Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristic, Experimental Design, and Agronomic Paractices
2.2. Meteorological Conditions
2.3. Chemical Analyses
2.3.1. Determination of Alkylresorcinol Content
2.3.2. Determination of Soluble Pentosans
2.3.3. Determination of the Activity of Tripsin Inhibitors
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poutanen, K.; Katina, K.; Heiniö, R. Rye. In Bakery Products Science and Technology; Simpson, B.K., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 75–87. [Google Scholar]
- FAOSTAT. FAO Statistic Division 2020. Available online: http://faostat.fao.org (accessed on 5 October 2020).
- Buksa, K.; Nowotna, A.; Gambuś, H.; Krawontka, J.; Sabat, R.; Noga, M. Technological evaluation and chemical composition of rye grain of selected varieties cultivated by 3 consecutive years. Acta Agroph. 2012, 19, 265–276. [Google Scholar]
- Święcicki, W.K.; Surma, M.; Koziara, W.; Skrzypczak, G.; Szukała, J.; Bartkowiak-Broda, I.; Zimny, J.; Banaszak, Z.; Marcinak, K. Modern technologies in crop production friendly for man and environment. Pol. J. Agron. 2011, 7, 102–112. [Google Scholar]
- Cacak-Pietrzak, G. The use of rye for consumption and other purposes. In Quality Control in the Circulation and Processing of Cereal Grains; IBPRS: Warsaw, Poland, 2016; pp. 18–19. [Google Scholar]
- Horoszkiewicz-Janka, J.; Mrówczyński, M. Methodology of Integrated Rye Protection and Production—For Adviser; Institute of Plant Protection-National Research Institute: Poznań, Poland, 2016; p. 138. [Google Scholar]
- Jasińska, I.; Kołodziejczyk, P.; Michniewicz, J. Rye seed as a potential source of pro-health compounds in diet. Żywność. Nauka. Technologia. Jakość 2006, 2, 85–92. [Google Scholar]
- Stępniewska, S.; Słowik, E.; Cacak-Pietrzak, G.; Romankiewicz, D.; Szafrańska, A.; Dziki, D. Prediction of rye flour baking quality based on parameters of swelling curve. Eur. Food Res. Technol. 2018, 244, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Stępniewska, S.; Hassoon, W.H.; Szafrańska, A.; Cacak-Pietrzak, G.; Dziki, D. Procedures for Breadmaking Quality Assessment of Rye Wholemeal Flour. Foods 2019, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- European Flour Millers. The European Flour Milling Industry; European Flour Milling Association: Bruksela, Belgium, 2020; pp. 98–102. [Google Scholar]
- Schwarz, T.; Kuleta, W.; Turek, A.; Tuz, R.; Nowicki, J.; Rudzki, B.; Bartlewski, M. Assessing the efficiency of using a modern hybrid rye variety for pig fattening, with emphasis on production costs and carcass quality. Anim. Prod. Sci. 2014, 55, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Winiarska-Mieczan, A. Bowman-Birk trypsin inhibitors: Their structure and value in human and animal feeding. Medycyna Weterynaryjna 2007, 63, 276–281. [Google Scholar]
- Kulichová, K.; Sokol, J.; Nemeček, P.; Maliarová, M.; Maliar, T.; Havrlentová, M.; Kraic, J. Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem. 2019, 17, 988–999. [Google Scholar] [CrossRef]
- Ross, A.B.; Kamal-Edin, A.; Aman, P. Dietary alkylresorcinols: Absorption, bioactivities and possible use as biomarkers of whole grain wheat- and rye-rich foods. Nutr. Rev. 2004, 62, 81–95. [Google Scholar] [CrossRef]
- Makarska, E.; Gruszecka, D.; Grądzielewska, A. The content of alkylresorcinols and trypsin inhibitors activity in translocational rye strains and parental components Secale cereale L. and Dasypyrum villosum (L.). Ann. Univ. Mariae Curie-Skłodowska 2007, LXII, 117–121. [Google Scholar]
- Tłuścik, F. Localization of the alkylresorcinols in rye and wheat caryopses. Acta Soc. Bot. Pol. 1978, 47, 211–2018. [Google Scholar] [CrossRef]
- Chen, Y.; Ross, A.B.; Aman, P.; Kamal-Eldin, A. Alkyresorcinoles as markers of whole grain wheat and rye in cereal products. J. Agric. Food Chem. 2004, 52, 8242–8246. [Google Scholar] [CrossRef] [PubMed]
- Landberg, R.; Kamal-Eldin, A.; Salmenkalio-Marttila, M.; Rouau, X.; Aman, P. Lokalization of alkylresorcinols in wheat, rye and barley kernels. J. Cereal Sci. 2008, 48, 401–406. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of wholegrain cereals: What is beyond fiber? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipiec, A.; Pisarski, K. Anti-nutritional substances in feed. Med. Weter. 1994, 50, 152–155. [Google Scholar]
- Stasiuk, M.; Kozubek, A. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 2010, 67, 841–860. [Google Scholar] [CrossRef] [PubMed]
- Boros, D. Alkylresorcinols of cereal grains—Their importance in food and feed. Biuletyn IHAR 2015, 277, 7–20. [Google Scholar]
- Ziegler, J.U.; Steingass, C.B.; Longing, C.F.H.; Wurschum, T.; Carle, R.; Schweiggert, R.M. Alkylresorcinol Composition Allows The Differentition OF Triticum Spp. Having Different Degrees of Ploidy. J. Cereal Sci. 2015, 65, 244–251. [Google Scholar] [CrossRef]
- Fraś, A.; Boros, D. Influence of environmental conditions on the variability of alkylresorcinols content in winter wheat grain. Biuletyn IHAR 2015, 278, 17–25. [Google Scholar]
- Jones, H.; Clarke, S.; Haigh, Z.; Pearce, H.; Wolfe, M. The effect of the year of wheat variety release on productivity and stability of performance on two organic and two mon-organic farms. J. Agric. Sci. 2010, 148, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Kobylayansky, V.D.; Kuznetsova, L.I.; Solodukhina, O.V.; Lavrentyeva, N.S.; Timina, A. Propects of using Low-Pentosan grain fodder Rye for baking purposes. Russ. Agric. Sci. 2019, 45, 1–4. [Google Scholar] [CrossRef]
- Girhammar, U.; Nair, B.M. Isolation, separation and characterization of water soluble non-starch polysaccharides from wheat and rye. Food Hydrocolloid 1992, 6, 285–299. [Google Scholar] [CrossRef]
- Boros, D. The viscosity of soluble arabinoxylans is an indicator of the nutritional value of rye. Monogr. Sci. Pap. IHAR 2002, 16, 44. [Google Scholar]
- Lingling, L.; Jianjun, L.; Ming, S.; Liyun, L.; Bihao, C. Study on transforma-tion of cowpea trypsin inhibitor gene into cauliflower (Brassica oleracea L. var. botrytis). Afr. J. Biotechnol. 2005, 4, 45–49. [Google Scholar]
- Ng, T.B.; Lam, S.K.; Fong, W.P. A homodimeric sporamin-type trypsin inhibitor with antiproliferative, HIV reverse transcriptase-inhibitory andantifungal activities from wampee (Clausena lansium) seeds. Biol. Chem. 2003, 384, 289–293. [Google Scholar] [CrossRef]
- Roy, D.M.; Schneeman, B.O. Effect of soy protein, casein and trypsin inhibi-tor on cholesterol, bile acids and pancreatic enzymes in mice. J. Nutr. 1981, 111, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Kulasek, G.; Leontowicz, H.; Krzemiński, R. Bioactive substances in food for humans and animals (part I). Anti-nutritional factors. Mag. Wet. 1995, 15, 39–44. [Google Scholar]
- Piasecka-Kwiatkowska, D.; Warchalewski, J.R. The cereal protein inhibitors of hydrolytic enzymes and their role. Part I Protein inhibitors of alpha-amylase. Żywność 2000, 2, 110–119. [Google Scholar]
- Piasecka-Kwiatkowska, D.; Warchalewski, J.R. The cereal protein inhibitors of hydrolytic enzymes and their role. Part II Protein inhibitors of proteinases. Żywność 2000, 3, 33–38. [Google Scholar]
- Album, H.G.; Umbereit, W.W. Differentiation between ribose-3phosphate and ribose-5 phosphate by means of the orcinol-pentose reaction. J. Biol. Chem. 1947, 167, 369–376. [Google Scholar]
- ISO. PN-EN ISO 14902:2001. Animal Feeding Stuffs—Determination of Trypsin Inhibitor Activity of Soya Products; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- Doroszewski, A.; Wróblewska, E.; Jóźwicki, T.; Mizak, K. Evaluation of damage to fruit and horticulltural plants caused by frosts in may 2011. Acta Agroph. 2013, 20, 269–281. [Google Scholar]
- Stuper-Szablewska, K.; Kurasiak-Popowska, D.; Nawracała, J.; Perkowski, J. Quantitative profile of phenolic acids and antioxidant activity of wheat grain exposed to stress. Eur. Food Res. Technol. 2019, 245, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Bellato, S.; CIccoritti, R.; Del Frate, V.; Sqrulletta, D.M.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Lu, Y.; Lv, J.; Hao, J.; Niu, Y.; Whent, M.; Costa, J.; Yu, L.L. Genotype, environment, and their interactions on the phytochemical compositions and radical scavenging properties of soft winter wheat bran. LWT 2015, 60, 277–283. [Google Scholar] [CrossRef]
- Jaśkiewicz, B.; Szczepanek, M. Crop mangament and variety have influence on alkylresolcinol content in triticale grain. Acta Agric. Scand. 2016, 66, 570–574. [Google Scholar] [CrossRef]
- Boskov Hansen, R.; Rasmussen, C.V.; Bach Knudsen, K.R.; Hansen, A. Effect of genotype and harvest year on content and composition of dietary fibre in rye (Secale cereale L.) grain. J. Sci. Food Agric. 2003, 83, 76–85. [Google Scholar] [CrossRef]
- Kulawianek, M.; Jaromin, A.; Kozubek, A.; Zarnowski, R. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain products. J. Agric. Food Chem. 2008, 56, 7236–7242. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Praznik, W.; Gambuś, H.; Ziobro, R.; Krawonta, J. The role of pentosans and starch in baking of whole meal rye bread. Food Res. Int. 2010, 43, 2045–2051. [Google Scholar] [CrossRef]
- Kucerova, J. Effect of location and year on technological quality and pentosane content in rye. Czech J. Food Sci. 2009, 27, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.B.; Sheperd, M.J.; Bach Knudsen, K.E.; Glitso, L.V.; Bowey, E.; Philips, J.; Rowland, I.; Guo, Z.X.; Massy, D.J.; Aman, P.; et al. Absorption of dietary alkylresorcinols in ileal—Cannulated pigs and rats. Br. J. Nutr. 2003, 90, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Czaban, J.; Sułek, A.; Pecio, Ł.; Żuchowski, J.; Podolska, G. Effect of genotype and crop managment systems on phenolic acid content in winter wheat grain. J. Food Agric. Environ. 2014, 11, 1201–1206. [Google Scholar]
Specification | Production Technology | |
---|---|---|
Integrated | Intensive | |
Fertilization (kg∙h−1) | 50 (start of vegetation) | 50 (start of vegetation) 20 (at BBCH 51) |
N (ammonium nitrate) | 30 (at BBCH 51) | 50 (at BBCH 31) |
P (superphosphate) | 60 | 60 |
K(potassium salt) | 90 | 90 |
Herbicide (g∙ha−1) | At BBCH 20 difufenican −50 + chlorotoluron −1000 | |
Fungicide (L∙h−1) | At BBCH 39 epoxiconazole −0.7 + tebuconazole −0.4 | At BBCH 31 tebuconazole 0.4 + prochloraz 0.5 + phenopropidine −0.3), and BBCH 51 epoxiconazole −0.8 |
Specification | Alkylresorcinols Content (mg∙kg−1) | Water Soluble Pentosans Content (% d.m.) | Activity of Tripsin Inhibitors (mg∙g−1) |
---|---|---|---|
Growing season | |||
2010/2011 | 578 ± 52 b | 1.89 ± 0.14 b | 4.60 ± 0.74 c |
2011/2012 | 485 ± 48 a | 1.30 ± 0.22 a | 0.60 ± 0.10 a |
2012/2013 | 579 ± 30 b | 1.88 ± 0.15 b | 2.24 ± 0.18 b |
Variety (A) | |||
Brasetto | 535 ± 59 a | 1.58 ± 0.27 a | 2.55 ± 0.23 b |
Visello | 563 ± 69 b | 1.73 ± 0.58 b | 2.80 ± 0.22 b |
Dańkowskie Diament | 543 ± 57 ab | 1.72 ± 0.29 b | 2.01 ± 0.16 a |
Kier | 550 ± 30 ab | 1.72 ± 0.40 b | 2.56 ± 0.23 b |
Production technology (B) | |||
Integrated | 544 ± 60 a | 1.58 ± 0.12 a | 2.52 ± 0.18 a |
Intensive | 584 ± 49 b | 1.73 ± 0.16 b | 2.44 ± 0.19 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabiński, J.; Sułek, A.; Wyzińska, M.; Stuper-Szablewska, K.; Cacak-Pietrzak, G.; Nieróbca, A.; Dziki, D. Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy 2021, 11, 151. https://doi.org/10.3390/agronomy11010151
Grabiński J, Sułek A, Wyzińska M, Stuper-Szablewska K, Cacak-Pietrzak G, Nieróbca A, Dziki D. Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy. 2021; 11(1):151. https://doi.org/10.3390/agronomy11010151
Chicago/Turabian StyleGrabiński, Jerzy, Alicja Sułek, Marta Wyzińska, Kinga Stuper-Szablewska, Grażyna Cacak-Pietrzak, Anna Nieróbca, and Dariusz Dziki. 2021. "Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains" Agronomy 11, no. 1: 151. https://doi.org/10.3390/agronomy11010151
APA StyleGrabiński, J., Sułek, A., Wyzińska, M., Stuper-Szablewska, K., Cacak-Pietrzak, G., Nieróbca, A., & Dziki, D. (2021). Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy, 11(1), 151. https://doi.org/10.3390/agronomy11010151