Genotyping-by-Sequencing to Unlock Genetic Diversity and Population Structure in White Yam (Dioscorea rotundata Poir.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and GBS
2.3. Processing of Illumina Raw Sequence Read Data, SNP Calling, and Filtering
2.4. Population Structure, Genetic Diversity, and Relationships
3. Results
3.1. SNP Summary
3.2. Population Structure and Genetic Diversity
3.3. Hierarchical Clustering and Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
Abbreviations
BWA | Burrow–Wheeler aligner |
DAPC | Discriminant analysis of principal components |
DNA | Deoxyribonucleic acid |
GATK | Genome analysis tool kit |
GBS | Genotyping-by-sequencing |
Ho | Observed heterozygosity |
He | Expected heterozygosity |
H’ | Shannon–Weaver index |
IBS | Identity-by-state |
IGD | Institute for Genomic Diversity |
IITA | International Institute of Tropical Agriculture |
LD | Linear discriminants |
MAF | Minor allele frequency |
NGS | Next-generation sequencing |
PCA | Principal coordinate analysis |
PCR | Polymerase chain reaction |
PIC | Polymorphic information content |
SNP | Single nucleotide polymorphism |
VCF | Variant call format |
References
- Mignouna, H.D.; Abang, M.M.; Fagbemi, S.A. A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann. Appl. Biol. 2003, 142, 269–276. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations Statistics Database, FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 July 2020).
- Wilkin, P.; Schols, P.; Chase, M.W.; Chayamarit, K.; Furness, C.A.; Huysmans, S.; Rakotonasolo, F.; Smets, E.; Thapyai, C. A plastid gene phylogeny of the yam genus, Dioscorea: Roots, fruits and Madagascar. Syst. Bot. 2005, 30, 736–749. [Google Scholar] [CrossRef] [Green Version]
- Burkill, I.H. The organography and the evolution of Dioscoreaceae, the family of the yams. Bot. J. Linn. Soc. 1960, 56, 319–412. [Google Scholar] [CrossRef]
- Mignouna, H.D.; Dansi, A. Yam (Dioscorea spp.) domestication by the Nago and Fon ethnic groups in Benin. Genet. Resour. Crop. Evol. 2003, 50, 519–528. [Google Scholar] [CrossRef]
- Dumont, R.; Dansi, A.; Vernier, P.; Zoundjihékpon, J. Biodiversité et Domestication des Ignames en Afrique de l’Ouest. Pratiques Traditionnelles Conduisant à Dioscorea Rotundata; CIRAD, Ed.; Collection Repère: Montpelier, VT, USA, 2005. [Google Scholar]
- Zannou, A.; Agbicodo, E.; Zoundjihékpon, J.; Struik, P.C.; Ahanchédé, A.; Kossou, D.K.; Sanni, A. Genetic variability in yam cultivars from the Guinea-Sudan zone of Benin assessed by random amplified polymorphic DNA. Afr. J. Biotechnol. 2009, 8, 26–36. [Google Scholar] [CrossRef]
- Scarcelli, N.; Cubry, P.; Akakpo, R.; Thuillet, A.-C.; Obidiegwu, J.; Baco, M.N.; Otoo, E.; Sonke, B.; Dansi, A.; Djedatin, G.; et al. Yam genomics supports west Africa as a major cradle of crop domestication. Sci. Adv. 2019, 5, eaaw1947. [Google Scholar] [CrossRef] [Green Version]
- Dansi, A.; Mignouna, H.D.; Zoundjihékpon, J.; Sangare, A.; Asiedu, R.; Quin, F.M. Morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensis–Dioscorea rotundata complex) of Benin Republic. Genet. Resour. Crop Evol. 1999, 46, 371–388. [Google Scholar] [CrossRef]
- Mignouna, H.D.; Dansi, A.; Zok, S. Morphological and isozymic diversity of the cultivated yams (Dioscorea cayenensis/Dioscorea rotundata complex) of Cameroon. Genet. Resour. Crop Evol. 2002, 49, 21–29. [Google Scholar] [CrossRef]
- Bressan, E.A.; Briner Neto, T.; Zucchi, M.I.; Rabello, R.J.; Veasey, E.A. Genetic structure and diversity in the Dioscorea cayenensis/D. rotundata complex revealed by morphological and isozyme markers. Genet. Mol. Res. 2014, 13, 425–437. [Google Scholar] [CrossRef]
- Dansi, A.; Mignouna, H.D.; Zoundjihékpon, J.; Sangaré, A.; Asiedu, R.; Ahoussou, N. Using isozyme polymorphism to assess genetic variation within cultivated yams (Dioscorea cayenensis/Dioscorea rotundata complex) of the Republic of Benin. Genet. Resour. Crop Evol. 2000, 47, 371–383. [Google Scholar] [CrossRef]
- Scarcelli, N.; Tostain, S.; Mariac, C.; Agbangla, C.; Da, O.; Berthaud, J.; Pham, J.-L. Genetic nature of yams (Dioscorea spp.) domesticated by farmers in Benin (West Africa). Genet. Resour. Crop Evol. 2006, 53, 121–130. [Google Scholar] [CrossRef]
- Mignouna, H.D.; Abang, M.M.; Wanyera, N.W.; Chikaleke, V.A.; Asiedu, R.; Thottapally, G. PCR marker-based analysis of wild and cultivated yams (Dioscorea spp.) in Nigeria: Genetic relationships and implications for ex situ conservation. Genet. Resour. Crop Evol. 2005, 52, 755–763. [Google Scholar] [CrossRef]
- Dansi, A.; Mignouna, H.D.; Zoundjihékpon, J.; Sangaré, A.; Ahoussou, N.; Asiedu, R. Identification of some Benin Republic’s Guinea yam (Dioscorea cayenensis/Dioscorea rotundata complex) cultivars using randomly amplified polymorphic DNA. Genet. Resour. Crop Evol. 2000, 47, 619–625. [Google Scholar] [CrossRef]
- Terauchi, R.; Chikalele, V.A.; Thottapally, G.; Hahn, S.K. Origin and phylogeny of guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theor. Appl. Genet. 1992, 83, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Obidiegwu, J.E.; Kolesnikova-Allen, M.; Ene-Obong, E.; Muoneke, C.; Asiedu, R. SSR markers reveal diversity in Guinea yam (Dioscorea cayenensis/D. rotundata) core set. Afr. J. Biotechnol. 2009, 8, 2730–2739. [Google Scholar]
- Loko, L.Y.; Bhattacharjee, R.; Agre, A.P.; Dossou-Aminon, I.; Orobiyi, A.; Djedatin, G.; Dansi, A. Genetic diversity and relationship of Guinea yam (Dioscorea cayenensis Lam.–D. rotundata Poir. complex) germplasm in Benin (West Africa) using microsatellite markers. Genetic Resour. Crop Evol. 2017, 1205–1219. [Google Scholar] [CrossRef]
- Wendawek, A.M.; Demissew, S.; Fay, M.F.; Smith, R.J.; Nordal, I.; Wilkin, P. Genetic diversity and population structure of guinea yams and their wild relatives in south and south west Ethiopia as revealed by microsatellite markers. Genet. Resour. Crop Evol. 2013, 60, 529–541. [Google Scholar] [CrossRef]
- Tostain, S.; Agbangla, C.; Scarcelli, N.; Mariac, C.; Berthaud, J.; Pham, J.-L. Genetic diversity analysis of yam cultivars (Dioscorea rotundata Poir.) in Benin using simple sequence repeat (SSR) markers. Plant Genet. Resour. 2007, 5, 71–81. [Google Scholar] [CrossRef]
- Harikumar, P.; Sheela, M.N. Genetic diversity in white yam (Dioscorea rotundata Poir.) using random amplified polymorphic DNA (RAPD) markers. Indian J. Pure Appl. Biosci. 2019, 7, 30–35. [Google Scholar] [CrossRef]
- Spindel, J.; Wright, M.; Chen, C.; Cobb, J.; Gage, J.; Harrington, S.; Lorieux, M.; Ahmadi, N.; McCouch, S. Bridging the genotyping gap: Using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor. Appl. Genet. 2013, 126, 2699–2716. [Google Scholar] [CrossRef] [Green Version]
- Rowe, H.C.; Renaut, S.; Guggisberg, A. RAD in the realm of next-generation sequencing technologies. Mol. Ecol. 2011, 20, 3499–3502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-sequencing in plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.A.; Rife, T.W. Genotyping-by-Sequencing for Plant Breeding and Genetics. Plant Genome 2012, 5, 92–102. Available online: https://dl.sciencesocieties.org/publications/tpg/abstracts/5/3/92 (accessed on 2 September 2020). [CrossRef] [Green Version]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.-X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, M.T.; Rabbi, I.Y. The effects of restriction-enzyme choice on properties of genotyping-by-sequencing libraries: A study in cassava (Manihot esculenta). Crop Sci. 2014, 54, 2603–2608. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Lipka, A.E.; Glaubitz, J.; Elshire, R.J.; Cherney, J.H.; Casler, M.D.; Buckler, E.S.; Costich, D.E. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013, 9, e1003215. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.A.; Ree, R.H. Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 2013, 62, 689–706. [Google Scholar] [CrossRef] [Green Version]
- Girma, G.; Hyma, K.E.; Asiedu, R.; Mitchell, S.E.; Gedil, M.; Spillane, C. Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams. Theor. Appl. Genet. 2014, 127, 1783–1794. [Google Scholar] [CrossRef]
- Saski, C.A.; Bhattacharjee, R.; Scheffler, B.E.; Asiedu, R. Genomic resources for water yam (Dioscorea alata L.): Analyses of EST-sequences, de novo sequencing and GBS libraries. PLoS ONE 2015, 10, e0134031. [Google Scholar] [CrossRef] [Green Version]
- Cormier, F.; Mournet, P.; Causse, S.; Arnau, G.; Maledon, E.; Gomez, R.-M.; Pavis, C.; Chair, H. Development of a cost-effective single nucleotide polymorphism genotyping array for management of greater yam germplasm collections. Ecol. Evol. 2019, 9, 5617–5636. [Google Scholar] [CrossRef] [PubMed]
- Agre, P.; Asibe, F.; Darkwa, K.; Edemondu, A.; Bauchet, G.; Asiedu, R.; Adebola, P.; Asfaw, A. Phenotypic and molecular assessment of genetic structure and diversity in a panel of winged yam (Dioscorea alata) clones and cultivars. Sci. Rep. 2019, 9, 18221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siadjeu, C.; Mayland-Quellhorst, E.; Albach, D.C. Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS). BMC Plant Biol. 2018, 18, 359. [Google Scholar] [CrossRef] [Green Version]
- Girma, G.; Bhattacharjee, R.; Lopez-Montes, A.; Gueye, B.; Ofodile, S.; Franco, J.; Abberton, M. Redefining the yam (Dioscorea spp.) core collection using morphological traits. Plant Genet. Resour. 2018, 16, 193–200. [Google Scholar] [CrossRef]
- Tamiru, M.; Natsume, S.; Takagi, H.; White, B.; Yaegashi, H.; Shimizu, M.; Yoshida, K.; Uemura, A.; Oikawa, K.; Abe, A.; et al. Genome Sequencing of the Staple Food Crop White Guinea Yam Enables the Development of a Molecular Marker for Sex Determination. BMC Biol. 2017, 15, 86. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_002240015.2 (accessed on 2 September 2020). [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?case=GermShortWGS (accessed on 2 September 2020).
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 2 September 2020).
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Kindt, R.; Legendre, P.; O′Hara, B.; Simpson, G.L. The vegan package. Community Ecol. Package 2007, 10, 631–637. [Google Scholar]
- Noli, E.; Teriaca, M.S.; Conti, S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed. 2013, 132, 525–531. [Google Scholar] [CrossRef]
- Epskamp, S.; Cramer, O.J.C.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Software 2012, 48, 1–18. Available online: http://www.jstatsoft.org/v48/i04/ (accessed on 2 September 2020). [CrossRef] [Green Version]
- Jombart, T. adegent: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Parida, S.K.; Mukerji, M.; Singh, A.K.; Singh, N.K.; Mohapatra, T. SNPs in stress-responsive rice genes: Validation, genotyping, functional relevance and population structure. BMC Genom. 2012, 13, 426. [Google Scholar] [CrossRef] [Green Version]
- Nimmakayala, P.; Levi, A.; Abburi, L.; Abburi, V.L.; Tomason, Y.R.; Saminathan, T.; Vajja, V.G.; Ma, S.A.; Reddy, R.; Wehner, T.C.; et al. diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genom. 2014, 15, 767. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Muse, S.V. Power Marker: Integrated analysis environment for genetic marker data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Available online: https://sniplay.southgreen.fr/cgi-bin/snp_statistics.cgi?session=3036277183304&result=result (accessed on 2 September 2020).
- Sartie, A.; Asiedu, R.; Franco, J. Genetic and phenotypic diversity in a germplasm working collection of cultivated tropical yams (Dioscorea spp.). Genet. Resour. Crop Evol. 2012, 59, 1753–1765. [Google Scholar] [CrossRef]
- Sansaloni, C.P.; Petroli, C.D.; Carling, J.; Hudson, C.J.; Steane, D.A.; Myburg, A.A.; Grattapaglia, D.; Vaillancourt, R.E.; Kilian, A. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 2010, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic diversity and population structure of cowpea (Vigna unguiculate L. Walp). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbi, I.Y.; Kulakow, P.A.; Manu-Aduening, J.A.; Dankyi, A.A.; Asibou, J.Y.; Parkes, E.Y.; Abdoulaye, T.; Girma, G.; Gedil, M.A.; Ramu, P.; et al. Tracking crop varieties using genotyping-by-sequencing markers: A case study using cassava (Manihot esculenta Crantz). BMC Genet. 2015, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Darkwa, K.; Olasanmi, B.; Asiedu, R.; Asfaw, A. Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: Status and prospects. Plant Breed. 2020, 139, 474–497. [Google Scholar] [CrossRef] [Green Version]
Chromosome | No. of SNPs | PIC | MAF | Ho | He |
---|---|---|---|---|---|
1 | 81 | 0.143 | 0.119 | 0.179 | 0.172 |
2 | 144 | 0.131 | 0.105 | 0.154 | 0.156 |
3 | 147 | 0.147 | 0.121 | 0.173 | 0.176 |
4 | 271 | 0.146 | 0.123 | 0.184 | 0.175 |
5 | 380 | 0.135 | 0.112 | 0.168 | 0.161 |
6 | 179 | 0.122 | 0.098 | 0.138 | 0.144 |
7 | 117 | 0.133 | 0.104 | 0.156 | 0.157 |
8 | 273 | 0.151 | 0.126 | 0.184 | 0.180 |
9 | 110 | 0.132 | 0.113 | 0.165 | 0.159 |
10 | 123 | 0.152 | 0.126 | 0.190 | 0.182 |
11 | 90 | 0.130 | 0.090 | 0.139 | 0.133 |
12 | 118 | 0.123 | 0.106 | 0.162 | 0.154 |
13 | 106 | 0.121 | 0.093 | 0.134 | 0.142 |
14 | 185 | 0.127 | 0.102 | 0.154 | 0.150 |
15 | 165 | 0.146 | 0.122 | 0.181 | 0.175 |
16 | 193 | 0.120 | 0.098 | 0.139 | 0.142 |
17 | 186 | 0.151 | 0.131 | 0.182 | 0.182 |
18 | 153 | 0.127 | 0.103 | 0.161 | 0.150 |
19 | 188 | 0.159 | 0.133 | 0.190 | 0.191 |
20 | 120 | 0.133 | 0.106 | 0.172 | 0.158 |
21 | 103 | 0.124 | 0.097 | 0.142 | 0.145 |
Total/Average | 3432 | 0.135 | 0.111 | 0.165 | 0.161 |
Summary Statistics | ||||
Genotypes | PIC | MAF | Ho | He |
All | 0.135 | 0.111 | 0.165 | 0.161 |
Breeding line | 0.126 | 0.106 | 0.156 | 0.151 |
Genebank landraces | 0.141 | 0.115 | 0.173 | 0.168 |
Market varieties | 0.117 | 0.100 | 0.157 | 0.142 |
Genetic Diversity Parameters | ||||
Genotypes | H’ | Simpson | Inverse Simpson | Pielou’s Evenness |
All | 6.666 | 0.998 | 767 | 0.149 |
Breeding lines | 5.736 | 0.996 | 308 | 0.173 |
Landraces | 5.968 | 0.997 | 434 | 0.163 |
Market varieties | 3.242 | 0.960 | 25 | 0.294 |
Fst-Based Genetic Groups | |||
---|---|---|---|
Breeding Lines | Market Varieties | Genebank Landraces | |
Breeding Lines | 0.000 | ||
Market Varieties | 0.031 | 0.000 | |
Genebank Landraces | 0.038 | 0.024 | 0.000 |
Source of Variation | df | SS | MS | Est. Var. | % |
---|---|---|---|---|---|
Among genetic groups | 2 | 7051.37 | 3525.68 | 15.13 | 4 |
Within genetic groups | 800 | 318,465.22 | 398.08 | 398.08 | 96 |
Total | 802 | 325,516.59 | 413.21 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharjee, R.; Agre, P.; Bauchet, G.; De Koeyer, D.; Lopez-Montes, A.; Kumar, P.L.; Abberton, M.; Adebola, P.; Asfaw, A.; Asiedu, R. Genotyping-by-Sequencing to Unlock Genetic Diversity and Population Structure in White Yam (Dioscorea rotundata Poir.). Agronomy 2020, 10, 1437. https://doi.org/10.3390/agronomy10091437
Bhattacharjee R, Agre P, Bauchet G, De Koeyer D, Lopez-Montes A, Kumar PL, Abberton M, Adebola P, Asfaw A, Asiedu R. Genotyping-by-Sequencing to Unlock Genetic Diversity and Population Structure in White Yam (Dioscorea rotundata Poir.). Agronomy. 2020; 10(9):1437. https://doi.org/10.3390/agronomy10091437
Chicago/Turabian StyleBhattacharjee, Ranjana, Paterne Agre, Guillaume Bauchet, David De Koeyer, Antonio Lopez-Montes, P. Lava Kumar, Michael Abberton, Patrick Adebola, Asrat Asfaw, and Robert Asiedu. 2020. "Genotyping-by-Sequencing to Unlock Genetic Diversity and Population Structure in White Yam (Dioscorea rotundata Poir.)" Agronomy 10, no. 9: 1437. https://doi.org/10.3390/agronomy10091437
APA StyleBhattacharjee, R., Agre, P., Bauchet, G., De Koeyer, D., Lopez-Montes, A., Kumar, P. L., Abberton, M., Adebola, P., Asfaw, A., & Asiedu, R. (2020). Genotyping-by-Sequencing to Unlock Genetic Diversity and Population Structure in White Yam (Dioscorea rotundata Poir.). Agronomy, 10(9), 1437. https://doi.org/10.3390/agronomy10091437