The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity
Abstract
:1. Introduction
2. Materials and Methods
Replications | Treatments | 1—inter-row loosening; 2—inter-row cutting and mulching with ambient weeds; 3—inter-row cutting and mulching with Persian clover; 4—inter-row cutting and mulching with white mustard; 5—inter-row cutting and mulching with spring barley. | ||||
Rep. 4 | 3 | 1 | 5 | 2 | 4 | |
Rep. 3 | 2 | 3 | 1 | 4 | 5 | |
Rep. 2 | 4 | 5 | 2 | 3 | 1 | |
Rep. 1 | 1 | 4 | 5 | 2 | 3 |
3. Results
3.1. Soil Chemical Composition
3.1.1. Soil pH, Nitrogen and Phosphorus
3.1.2. Soil Potassium, Magnesium and Sulphur
3.2. Sugar Beet Root-Crop Yield
3.3. Sugar Beet Root-Crop Chemical Composition
4. Discussion
4.1. Soil Chemical Composition
4.2. Sugar Beet Root-Crop Yield and Quality Parameters
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hochman, Z.; Carberry, P.; Robertson, M.; Gaydon, D.; Bell, L.; McIntosh, P. Prospects for ecological intensification of Australian agriculture. Eur. J. Agron. 2013, 44, 109–123. [Google Scholar] [CrossRef]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Doré, T.; Makowski, D.; Malézieux, E.; Munier-Jolain, N.; Tchamitchian, S.; Tittonell, P. Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. Eur. J. Agron. 2011, 34, 197–210. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Poeplau, C.; Aronsson, H.; Åsa, M.; Kätterer, T. Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geoderma Reg. 2015, 4, 126–133. [Google Scholar] [CrossRef]
- Rücknagel, J.; Götze, P.; Koblenz, B.; Bachmann, N.; Löbner, S.; Lindner, S.; Bischoff, J.; Christen, O. Impact on soil physical properties of using large-grain legumes for catch crop cultivation under different tillage conditions. Eur. J. Agron. 2016, 77, 28–37. [Google Scholar] [CrossRef]
- Wick, A.; Berti, M.; Lawley, Y.; Liebig, M. Integration of Annual and Perennial Cover Crops for Improving Soil Health. In Soil Health and Intensification of Agroecosytems; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 127–150. [Google Scholar]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Wilczewski, E. Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma 2012, 72–80. [Google Scholar] [CrossRef]
- Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X.; Wang, J. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Tillage Res. 2019, 192, 103–112. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Renna, M.; D’Imperio, M.; Lasorella, C.; Santamaria, P.; Cazzato, E. Living mulch and organic fertilization to improve weed management, yield and quality of broccoli raab in organic farming. Plants 2020, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Kolota, E.; Adamczewska-Sowinska, K. Living mulches in vegetable crops production: Perspectives and limitations (a review). Acta Sci. Pol. Hortorum Cultus 2013, 12, 127–142. [Google Scholar]
- El-Fakharany, S.; Samy, M.; Ahmed, S.; Khattab, M. Effect of intercropping of maize, bean, cabbage and toxicants on the population levels of some insect pests and associated predators in sugar beet plantations. J. Basic Appl. Zool. 2012, 65, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Thorup-Kristensen, K.; Dresbøll, D.B. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manag. 2010, 26, 27–35. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Hansen, E.M. Catch crop biomass production, nitrogen uptake and root development under different tillage systems. Soil Use Manag. 2012, 28, 517–529. [Google Scholar] [CrossRef]
- Lorin, M.; Jeuffroy, M.-H.; Butier, A.; Valantin-Morison, M. Undersowing winter oilseed rape with frost-sensitive legume living mulch: Consequences for cash crop nitrogen nutrition. Field Crop. Res. 2016, 193, 24–33. [Google Scholar] [CrossRef]
- Norberg, L.; Aronsson, H. Effects of cover crops sown in autumn on N and P leaching. Soil Use Manag. 2020, 36, 200–211. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, K.; Zhang, L.; Ji, Y.; Qin, W. Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China. Agric. Water Manag. 2019, 212, 273–282. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Pan, H.-J.; Zhang, K.-Y.; Sun, W.; Wang, X.; Gao, H. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Boil. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Alexander, J.; Venterea, R.T.; Baker, J.M.; Coulter, J.A. Kura clover living mulch: Spring management effects on nitrogen. Agronomy 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Wanic, M.; Żuk-Gołaszewska, K.; Orzech, K. Catch crops and the soil environment—A review of the literature. J. Elem. 2019, 24, 31–45. [Google Scholar] [CrossRef]
- Deguchi, S.; Uozumi, S.; Touno, E.; Kaneko, M.; Tawaraya, K. Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Sci. Plant Nutr. 2012, 58, 169–172. [Google Scholar] [CrossRef]
- Hollander, N.D.; Bastiaans, L.; Kropff, M. Clover as a cover crop for weed suppression in an intercropping design. Eur. J. Agron. 2007, 26, 92–103. [Google Scholar] [CrossRef]
- Radicetti, E.; Baresel, J.; El-Haddoury, E.; Finckh, M.R.; Mancinelli, R.; Schmidt, J.; Alami, I.T.; Udupa, S.; Van Der Heijden, M.; Wittwer, R.; et al. Wheat performance with subclover living mulch in different agro-environmental conditions depends on crop management. Eur. J. Agron. 2018, 94, 36–45. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Silva, E.; Colquhoun, J. Living mulch cover crops for weed control in small-scale applications. Renew. Agric. Food Syst. 2015, 31, 309–317. [Google Scholar] [CrossRef]
- Afshar, R.K.; Chen, C.; Eckhoff, J.; Flynn, C. Impact of a living mulch cover crop on sugar beet establishment, root yield and sucrose purity. Field Crops Res. 2018, 223, 150–154. [Google Scholar] [CrossRef]
- Majkowska-Gadomska, J.; Dobrowolski, A.; Mikulewicz, E.; Jadwisieńczak, K. Yield and mineral composition of storage roots of carrots (Daucus carota L.) protected with biological methods. J. Elem. 2017, 22, 1131–1139. [Google Scholar] [CrossRef]
- Organic Europe. 2018. Available online: https://www.organic-europe.net/home-europe.html (accessed on 25 May 2020).
- Romaneckas, K.; Romaneckienė, R.; Šarauskis, E.; Pilipavičius, V.; Sakalauskas, A. The effect of conservation primary and zero tillage on soil bulk density, water content, sugar beet growth and weed infestation. Agron. Res. 2009, 7, 73–86. [Google Scholar]
- Romaneckas, K.; Romaneckienė, R.; Pilipavičius, V. Non-chemical weed control in sugar beet crop under intensive and conservation soil tillage: I. Crop weediness. Agron. Res. 2009, 7, 457–464. [Google Scholar]
- Adamavičienė, A.; Romaneckas, K.; Šarauskis, E.; Pilipavičius, V. Non-chemical weed control in sugar beet crop under an intensive and conservation soil tillage pattern: II. Crop productivity. Agron. Res. 2009, 7, 143–148. [Google Scholar]
- Romaneckas, K.; Pilipavičius, V.; Šarauskis, E. Impact of seedbed density on sugar beet (Beta vulgaris L.) seed germination, yield and quality of roots. J. Food Agric. Environ. 2010, 8, 599–601. [Google Scholar]
- Šarauskis, E.; Romaneckas, K.; Kumhála, F.; Kriaučiūnienė, Z. Energy use and carbon emission of conventional and organic sugar beet farming. J. Clean. Prod. 2018, 201, 428–438. [Google Scholar] [CrossRef]
- Boyd, D.A.; Tinker, P.B.H.; Draycott, A.P.; Last, P.J. Nitrogen requirement of sugar beet grown on mineral soils. J. Agric. Sci. 1970, 74, 37–46. [Google Scholar] [CrossRef]
- Marks, M.; Romaneckas, K.; Šarauskis, E.; Adamavičienė, A.; Eimutyte, E.; Čekanauskas, S.; Kimbirauskiene, R.; Pupaliene, R. Impact of non-chemical weed control methods on the soil and sugar beet root chemical composition. J. Elem. 2018, 23, 1215–1227. [Google Scholar] [CrossRef]
- Yagioka, A.; Komatsuzaki, M.; Kaneko, N.; Ueno, H. Effect of no-tillage with weed cover mulching versus conventional tillage on global warming potential and nitrate leaching. Agric. Ecosyst. Environ. 2015, 200, 42–53. [Google Scholar] [CrossRef]
- IUSS working group WRB. World Reference Base for Soil Resources, 3rd ed.; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 3 April 2020).
- Negiş, H.; Şeker, C. Estimation of Soil Quality of under Long Term Sugar Beet-wheat Cropping System by Factor Analysis. Commun. Soil Sci. Plant Anal. 2020, 51, 440–455. [Google Scholar] [CrossRef]
- Orzech, K.; Załuski, D. Effect of companion crops and crop rotation systems on some chemical properties of soil. J. Elem. 2020, 25, 931–949. [Google Scholar] [CrossRef]
- Marinari, S.; Mancinelli, R.; Brunetti, P.; Campiglia, E. Soil quality, microbial functions and tomato yield under cover crop mulching in the Mediterranean environment. Soil Tillage Res. 2015, 145, 20–28. [Google Scholar] [CrossRef]
- Adamavičienė, A.; Romaneckas, K.; Pilipavičius, V.; Avižienytė, D.; Šarauskis, E.; Sakalauskas, A. Interaction of maize and living mulch: Soil chemical properties and bioactivity. J. Food Agric. Environ. 2012, 10, 1219–1223. [Google Scholar]
- Alvarez, R.; Steinbach, H.S.; De Paepe, J.L. Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil Tillage Res. 2017, 170, 53–65. [Google Scholar] [CrossRef]
- Liu, J.; Bergkvist, G.; Ulén, B. Biomass production and phosphorus retention by catch crops on clayey soils in southern and central Sweden. Field Crop. Res. 2015, 171, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Lumbanraja, J.; Adachi, T.; Oki, Y.; Senge, M.; Watanabe, A. Effect of weed management in coffee plantation on soil chemical properties. Nutr. Cycl. Agroecosys. 2004, 69, 1–4. [Google Scholar] [CrossRef]
- Eriksen, J.; Thorup-Kristensen, K.; Askegaard, M. Plant availability of catch crop sulfur following spring incorporation. J. Plant Nutr. Soil Sci. 2004, 167, 609–615. [Google Scholar] [CrossRef]
- Marchetti, R.; Castelli, F. Mineral nitrogen dynamics in soil during sugar beet and winter wheat crop growth. Eur. J. Agron. 2011, 35, 13–21. [Google Scholar] [CrossRef]
- Götze, P.; Rücknagel, J.; Wensch-Dorendorf, M.; Märländer, B.; Christen, O. Crop rotation effects on yield, technological quality and yield stability of sugar beet after 45 trial years. Eur. J. Agron. 2017, 82, 50–59. [Google Scholar] [CrossRef]
- Hong, Z.; Mkonda, M.Y.; He, X.-H. conservation agriculture for environmental sustainability in a semiarid agroecological zone under climate change scenarios. Sustainability 2018, 10, 1430. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, S.; Uozumi, S.; Touno, E.; Uchino, H.; Kaneko, M.; Tawaraya, K. White clover living mulch reduces the need for phosphorus fertilizer application to corn. Eur. J. Agron. 2017, 86, 87–92. [Google Scholar] [CrossRef]
- Ren, L.; Nest, T.V.; Ruysschaert, G.; D’Hose, T.; Cornelis, W.M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res. 2019, 192, 76–86. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Diacono, M.; Leteo, F.; Fiore, A.; Montemurro, F. Living mulch strategy for organic cauliflower (Brassica oleracea L.) production in central and southern Italy. Ital. J. Agron. 2015, 10, 90. [Google Scholar] [CrossRef]
- Verret, V.; Gardarin, A.; Pelzer, E.; Médiène, S.; Makowski, D.; Valantin-Morison, M. Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crop. Res. 2017, 204, 158–168. [Google Scholar] [CrossRef]
- Romaneckas, K.; Adamavičienė, A.; Pilipavičius, V.; Šarauskis, E.; Avižienytė, D.; Buragienė, S. Interaction of maize and living mulch: Crop weediness and productivity. Žemdirb. Agric. 2012, 99, 23–30. [Google Scholar]
- Romaneckas, K. The Influence of reduced primary soil tillage on soil physical properties, weed infestation, sugar beet yield and quality. Agron. Vēstis 2005, 8, 232–236. [Google Scholar]
- Hiltbrunner, J.; Liedgens, M.; Bloch, L.; Stamp, P.; Streit, B. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. Eur. J. Agron. 2007, 26, 21–29. [Google Scholar] [CrossRef]
Agrotechnical Operation | Timing and the Stage of Sugar Beet Development (BBCH Stage) |
---|---|
Presowing soil tillage in spring | End of April, at the time of soil physical maturity (BBCH 00) |
Sugar beet sowing | Right after presowing soil tillage (BBCH 00) |
Inter-row loosening | Mid-May, after the emergence of sugar beet seedlings (BBCH 09–11) |
Sowing of intercrops | After the spread of weeds (BBCH 14–15) |
Inter-row loosening, cutting and mulching | 2–3 times before the sugar beet leaves come into contact between the rows (BBCH 19–22, 30–32, 36–38) |
Harvesting | Beginning of October (BBCH 49–50) |
Year/Month | April | May | June | July | August | September |
---|---|---|---|---|---|---|
Average air temperature (°C) | ||||||
2015 | 7.1 | 11.4 | 15.4 | 17.4 | 20.3 | 14.3 |
2016 | 7.4 | 15.7 | 17.2 | 17.9 | 16.9 | 13.5 |
2017 | 5.6 | 12.9 | 15.4 | 16.8 | 17.5 | 13.4 |
Long-term average | 6.9 | 13.2 | 16.1 | 18.7 | 17.3 | 13.6 |
Precipitation rate (mm) | ||||||
2015 | 46.0 | 43.8 | 16.4 | 72.4 | 6.9 | 56.6 |
2016 | 41.2 | 36.4 | 83.9 | 162.9 | 114.9 | 22.5 |
2017 | 73.7 | 10.5 | 80.2 | 79.6 | 55.0 | 87.1 |
Long-term average | 41.3 | 61.7 | 76.9 | 96.6 | 88.9 | 60.0 |
Duration of sunlight (h) | ||||||
2015 | 158 | 192 | 269 | 228 | 326 | 132 |
2016 | 123 | 308 | 275 | 165 | 175 | 157 |
2017 | 118 | 279 | 193 | 210 | 207 | 135 |
Long-term average | 181 | 263 | 258 | 255 | 242 | 163 |
Treatment | pHKCl | Ntotal (g kg−1) | P2O5 (mg kg−1) |
---|---|---|---|
Inter-row loosening (control treatment, CT) | +0.1a | +0.13a | +31.5b |
Inter-row cutting and mulching with ambient weeds (MW) | +0.1a | +0.14a | +30.2b |
Inter-row cutting and mulching with Persian clover (MC) | −0.2b | +0.18a | +13.8b |
Inter-row cutting and mulching with white mustard (MM) | −0.1ab | +0.24a | +17.2b |
Inter-row cutting and mulching with spring barley (MB) | 0.0ab | +0.10a | +84.1 * a |
Treatment | K2O (mg kg−1) | MgO (mg kg−1) | S (mg kg−1) |
---|---|---|---|
Inter-row loosening (control treatment, CT) | +72.3a | +25.7a | −0.2a |
Inter-row cutting and mulching with ambient weeds (MW) | +83.0a | −18.3ab | −0.2a |
Inter-row cutting and mulching with Persian clover (MC) | +71.5a | +15.8ab | −0.6ab |
Inter-row cutting and mulching with white mustard (MM) | +61.3a | +8.2ab | −0.9 * b |
Inter-row cutting and mulching with spring barley (MB) | +66.8a | −58.7b | −0.4ab |
Treatment | Yield (t ha−1) | Sucrose (g kg−1) | K (mmol kg−1) | Na (mmol kg−1) | α-Amino N (g kg−1) |
---|---|---|---|---|---|
2015 | |||||
CT | 40.57a | 173.2a | 28.7a | 2.1a | 0.918a |
MW | 13.73 * b | 166.2ab | 27.4a | 2.6a | 0.815a |
MC | 17.46 * b | 166.6ab | 28.2a | 2.7a | 0.735a |
MM | 18.05 * b | 163.2 * b | 28.9a | 2.6a | 0.808a |
MB | 18.23ab | 164.4ab | 28.8a | 2.3a | 0.858a |
2016 | |||||
CT | 71.07a | 174.6a | 33.4a | 2.9a | 1.533a |
MW | 50.00 * b | 167.9ab | 35.7a | 3.5a | 1.400a |
MC | 38.66 ** b | 167.2 * b | 35.9a | 3.6a | 1.307a |
MM | 36.36 ** b | 169.5ab | 35.1a | 3.6a | 1.687a |
MB | 44.74 * b | 172.4ab | 32.7a | 3.0a | 1.143a |
2017 | |||||
CT | 54.17a | 154.8b | 42.6a | 3.4a | 1.727a |
MW | 36.58 * bc | 162.6 * a | 42.0a | 3.4a | 1.347 * b |
MC | 37.92abc | 159.7ab | 44.5a | 3.4a | 1.597ab |
MM | 50.65ab | 157.2ab | 43.7a | 3.7a | 1.660ab |
MB | 30.46 * c | 163.4 * a | 42.8a | 3.3a | 1.523ab |
2015–2017 average | |||||
CT | 55.27a | 167.5a | 34.9a | 2.8b | 1.393a |
MW | 33.44 * b | 165.6a | 35.0a | 3.2 * a | 1.187a |
MC | 31.35 * b | 164.5a | 36.2a | 3.2 * a | 1.213a |
MM | 35.02 * b | 163.3a | 35.9a | 3.3 ** a | 1.385a |
MB | 31.14 * b | 166.7a | 34.8a | 2.9b | 1.175a |
FYxT | ** | ** | ** | ** | ** |
Soil Chemical Composition (x) | Sugar Beet Root-Crop Chemical Composition (Y) | ||||
---|---|---|---|---|---|
Yield (Mg ha−1) | Sucrose (g kg−1) | K (mmol kg−1) | Na (mmol kg−1) | α-Amino N (g kg−1) | |
N | 0.482 | −0.428 | 0.617 | 0.927 * | 0.327 |
P (mg kg−1) | −0.572 | 0.561 | −0.432 | −0.600 | n |
K (mg kg−1) | n | n | −0.561 | −0.511 | −0.668 |
Mg (mg kg−1) | 0.804 | −0.858 | 0.393 | 0.458 | 0.608 |
S (mg kg−1) | n | n | −0.766 | ‒0.767 | −0.365 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romaneckas, K.; Adamavičienė, A.; Šarauskis, E.; Balandaitė, J. The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy 2020, 10, 1406. https://doi.org/10.3390/agronomy10091406
Romaneckas K, Adamavičienė A, Šarauskis E, Balandaitė J. The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy. 2020; 10(9):1406. https://doi.org/10.3390/agronomy10091406
Chicago/Turabian StyleRomaneckas, Kęstutis, Aida Adamavičienė, Egidijus Šarauskis, and Jovita Balandaitė. 2020. "The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity" Agronomy 10, no. 9: 1406. https://doi.org/10.3390/agronomy10091406
APA StyleRomaneckas, K., Adamavičienė, A., Šarauskis, E., & Balandaitė, J. (2020). The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy, 10(9), 1406. https://doi.org/10.3390/agronomy10091406