Effect of Planting Density in Two Thistle Species Used for Vegetable Rennet Production in Marginal Mediterranean Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Crop Management
2.3. Measurements
2.3.1. Phenological Phases
2.3.2. Plant Height and Number of Branches
2.3.3. Number and Weight of Flower Heads
2.3.4. Number of Harvesting Days
2.3.5. Weed Biomass Determination
2.4. Statistical Analysis
- (1)
- A one factor linear model was built by using the “lm” function in which the species was considered the main factor.
- (2)
- A full factorial linear model was also created by using the “lm” function in which the species and density were considered as factors.
3. Results
3.1. Effect of Species and Plant Density
3.2. Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro, H.; Castro, P. Mediterranean Marginal Lands in Face of Climate Change: Biodiversity and Ecosystem Services. In Climate Change-Resilient Agriculture and Agroforestry; Climate Change Management; Castro, P., Azul, A., Leal Filho, W., Azeiteiro, U., Eds.; Springer: Cham, Switzerland, 2019; pp. 175–187. [Google Scholar]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crop. Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crop. Prod. 2013, 47, 218–226. [Google Scholar] [CrossRef]
- Anderberg, A.A.; Baldwin, B.; Bayer, R.; Breitwieser, J.; Jeffrey, C.; Dillon, M.O.; Eldenäs, P.; Funk, V.A.; Garcia-Jacas, N.; Hind, D.J.N. The families and genera of vascular plants. In Flowering Plants; Eudicots: Asterales; Kubitzki, K., Kadereit, J.K., Jeffrey, C., Eds.; Springer: Cham, Switzerland, 2007; Volume VIII, pp. 61–588. [Google Scholar]
- Ierna, A.; Mauromicale, G. Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenergy 2010, 34, 754–760. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Cavallaro, V.; Melilli, M.G. Intraspecific variability in Cynara cardunculus L. var. sylvestris Lam. Sicilian populations: Seed germination under salt and moisture stresses. J. Arid. Environ. 2004, 56, 107–116. [Google Scholar] [CrossRef]
- Ceccarini, L.; Angelini, L.; Bonari, E. Caratteristiche produttive e valutazione energetica della biomassa di Miscanthus sinensis Anderss, Arundo donax L. e Cynara cardunculus L. in prove condotte nella Toscana litoranea. In Proceedings of the Convegno Annuale Società Italiana di Agronomia, Legnaro, Italy; 20–23 September 1999; Volume 1, p. 82. [Google Scholar]
- Piscioneri, I.; Sharma, N.; Baviello, G.; Orlandini, S. Promising industrial energy crop, Cynara cardunculus: A potential source for biomass production and alternative energy. Energy Convers. Manag. 2000, 41, 1091–1105. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M.G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop. Res. 2007, 101, 187–197. [Google Scholar] [CrossRef]
- Mozzon, M.; Foligni, R.; Mannozzi, C.; Zamporlini, F.; Raffaelli, N.; Aquilanti, L. Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species. Foods 2020, 9, 692. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Raccuia, S.; Fallico, B.; Fanella, F.; Maccarone, E. Possible alternative utilization of Cynara spp. Ind. Crop. Prod. 1999, 10, 219–228. [Google Scholar] [CrossRef]
- Curt, M.; Sánchez, G.; Fernández, J. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 2002, 23, 33–46. [Google Scholar] [CrossRef]
- Parzhanova, A.B.; Petkova, N.T.; Ivanov, I.G.; Ivanova, S.D. Evaluation of Biologically Active Substance and Antioxidant Potential of Medicinal Plants Extracts for Food and Cosmetic Purposes. J. Pharmacol. Sci. Res. 2018, 10, 1804–1809. [Google Scholar]
- Gostin, A.-I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Pesce, G.R.; Mauromicale, G. Cynara cardunculus L.: Historical and Economic Importance, Botanical Descriptions, Genetic Resources and Traditional Uses. In The Globe Artichoke Genome. Compendium of Plant Genomes; Portis, E., Acquadro, A., Lanteri, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- Avio, L.; Maggini, R.; Ujvári, G.; Incrocci, L.; Giovannetti, M.; Turrini, A. Phenolics content and antioxidant activity in the leaves of two artichoke cultivars are differentially affected by six mycorrhizal symbionts. Sci. Hortic. 2020, 264, 109153. [Google Scholar] [CrossRef]
- Centre of Agriculture and Biosciences International (CABI) Cynara cardunculus (Cardoon). Available online: https://www.cabi.org/isc/datasheet/17584 (accessed on 4 February 2020).
- Kelly, M.; Pepper, A. Controlling Cynara cardunculus (Artichoke Thistle, Cardoon, etc.). In Proceedings of the California Exotic Pest Plant Council, Symposium Proceedings, San Diego, CA, USA, 4–6 October 1996; pp. 1–5. [Google Scholar]
- Raccuia, S.A.; Mainolfi, A.; Mandolino, G.; Melilli, M.G. Genetic diversity in Cynara cardunculus revealed by AFLP markers: Comparison between cultivars and wild types from Sicily*. Plant. Breed. 2004, 123, 280–284. [Google Scholar] [CrossRef]
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy 2018, 111, 174–186. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.; Vilarinho, F.; Castanheira, I.; Fernando, A.L.; Loizzo, M.R.; Silva, A.S. A New Insight on Cardoon: Exploring New Uses besides Cheese Making with a View to Zero Waste. Foods 2020, 9, 564. [Google Scholar] [CrossRef]
- Archontoulis, S.; Struik, P.; Vos, J.; Danalatos, N. Phenological growth stages of Cynara cardunculus: Codification and description according to the BBCH scale. Ann. Appl. Biol. 2010, 156, 253–270. [Google Scholar] [CrossRef]
- Barbagallo, R.; Chisari, M.; Spagna, G.; Ierna, A.; Patanè, A.; Occhipinti, A.; Mauromicale, G. Caseinolytic activity expression in flowers of Cynara cardunculus L. Acta Hortic. 2007, 730, 195–199. [Google Scholar] [CrossRef]
- Kleonikos, G.S. Wild Edible Plants of Crete; Kleonikos G Stavridakis: Rethymnon Crete, Greece, 2006; ISBN 960-631-179-1. [Google Scholar]
- Keil, D.J. Onopordum Linnaeus. Flora N. Am. 2006, 19, 87–88. [Google Scholar]
- Al-Snafi, A.E. Constituents and pharmacology of Onopordum acanthium. IOSR J. Pharm. 2020, 10, 7–14. [Google Scholar]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Impagliazzo, A.; Cozzolino, E.; Masucci, F.; Mori, M.; Fagnano, M. Yields and quality of biomasses and grain in Cynara cardunculus L. grown in southern Italy, as affected by genotype and environmental conditions. Ital. J. Agron. 2017, 11, 375–382. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). World Soil Resources Report 103; IUSS, ISRIC: Rome, Italy, 2006. [Google Scholar]
- Bleiholder, H.; van den Boom, T.; Langelüddecke, P.; Stauss, R. Uniform coding for the phenological stages of cultivated plants and weeds. Phytoma 1991, 28, 1–4. [Google Scholar]
- Neri, U.; Pennelli, B.; Simonetti, G.; Francaviglia, R. Biomass partition and productive aptitude of wild and cultivated cardoon genotypes (Cynara cardunculus L.) in a marginal land of central Italy. Ind. Crop. Prod. 2017, 95, 191–201. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Onofri, A.; Seddaiu, G.; Piepho, H. Long-Term Experiments with cropping systems: Case studies on data analysis. Eur. J. Agron. 2016, 77, 223–235. [Google Scholar] [CrossRef]
- Chambers, J.M. Linear Models. In Statistical Models in S.; Routledge: Boca Raton, FL, USA, 2017; pp. 95–144. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed; Springer: New York, NY, USA, 2002. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Wilks, S.S. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. Ann. Math. Stat. 1938, 9, 60–62. [Google Scholar] [CrossRef]
- Russell, L. Emmeans: Estimated Marginal Means, aka Least-Squares Means, CRAN. 9 December 2020. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 12 January 2021).
- Amer, H.M.; Marrez, D.A.; Salama, A.B.; Wahba, H.E.; Khalid, K.A. Growth and chemical constituents of cardoon plant in response to foliar application of various algal extracts. Biocatal. Agric. Biotechnol. 2019, 21, 101336. [Google Scholar] [CrossRef]
- Mouzali, L.; Aziza, M.; Bensiameur-Touati, K.; Hellal-Benateya, A. cardoon (cynara cardunculus l.) used as vegetable rennet in an algerian traditional cheese making DJBEN. Acta Hortic. 2004, 660, 207–213. [Google Scholar] [CrossRef]
- Benheddi, W.; Hellal, A. Technological characterization and sensory evaluation of a traditional Algerian fresh cheese clotted with Cynara cardunculus L. flowers and lactic acid bacteria. J. Food Sci. Technol. 2019, 56, 3431–3438. [Google Scholar] [CrossRef] [PubMed]
- Pari, L.; Latterini, F.; Stefanoni, W. Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture 2020, 10, 309. [Google Scholar] [CrossRef]
- Pesce, G.; Negri, M.; Bacenetti, J.; Mauromicale, G. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind. Crop. Prod. 2017, 103, 233–239. [Google Scholar] [CrossRef]
Month | Tavg (°C) | Tmax (°C) | Tmin (°C) | Precipitation (mm) | ||||
---|---|---|---|---|---|---|---|---|
1998–2019 | 2020 | 1998–2019 | 2020 | 1998–2019 | 2020 | 1998–2019 | 2020 | |
January | 6.0 | 7.2 | 9.0 | 12.3 | 2.9 | 3.8 | 54.0 | 4.2 |
February | 7.2 | 11.0 | 10.9 | 16.7 | 3.5 | 6.5 | 46.3 | 17.2 |
March | 10.7 | 10.2 | 14.8 | 15.0 | 6.6 | 6.3 | 67.3 | 59.2 |
April | 13.7 | 14.0 | 18.1 | 19.7 | 9.4 | 8.7 | 72.0 | 59.6 |
May | 18.1 | 18.7 | 22.8 | 23.6 | 13.3 | 13.5 | 60.0 | 37.6 |
June | 19.5 | 21.8 | 25.0 | 26.3 | 14.0 | 16.2 | 55.0 | 56.0 |
July | 22.0 | 24.4 | 28.0 | 28.9 | 16.0 | 18.8 | 52.0 | 27.0 |
August | 22.5 | 25.5 | 28.0 | 29.4 | 17.0 | 20.4 | 84.0 | 64.0 |
September | 19.0 | 20.9 | 24.0 | 25.3 | 14.0 | 16.2 | 73.0 | 34.0 |
Soil Properties | Values |
---|---|
Sand (g kg−1) | 120 (±19) 1 |
Silt (g kg−1) | 397 (±19) |
Clay (g kg−1) | 483 (±22) |
Carbon/nitrogen | 7.9 (±0.9) |
Soil organic matter (g kg−1) | 13.2 (2.1) |
Total nitrogen (g kg−1) | 1.0 (±0.1) |
pH | 8.1 (±0.9) |
Available P2O5 (mg kg−1) | 6.6 (±0.8) |
Exchangeable K2O (mg kg−1) | 311 (±22) |
Cationic exchange capacity (CSC) (meq 100 g−1) | 27.5 (±2.1) |
Agro-Technique | Date |
---|---|
Ploughing (40 cm) | 11/November/2019 |
Harrowing and seed bed preparation | 17/December/2019 |
Transplantation | 02/April/2020 |
Emergency irrigation | 08/April/2020; 10/July/2020; 29/July/2020 |
Weed control | 28/April/2020; 01/June/2020; 09/July/2020; 06/August/2020 |
Factors | df | FHP (no) | FHS (no m−2) | PGS | HPT (cm) | BPT (no) | DDH (no) | WHF (g) | WHFS (g m−2) | WTF (g) | WTFS (g m−2) | WB (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 1 | *** | *** | ** | *** | *** | *** | *** | *** | *** | ||
D | 1 | *** | ** | ** | * | * | * | |||||
S × D | 1 | *** | ** | ** | * | * |
TS | PD | FHP (no) | FHS (no m−2) | HPT (cm) | BPT (no) | PGS | DDH (no) |
---|---|---|---|---|---|---|---|
Cc | D1 | 12 ± 2 1 a 2 | 32 ± 6 a | 80 ± 9 a | 5 ± 1 a | 67 ± 2 a | 31 ± 2 a |
Cc | D2 | 8 ± 2 a | 41 ± 8 a | 86 ± 14 a | 4 ± 2 a | 68 ± 6 a | 31 ± 1 a |
Ot | D1 | 105 ± 7 a | 281 ± 20 a | 142 ± 8 a | 13 ± 2 a | 71 ± 4 a | 50 ± 7 a |
Ot | D2 | 49 ± 2 b | 260 ± 13 a | 90 ± 13 b | 10 ± 2 b | 54 ± 4 b | 39 ± 1 b |
TS | PD | WHF (g) | WHFS (g m−2) | WTF (g) | WTFS (g m−2) |
---|---|---|---|---|---|
Cc | D1 | 54 ± 1 1 a 2 | 1734 ± 341 a | 22 ± 1 a | 694 ± 136 a |
Cc | D2 | 55 ± 2 a | 2290 ± 521 a | 22 ± 1 a | 916 ± 208 a |
Ot | D1 | 34 ± 3 a | 9555 ± 1076 a | 13 ± 1 a | 3724 ± 367 a |
Ot | D2 | 31 ± 1 a | 7926 ± 488 b | 13 ± 1 a | 3316 ± 208 a |
Thistle Species | Plant Density | Weed Biomass (kg ha−1) |
---|---|---|
Cc | D1 | 495 ± 263 1 a 2 |
Cc | D2 | 174 ± 64 b |
Ot | D1 | 407 ± 64 a |
Ot | D2 | 129 ± 46 b |
Thistle Species | Plant Density | FHP | HPT | BPT | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
FHP | Cc | D1 | / | / | 0.70 | 1.71 | 0.26 | 2.70 |
Cc | D2 | / | / | 0.86 | 0.81 | 0.94 | 0.53 | |
HPT | Cc | D1 | 0.70 | 7.04 | / | / | 0.81 | 5.69 |
Cc | D2 | 0.86 | 7.40 | / | / | 0.66 | 11.67 | |
BPT | Cc | D1 | 0.26 | 0.63 | 0.81 | 0.32 | / | / |
Cc | D2 | 0.94 | 0.54 | 0.66 | 1.31 | / | / |
Thistle Species | Plant Density | FHP | HPT | BPT | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
FHP | Ot | D1 | / | / | 0.04 | 10.21 | 0.93 | 2.76 |
D2 | / | / | 0.19 | 3.03 | 0.73 | 1.75 | ||
HPT | Ot | D1 | 0.04 | 10.84 | / | / | 0.01 | 11.01 |
D2 | 0.19 | 16.37 | / | / | 0.01 | 18.04 | ||
BPT | Ot | D1 | 0.93 | 0.56 | 0.01 | 2.09 | / | / |
D2 | 0.73 | 1.65 | 0.01 | 3.15 | / | / |
FHS (no. m−2) | ||||||||
---|---|---|---|---|---|---|---|---|
Cc D1 | Cc D2 | Ot D1 | Ot D2 | |||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
WTFS (g m−2) | 0.99 | 0.95 | 0.98 | 1.61 | 0.54 | 18.72 | 0.09 | 17.09 |
WHFS (g m−2) | 0.99 | 0.95 | 0.98 | 1.61 | 0.43 | 20.93 | 0.54 | 12.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenobi, S.; Fiorentini, M.; Aquilanti, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Zitti, S.; Casavecchia, S.; Al Mohandes Dridi, B.; Orsini, R. Effect of Planting Density in Two Thistle Species Used for Vegetable Rennet Production in Marginal Mediterranean Areas. Agronomy 2021, 11, 135. https://doi.org/10.3390/agronomy11010135
Zenobi S, Fiorentini M, Aquilanti L, Foligni R, Mannozzi C, Mozzon M, Zitti S, Casavecchia S, Al Mohandes Dridi B, Orsini R. Effect of Planting Density in Two Thistle Species Used for Vegetable Rennet Production in Marginal Mediterranean Areas. Agronomy. 2021; 11(1):135. https://doi.org/10.3390/agronomy11010135
Chicago/Turabian StyleZenobi, Stefano, Marco Fiorentini, Lucia Aquilanti, Roberta Foligni, Cinzia Mannozzi, Massimo Mozzon, Silvia Zitti, Simona Casavecchia, Bouthaina Al Mohandes Dridi, and Roberto Orsini. 2021. "Effect of Planting Density in Two Thistle Species Used for Vegetable Rennet Production in Marginal Mediterranean Areas" Agronomy 11, no. 1: 135. https://doi.org/10.3390/agronomy11010135
APA StyleZenobi, S., Fiorentini, M., Aquilanti, L., Foligni, R., Mannozzi, C., Mozzon, M., Zitti, S., Casavecchia, S., Al Mohandes Dridi, B., & Orsini, R. (2021). Effect of Planting Density in Two Thistle Species Used for Vegetable Rennet Production in Marginal Mediterranean Areas. Agronomy, 11(1), 135. https://doi.org/10.3390/agronomy11010135