. Root Architecture. In Physiology of Crop Production; The Haworth Press: Binghamton, NY, USA, 2006; pp. 23–59. [Google Scholar]
- Foy, C.D. Soil Chemical Factors Limiting Plant Root Growth. Adv. Soil Sci. 1992, 19, 97–149. [Google Scholar] [CrossRef]
- Amanullah; Shah, S.; Shah, Z.; Khalil, S.K. Effects of variable nitrogen source and rate on leaf area index and total dry matter accumulation in maize (Zea mays L.) genotypes under calcareous soils. Turk. J. Field Crop. 2014, 19, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives; Sinauer Associates, Inc. Publishers: Sunderland, MA, USA, 2005. [Google Scholar]
- Peng, S.; Cassman, K.G.; Virmani, S.S.; Sheehy, J.; Khush, G.S. Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice Yield Potential. Crop. Sci. 1999, 39, 1552–1559. [Google Scholar] [CrossRef] [Green Version]
- Akita, S. Improving yield potential in tropical rice. Prog. Irrig. Rice Res. 1989, 41–73. [Google Scholar]
- Amano, T.; Zhu, Q.; Wang, Y.; Inoue, N.; Tanaka, H. Case Studies on High Yields of Paddy Rice in Jiangsu Province, China. I. Characteristics of grain production. Jpn. J. Crop. Sci. 1993, 62, 267–274. [Google Scholar] [CrossRef] [Green Version]
Source of Variance | DF | CGR T-T | CGR T-H | CGR H-PM | BY | ||||
---|---|---|---|---|---|---|---|---|---|
MS | Sig. | MS | Sig. | MS | Sig. | MS | Sig. | ||
Years (Y) | 1 | 75.8 | ** | 7410 | *** | 245.4 | ns | 56,603,277 | ns |
Rep. (within years) | 4 | -- | -- | -- | -- | -- | -- | -- | -- |
Genotypes | 2 | 70.0 | *** | 9169 | *** | 2636 | *** | 44,688,057 | *** |
Y × G | 2 | 8.69 | ** | 1139 | *** | 1676 | *** | 3,416,454 | ns |
Phosphorus (P) | 3 | 58.5 | *** | 4646 | *** | 596.0 | *** | 85,343,094 | *** |
Y × P | 3 | 4.20 | ns | 217 | ns | 52.43 | ns | 9,035,611 | ns |
P × G | 6 | 3.00 | * | 65.9 | *** | 92.01 | ns | 28,039,619 | *** |
Y × P × G | 6 | 6.71 | *** | 11.1 | ns | 25.56 | ns | 1,125,688 | ns |
Pooled Error-I | 44 | 1.18 | -- | 11.5 | -- | 46.16 | -- | 3,999,861 | -- |
Zinc (Zn) | 3 | 7.56 | *** | 202 | *** | 166.2 | * | 23,002,115 | *** |
Y × Zn | 3 | 1.70 | ns | 1.53 | ns | 12.19 | ns | 356,618 | ns |
Zn × G | 6 | 0.94 | ns | 4.28 | ns | 6.53 | ns | 2,206,022 | ns |
Y × Zn × G | 6 | 0.49 | ns | 39.5 | *** | 21.26 | ns | 1,123,908 | ns |
P × Zn | 9 | 1.02 | ns | 10.2 | ns | 60.06 | ns | 2,855,133 | ns |
Y × P × Zn | 9 | 2.18 | ** | 7.68 | ns | 41.47 | ns | 985,953 | ns |
P × Zn × G | 18 | 1.82 | *** | 14.1 | * | 39.70 | ns | 5,048,345 | ** |
Y × P × Zn × G | 18 | 1.39 | ** | 13.5 | * | 58.82 | ns | 1,417,858 | ns |
Pooled Error-II | 144 | 0.67 | -- | 7.85 | -- | 42.91 | -- | 2,149,826 | -- |
Total | 287 | -- | -- | -- | -- | -- | -- | -- | -- |
CV main plots (%) CV sub plots (%) | 15.1 | 8.6 | 19.4 | 11.0 | |||||
11.4 | 7.1 | 18.0 | 8.0 |
Years | |||
---|---|---|---|
Phosphorus (kg ha−1) | 2011 | 2012 | Mean |
0 | 5.74 | 6.18 | 5.96 c |
40 | 6.55 | 7.39 | 6.97 b |
80 | 7.14 | 8.41 | 7.77 a |
120 | 7.15 | 8.69 | 7.92 a |
LSD0.05 | 0.46 | 0.59 | 0.36 |
Zinc (kg ha−1) | |||
0 | 6.36 | 7.03 | 6.69 b |
5 | 6.70 | 7.65 | 7.18 a |
10 | 6.80 | 7.88 | 7.34 a |
15 | 6.71 | 8.12 | 7.41 a |
LSD0.05 | ns | 0.38 | 0.27 |
Genotypes | |||
B-385 (fine) | 5.91 | 7.09 | 6.50 c |
F-Malakand (coarse) | 6.07 | 7.61 | 6.84 b |
Pukhraj (coarse) | 7.94 | 8.30 | 8.12 a |
LSD0.05 | 0.40 | 0.51 | 0.32 |
Years mean | 6.64 b | 7.67 a |
Years | |||
---|---|---|---|
Phosphorus (kg ha−1) | 2011 | 2012 | Mean |
0 | 25.9 | 31.4 | 28.7 d |
40 | 33.6 | 43.7 | 38.7 c |
80 | 38.4 | 49.7 | 44.0 b |
120 | 40.0 | 53.7 | 46.9 a |
LSD0.05 | 1.45 | 1.84 | 0.99 |
Zinc (kg ha−1) | |||
0 | 32.7 | 42.6 | 37.6 d |
5 | 33.7 | 43.8 | 38.8 c |
10 | 35.5 | 45.5 | 40.5 b |
15 | 36.0 | 46.6 | 41.3 a |
LSD0.05 | 1.36 | 1.27 | 0.79 |
Genotypes | |||
B-385 (fine) | 28.2 | 32.5 | 30.4 c |
F-Malakand (coarse) | 34.3 | 42.7 | 38.5 b |
Pukhraj (coarse) | 40.9 | 58.7 | 49.8 a |
LSD0.05 | 1.26 | 1.60 | 1.14 |
Years mean | 34.5 b | 44.6 a |
Years | |||
---|---|---|---|
Phosphorus (kg ha−1) | 2011 | 2012 | Mean |
0 | 10.72 | 6.47 | 8.60 b |
40 | 14.11 | 13.88 | 13.99 a |
80 | 14.92 | 13.58 | 14.25 a |
120 | 15.49 | 13.93 | 14.71 a |
LSD0.05 | ns | 4.47 | 2.28 |
Zinc (kg ha−1) | |||
0 | 12.53 | 9.65 | 11.09 c |
5 | 12.99 | 11.97 | 12.48 bc |
10 | 13.94 | 12.57 | 13.25 ab |
15 | 15.78 | 13.68 | 14.73 a |
LSD0.05 | ns | 3.38 | 2.16 |
Genotypes | |||
B-385 (fine) | 6.99 | 9.50 | 8.25 c |
F-Malakand (coarse) | 10.13 | 13.57 | 11.85 b |
Pukhraj (coarse) | 14.31 | 12.83 | 13.57 a |
LSD0.05 | 2.47 | 3.35 | 1.98 |
Years mean | 13.81 | 11.96 |
Years | |||
---|---|---|---|
Phosphorus (kg ha−1) | 2011 | 2012 | Mean |
0 | 16,555 | 16,898 | 16,726 c |
40 | 17,997 | 18,239 | 18,118 b |
80 | 18,303 | 19,573 | 18,938 a |
120 | 18,268 | 19,960 | 19,114 a |
LSD0.05 | 1030 | 922 | 672 |
Zinc (kg ha−1) | |||
0 | 17,114 | 18,018 | 17,566 b |
5 | 17,453 | 18,493 | 17,973 b |
10 | 18,383 | 19,286 | 18,835 a |
15 | 18,174 | 18,872 | 18,523 a |
LSD0.05 | 678 | 700 | 483 |
Genotypes | |||
B-385 (fine) | 15,148 | 16,376 | 15,762 c |
F-Malakand (coarse) | 18,884 | 19,366 | 19,125 b |
Pukhraj (coarse) | 19,310 | 20,259 | 19,785 a |
LSD0.05 | 892 | 799 | 582 |
Years mean | 17,781 | 18,667 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanullah; Inamullah; Alkahtani, J.; Elshikh, M.S.; Alwahibi, M.S.; Muhammad, A.; Ahmad, M.; Khalid, S. Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars. Agronomy 2020, 10, 1356. https://doi.org/10.3390/agronomy10091356
Amanullah, Inamullah, Alkahtani J, Elshikh MS, Alwahibi MS, Muhammad A, Ahmad M, Khalid S. Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars. Agronomy. 2020; 10(9):1356. https://doi.org/10.3390/agronomy10091356
Chicago/Turabian StyleAmanullah, Inamullah, Jawaher Alkahtani, Mohamed Soliman Elshikh, Mona S. Alwahibi, Asim Muhammad, Manzoor Ahmad, and Shah Khalid. 2020. "Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars" Agronomy 10, no. 9: 1356. https://doi.org/10.3390/agronomy10091356
APA StyleAmanullah, Inamullah, Alkahtani, J., Elshikh, M. S., Alwahibi, M. S., Muhammad, A., Ahmad, M., & Khalid, S. (2020). Phosphorus and Zinc Fertilization Influence Crop Growth Rates and Total Biomass of Coarse vs. Fine Types Rice Cultivars. Agronomy, 10(9), 1356. https://doi.org/10.3390/agronomy10091356