Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Climatic Parameters
2.3. Plant Material, Growth Conditions and Experimental Design
2.4. Leaf Area Index and Plant Yields
2.5. Analyses of Gas Exchange
2.6. Statistical Analysis
3. Results
3.1. Climatic Condition during the Growing Season
3.2. Daytime Gas Exchange Characteristics of ‘Santhica 27’ Plants
3.3. Plant Growth Analyses
3.4. Seasonal Variation of Photosynthesis and Transpiration
3.5. Yield Analysis
4. Discussion
4.1. Yield Responses
4.2. Diurnal Gas Exchange of ‘Santhica 27’ Plants
4.3. Seasonal Variation of Gas Exchange Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Pérez-Álvarez, R.; Hernández, A.; Casano, S.; Morón, M.; Muriel-Fernández, J.L. Impact of plant density and irrigation on yield of hemp (Cannabis sativa L.) in a Mediterranean semi-arid environment. J. Agric. Sci. Technol. 2014, 16, 887–895. [Google Scholar]
- Fernando, A.L.; Duarte, M.P.; Vatsanidou, A.; Alexopoulou, E. Environmental aspects of fiber crops cultivation and use. Ind. Crops Prod. 2015, 68, 105–115. [Google Scholar] [CrossRef]
- Struik, P.; Amaducci, S.; Bullard, M.; Stutterheim, N.; Venturi, G.; Cromack, H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crops Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.; Yin, X.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Amaducci, S. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind. Crops Prod. 2016, 87, 33–44. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Amaducci, S.; Stomph, T.-J.; Yin, X. Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: Implications for hemp as a bio-economically sustainable crop. GCB Bioenergy 2017, 9, 1573–1587. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind. Crops Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Finnan, J.; Styles, D. Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy 2013, 58, 152–162. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Mathijssen, E.W.J.M.; Haverkort, A.J. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: A crop physiological appraisal. Ann. Appl. Biol. 1996, 129, 109–123. [Google Scholar] [CrossRef]
- Bouloc, P.; van der Werf, H.M.G. The role of hemp in sustainable development. In Hemp: Industrial Production and Uses; Bouloc, P., Allegret, S., Arnaud, L., Eds.; CABI eBook: Wallingford, UK, 2013; pp. 278–289. [Google Scholar] [CrossRef]
- Barth, M.; Carus, M. Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material; Nova-Institut GmbH: Hürth, Germany, 2015; Available online: http://news.bio-based.eu/media/2015/04/15-04-20_PR_Carbon-Footprint-of-Natural-Fibres_nova.pdf (accessed on 3 July 2020).
- Meijer, W.J.M.; van der Werf, H.M.G.; Mathijssen, E.W.J.M.; van den Brink, P.W.M. Constraints to dry-matter production in fibre hemp (Cannabis sativa L.). Eur. J. Agron. 1995, 4, 109–117. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Plant density and nitrogen fertilization affect agronomic performance of industrial hemp (Cannabis sativa L.) in Mediterranean environment. Ind. Crops Prod. 2017, 100, 246–254. [Google Scholar] [CrossRef]
- Gao, C.; Cheng, C.; Zhao, L.; Yu, Y.; Tang, Q.; Xin, P.; Liu, T.; Yan, Z.; Guo, Y.; Zang, G. Genome-wide expression profiles of hemp (Cannabis sativa L.) in response to drought stress. Int. J. Genom. 2018, 13, 3057272. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Salentijn, E.M.J.; Paulo, M.-J.; Claire Thouminot, C.; Bert Jan van Dinter, B.J.; Magagnini, G.; Gusovius, H.-J.; Tang, K.; Amaducci, S.; Wang, S.; et al. Genetic variability of morphological, flowering, and biomass quality traits in hemp (Cannabis sativa L.). Front. Plant Sci. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Goa, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Maļceva, M.; Vikmane, M.; Stramkale, V. Changes of photosynthesis-related parameters and productivity of Cannabis sativa under different nitrogen supply. Environ. Exp. Biol. 2011, 9, 61–69. [Google Scholar]
- Amaducci, S.; Amaducci, M.T.; Benati, R.; Venturi, G. Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind. Crops Prod. 2000, 11, 179–186. [Google Scholar] [CrossRef]
- Bócsa, I.; Karus, M. The Cultivation of Hemp: Botany, Varieties, Cultivation and Harvesting; Hemptech: Sebastopo, CA, USA, 1998; ISBN 1886874034. [Google Scholar]
- Cosentino, S.L.; Riggi, E.; Testa, G.; Scordia, D.; Copani, V. Evaluation of European developed fibre hemp genotypes (Cannabis sativa L.) in semi-arid Mediterranean environment. Ind. Crops Prod. 2013, 50, 312–324. [Google Scholar] [CrossRef]
- Di Bari, V.; Campi, P.; Colucci, R.; Mastrorilli, M. Potential productivity of fibre hemp in southern Europe. Euphytica 2004, 140, 25–32. [Google Scholar] [CrossRef]
- Tang, K.; Fracasso, A.; Struik, P.C.; Yin, X.; Amaducci, S. Water- and nitrogen-use efficiencies of hemp (Cannabis sativa L.) based on whole-canopy measurements and modeling. Front. Plant Sci. 2018, 9, 951. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol. Mol. Biol. Plants 2008, 14, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Lata, H.; Mehmedic, Z.; Khan, I.A.; ElSohly, M.A. Light dependence of photosynthesis and water vapor exchange characteristics in different high D9-THC yielding varieties of Cannabis sativa L. J. Appl. Res. Med. Aromat. Plants 2015, 2, 39–47. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiol. Mol. Biol. Plants 2011, 17, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Köstner, B.; Surke, M.; Bernhofer, C. Klimadiagnose der Region Berlin/Barnim/Uckermark/Uecker-Randow für den Zeitraum 1951 bis 2006. 2007. Available online: https://www.researchgate.net/publication/44175675_Klimadiagnose_der_Region_Berlin_Barnim_Uckermark_Uecker-Randow_fur_den_Zeitraum_1951_bis_2006 (accessed on 3 July 2020).
- ATB. Fieldlab for Digital Agriculture. Available online: https://www.atb-potsdam.de/en/research/research-infrastructure/fieldlab-for-digital-agriculture (accessed on 3 July 2020).
- ATB. ATB’s Research Site Marquardt. Available online: https://www.atb-potsdam.de/en/research/research-infrastructure/soil-weather-crops (accessed on 3 July 2020).
- Trost, B. Site Description Research Site Marquardt Fieldlab for Digital Agriculture, Leibniz-Institut fur Agrartechnik und Bioökonomie e.V. (ATB). Available online: https://www.atb-potsdam.de/en/institute/about-us/research-infrastructure/research-sites/equipment-and-site---description.html (accessed on 3 July 2020).
- Hemp Variety Datasheet. Available online: https://www.ihempfarms.com/DS_Santhica27 (accessed on 3 July 2020).
- Solomon, R.W. Free and open source software for the manipulation of digital images. Am. J. Roentgenol. 2009, 192, W330–W334. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Matyssek, R.; Herppich, W.B. Physikalische Grundlagen von Transpiration, CO2-Aufnahme, Gasleitfähigkeiten und deren Bestimmungen. In Experimentelle Pflanzenökologie. Springer Reference Naturwissenschaften; Matyssek, R., Herppich, W.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–30. [Google Scholar] [CrossRef]
- Herer, J.; Bröckers, M. Die Wiederentdeckung der Nutzpflanze Hanf; Verlag Zweitausendeins: Frankfurt, Germany, 1995; ISBN 3861500590. [Google Scholar]
- Perović, D.; Crawley, B.; Hume, I.; Hoogers, R.; Sun, D.; Uddinie, J.; Regan, P. Benchmarking Water Productivity of Australian Irrigated Cotton. Primefact 1705. NSW Department of Primary Industries, State of New South Wales, Australia. 2019. Available online: https://www.dpi.nsw.gov.au/agriculture/irrigation/irrigation/irrigation-primefacts/benchmarking-water-productivity-of-australian-cotton-primefact (accessed on 3 July 2020).
- Lloveras, J.; Santiveri, F.; Gorchs, G. Hemp and flax biomass and fiber production and linseed yield in Mediterranean conditions. J. Ind. Hemp 2006, 11, 3–15. [Google Scholar] [CrossRef]
- Shareef, M.; Gui, D.; Zeng, F.; Waqas, M.; Zhang, B.; Iqbal, H. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agric. Water Manag. 2018, 206, 1–10. [Google Scholar] [CrossRef]
- Patane, C.; Cosentino, S.L. Yield, water use and radiation use efficiencies of kenaf (Hibiscus cannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterranean area. Eur. J. Agron. 2013, 46, 53–62. [Google Scholar] [CrossRef]
- MultiHemp. Deliverable 3.2 Report on the Effects of Agronomic Practices on Hemp Biomass Yield (Fibre and Seeds) and Quality. WP3–Optimisation of Hemp Cultivation and Crop Modelling. 2017. Available online: http://multihemp.eu/project/public-deliverables/ (accessed on 3 July 2020).
- De Meijer, E.P.M.; Keizer, L.C.P. Variation of Cannabis for phenological development and stem elongation in relation to stem production. Field Crops Res. 1994, 38, 37–46. [Google Scholar] [CrossRef]
- Faux, A.-M.; Drayea, X.; Lambert, R.; d’Andrimont, R.; Raulier, P.; Bertin, P. The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.). Eur. J. Agron. 2013, 47, 11–22. [Google Scholar] [CrossRef]
- Sausserde, R.; Adamovics, A.; Ivanovs, S.; Bulgakov, V. Investigations into growing and harvesting industrial hemp. J. Res. Appl. Agric. Eng. 2013, 58, 150–154. [Google Scholar]
- Amaducci, S.; Zatta, A.; Pelatti, F.; Venturi, G. Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Res. 2008, 107, 161–169. [Google Scholar] [CrossRef]
- Heslop-Harrison, J.; Heslop-Harrison, Y. Cannabis sativa L. In The Induction of Flowering. Some Case Studies; Evans, L.T., Ed.; MacMillan Co. Pty Ltd.: SouthMelbourne, Australia, 1969; pp. 205–206. [Google Scholar]
- Abot, A.; Bonnafous, C.; Touchard, F.; Thibault, F.; Chocinski-Arnault, L.; Lemoine, R.; Dédaldéchamp, F. Effects of cultural conditions on the hemp (Cannabis sativa) phloem fibres: Biological development and mechanical properties. J. Compos. Mater. 2013, 47, 1067–1077. [Google Scholar] [CrossRef]
- Schäfer, T.; Honermeier, B. Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.). Ind. Crops Prod. 2006, 23, 88–98. [Google Scholar] [CrossRef]
- Matthews, J.S.A.; Vialet-Chabrand, S.R.M.; Lawson, T. Diurnal variation in gas exchange: The balance between carbon fixation and water loss. Plant Physiol. 2017, 174, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R.S.; Anderson, J.E.; Tuft, N.L. Gas exchange of Agropyron desertorum: Diurnal patterns and responses to water vapor gradient and temperature. Oecologia 1988, 77, 289–295. [Google Scholar] [CrossRef]
- Peters, J.; Morales, D.; Jiménez, M.S. Gas exchange characteristics of Pinus canariensis needles in a forest stand on Tenerife, Canary Islands. Trees 2003, 17, 492–500. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Keenan, T.F. Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environ. Exp. Bot. 2014, 103, 24–41. [Google Scholar] [CrossRef]
- Herppich, M.; Herppich, W.B.; von Willert, D.J. Influence of drought, rain and artificial irrigation on photosynthesis, gas exchange and water relations of the fynbos plant Protea acaulos (L.) Reich at the end of the dry season. Bot. Acta 1994, 107, 440–450. [Google Scholar] [CrossRef]
- Xu, D.-Q.; Shen, Y.-K. Midday depression of photosynthesis. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1996; pp. 451–459. [Google Scholar]
- Durand, M.; Brendel, O.; Buré, C.; Courtois, P.; Lily, J.B.; Granier, A.; Le Thiec, D. Impacts of a partial rainfall exclusion in the field on growth and transpiration: Consequences for leaf-level and whole-plant water-use efficiency compared to controlled conditions. Agric. For. Meteorol. 2020, 282–283, 107873. [Google Scholar] [CrossRef]
- Herppich, W.B.; Flach, B.M.-T.; von Willert, D.J.; Herppich, M. Field investigations of photosynthetic activity, gas exchange and water potential at different leaf ages in Welwitschia mirabilis during a severe drought. Flora 1995, 191, 59–66. [Google Scholar] [CrossRef]
- Vongcharoen, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava “Rayong 9” under irrigated and rainfed conditions. Photosynthetica 2019, 57, 268–285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Huang, G.; Feng, F.; Liu, X.; Guo, R.; Gu, F.; Hu, X.; Yang, Z.; Zhong, X.; et al. Atmospheric humidity and genotype are key determinants of the diurnal stomatal conductance pattern. J. Agron. Crop Sci. 2020, 206, 161–168. [Google Scholar] [CrossRef]
- Herppich, W.B. Interactive effects of light and drought stress on photosynthetic activity and photoinhibition under (sub-) tropical conditions. Acta Hortic. 2000, 531, 135–142. [Google Scholar] [CrossRef]
- Malnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 2018, 154, 123–133. [Google Scholar] [CrossRef]
- Brodribb, T. Dynamics of changing intercellular CO2 concentration (ci) during drought and determination of minimum functional ci. Plant Physiol. 1996, 111, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.-H.; Wu, Z.-X.; Hughes, A.C.; Schaefer, D.; Zeng, J.; Lan, G.-Y.; Yang, C.; Tao, Z.-L.; Chen, B.-Q.; Tian, Y.-H.; et al. On the ratio of intercellular to ambient CO2 (ci/ca) derived from ecosystem flux. Int. J. Biometeorol. 2017, 61, 2059–2071. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, V.; Jorquera, M.; Schmid-Slembrouck, I. Dezimalcode für Wachstumsstadien von Hanf. Agrar. Forsch. 1999, 6, 385–392. [Google Scholar]
- Matyssek, R.; Herppich, W.B. Ergebnisbeispiele aus Gaswechseluntersuchungen. In Experimentelle Pflanzenökologie; Springer Reference Naturwissenschaften; Matyssek, R., Herppich, W.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2. Physiol. Mol. Biol. Plants 2011, 17, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, W.M. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 1987, 71, 142–149. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Chastain, D.R.; Snider, J.L.; Choinski, J.S.; Collins, G.D.; Perry, C.D.; Jared, W.J.; Grey, T.L.; Sorensen, R.B.; van Iersel, M.; Byrd, S.A.; et al. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J. Plant Physiol. 2016, 199, 18–28. [Google Scholar] [CrossRef]
- Bates, L.M.; Hall, A.E. Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia 1981, 50, 62–65. [Google Scholar] [CrossRef]
- Zhang, J.; Schurr, U.; Davies, W.J. Control of stomatal behaviour by Abscisic Acid which apparently originates in the roots. J. Exp. Bot. 1987, 38, 1174–1181. [Google Scholar] [CrossRef]
- Schurr, U.; Gollan, T.; Schulze, E.-D. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ. 1992, 15, 561–567. [Google Scholar] [CrossRef]
- Liu, F.; Jensen, C.R.; Shahanzari, A.; Andersen, M.N.; Jacobsen, S.-E. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005, 168, 831–836. [Google Scholar] [CrossRef]
- Lintunen, A.; Paljakka, T.; Salmon, Y.; Dewar, R.; Riikonen, A.; Hölttä, T. The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. Plant Cell Environ. 2020, 43, 532–547. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Testa, G.; Scordia, D.; Copani, V. Sowing time and prediction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe. Ind. Crops Prod. 2012, 37, 20–33. [Google Scholar] [CrossRef]
Cultivar | YFM (t ha−1) | YDM (t ha−1) | DMstraw (t ha−1) | FMbast (t ha−1) | DMbast (t ha−1) |
---|---|---|---|---|---|
‘Ivory’ | 14.4 ± 6.3 a | 10.0 ± 3.9 b | 8.8 ± 3.4 c | 4.2 ± 1.9 d | 2.1 ± 0.9 e |
‘Santhica’ | 24.5 ± 10.3 a | 17.9 ± 6.3 b | 16.0 ± 5.1 c | 6.3 ± 2.6 d | 2.8 ± 0.8 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herppich, W.B.; Gusovius, H.-J.; Flemming, I.; Drastig, K. Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy 2020, 10, 1361. https://doi.org/10.3390/agronomy10091361
Herppich WB, Gusovius H-J, Flemming I, Drastig K. Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy. 2020; 10(9):1361. https://doi.org/10.3390/agronomy10091361
Chicago/Turabian StyleHerppich, Werner B., Hans-Jörg Gusovius, Inken Flemming, and Katrin Drastig. 2020. "Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)" Agronomy 10, no. 9: 1361. https://doi.org/10.3390/agronomy10091361
APA StyleHerppich, W. B., Gusovius, H.-J., Flemming, I., & Drastig, K. (2020). Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy, 10(9), 1361. https://doi.org/10.3390/agronomy10091361