Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production
Abstract
:1. Introduction
2. Sugar Industry Wastewater
3. Sugarcane Distillery Spent Wash
4. Properties of DSW
5. Traditional Sugarcane Industrial Wastewater Management
6. Effect of DSW on Crops
6.1. Crop Germination and Stand Establishment
6.2. Effect of DSW on Photosynthesis
6.3. Effect of DSW on Anti-Oxidant Activities
6.4. Effect of DSW on Yield and Quality
7. Effect of DSW on Soil Health
7.1. Effect of DSW on Soil Enzymatic Activities
7.2. Effect of DWS on Soil Organic Carbon
7.3. Effect of DWS on Soil Microbes
7.4. Effect of DSW on Nutrient Uptake
7.5. Effect of DSW on Soil Quality
8. DWS a Pollutant
9. Implications of DWS for Agriculture and Water Quality
10. Health Risk Associated with Application of DSW
11. Concluding Remarks and Future Prospects
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kuntal, M.H.; Biswal, A.K.; Bandyopadhyaya, K.; Mishra, K. Effect of post methanation effluent on soil Physical properties under a soyabean-wheat system in a vertisol. J. Plant Nutr. Soil Sci. 2004, 167, 584–590. [Google Scholar]
- Poddar, P.K.; Sahu, O. Quality and management of wastewater in sugar industry. Appl. Water Sci. 2017, 7, 461–468. [Google Scholar] [CrossRef]
- Suganya, K.; Rajannan, G. Effect of one-time postsown and pre-sown application of distillery spent wash on the growth and yield of maize crop. Bot. Res. Int. 2009, 2, 288–294. [Google Scholar]
- Diangan, J.; Perez, M.; Claveria, R. Analysis of land application as a method of disposal of distillery effluent. Int. J. Environ. Health 2008, 2, 258–271. [Google Scholar]
- Rath, P.; Pradhan, G.; Misra, M.K. Effect of distillery spent wash (DSW) and fertilizer on growth and chlorophyll content of sugarcane (Saccharum officinarum L.) plant. Recent Res. Sci. Technol. 2011, 3, 169–176. [Google Scholar]
- Jain, R.; Srivastava, S. Nutrient composition of spent wash and its impact on sugarcane growth and biochemical attributes. Physio. Mol. Biol. Plants 2012, 18, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Mikucka, W.; Zielińska, M. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl. Biochem. Biotechnol. 2020, 192, 770–793. [Google Scholar] [CrossRef]
- Gopal, A.R.; Kammen, D.M. Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environ. Res. Lett. 2009, 4, 1–5. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S.; de Barros Aranha, C.; Ferraz, S.F.; Andrade, T.M.; Ravagnani, E.D.C.; Della Coletta, L.; de Camargo, P.B. Water use in sugar and ethanol industry in the State of São Paulo (Southeast Brazil). J. Sustain. Bioenergy Syst. 2013, 3, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Ingaramo, A.; Heluane, H.; Colombo, M.; Cesca, M. Water and wastewater eco-efficiency indicators for the sugar cane industry. J. Clean. Prod. 2009, 17, 487–495. [Google Scholar] [CrossRef]
- Memon, A.R.; Suhail, A.S.; Abdul, K.A. Sugar industry effluent characteristics and chemical analysis. J. Appl. Emerg. Sci. 2006, 1, 156–157. [Google Scholar]
- Solomon, S.K. Environmental pollution and its management in sugar industry in India: An appraisal. Sugar Technol. 2005, 7, 77–78. [Google Scholar] [CrossRef]
- Sahu, O.P.; Chaudhari, P.K. Electrochemical treatment of sugar industry wastewater: COD and color removal. J. Electroanal. Chem. 2015, 739, 122–129. [Google Scholar] [CrossRef]
- Jadhav, P.G.; Vaidya, N.G.; Dethe, S.B. Characterization and comparative study of cane sugar industry waste water. Int. J. Chem. Phys. Sci. 2013, 2, 19–25. [Google Scholar]
- Fito, J.; Tefera, N.; Van Hulle, S.W.H. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Technol. 2019, 21, 265–277. [Google Scholar] [CrossRef]
- Samuel, S.; Muthukkaruppan, S.M. Physico-chemical analysis of sugar Mill effluent, contaminated soil and its effect on seed germination of Paddy (Oryza sativa L.). Int. J. Pharm. Biol. Arch. 2011, 2, 1469–1472. [Google Scholar]
- Elayarajss, B. Physico-chemical analysis of sugar factory effluent stress on seedling growth of black gram (Vigna mungo (L.) Hepper) varieties. Int. Lett. Nat. Sci. 2014, 12, 85–93. [Google Scholar]
- Hampannavar, U.; Shivayogimath, C. Anaerobic treatment of sugar industry wastewater by up-flow anaerobic. Int. J. Environ. Sci. 2010, 1, 631–639. [Google Scholar]
- Nataraj, S.K.; Hosamani, K.M.; Aminabhavi, T.M. Distillery wastewater treatment by the membrane-based nanofltration and reverse osmosis processes. Water Res. 2006, 40, 2349–2356. [Google Scholar] [CrossRef]
- Kharayat, Y. Distillery wastewater: Bioremediation approaches. J. Integr. Environ. Sci. 2012, 9, 69–91. [Google Scholar] [CrossRef]
- Nandy, T.; Shastry, S.; Kaul, S.N. Wastewater management in a cane molasses distillery involving bioresource recovery. J. Environ. Manag. 2002, 65, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Adholeya, A. Biological approaches for treatment of distillery wastewater: A review. Bioresour. Technol. 2007, 98, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, J.; Singh, D.; Nigam, P. De-colourisation of synthetic and spent wash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour. Technol. 2001, 78, 95–98. [Google Scholar] [CrossRef]
- Ansari, F.; Awasthi, A.K.; Srivastava, B.P. Physio-chemical characterization of distillery effluent and its dilution effect at different levels. Arch. Appl. Sci. Res. 2012, 4, 1705–1715. [Google Scholar]
- Khairnar, P.; Chavan, F.; Diware, V.R. Generation of energy from distillery wastewater. Int. J. Sci. Spirit. Bus. Technol. 2013, 2, 29–35. [Google Scholar]
- Suganya, K.; Rajannan, G.; Valliappan, K. Impact of one-time application of distillery spent wash on the groundwater quality. Nat. Environ. Pollut. Technol. 2012, 11, 447–452. [Google Scholar]
- Prado, R.D.M.; Caione, G.; Campos, C.N.S. Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl. Environ. Soil Sci. 2013, 581984, 1–8. [Google Scholar] [CrossRef]
- Chaudhary, R.; Arora, M. Study on distillery effluent: Chemical analysis and impact on environment. Int. J. Adv. Eng. Technol. 2011, 2, 352–356. [Google Scholar]
- Basu, S.; Mukherjee, S.; Aushik, A.; Batra, V.S. Integrated treatment of molasses distillery wastewater using micro filtration (MF). J. Environ. Manag. 2015, 158, 55–60. [Google Scholar] [CrossRef]
- Nawaz, M.; Chattha, M.U.; Chattha, M.B.; Ahmad, R.; Munir, H.; Usman, M.; Hassan, M.U.; Khan, S.; Kharal, M. Assessment of compost as nutrient supplement for spring planted sugarcane (Saccharum officinarum L.). J. Anim. Plant Sci. 2017, 27, 283–293. [Google Scholar]
- Dos Reis, C.M.; Carosia, M.F.; Sakamoto, I.K.; Amâncio, V.M.B.; Silva, E.L. Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fuidized bed reactor. Int. J. Hydrogen Energy 2015, 40, 8498–8509. [Google Scholar] [CrossRef]
- Wang, H.; Qian, H.; Yao, W. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Yadav, S.; Chandra, R.; Rai, V. Characterization of potential MnP producing bacteria and its metabolic products during decolourisation of synthetic melanoidins due to bio stimulatory effect of d-xylose at stationary phase. Process Biochem. 2011, 46, 1774–1784. [Google Scholar] [CrossRef]
- Prasad, R.K.; Srivastava, S.N. Sorption of distillery spent wash onto fly ash: Kinetics and mass transfer studies. Chem. Eng. J. 2009, 146, 90–97. [Google Scholar]
- Chandraju, S.; Thejovathi, C.; Chidan, K. Experimental study on the reuse of distillery spent wash on sprouting, growth and yield of nerium oleander (apocynaceae) flowering plant. Int. J. Pharm. Chem. Biol. Sci. 2012, 2, 588–594. [Google Scholar]
- Soomro, A.A.; Naimatullah, L.; Ayaz, A.S.; Toqeer, A.S.; Abid, H.A. A study to analyze the real efficiency of distillery spent wash (DSW) in comparison of NPK (standard chemical fertilizer) at seedling stage of wheat (Triticum aestivum L.). Glob. Adv. Res. J. Agric. Sci. 2015, 4, 235–240. [Google Scholar]
- Andrade, L.H.; Mendes, F.D.S.; Espindola, J.C.; Amaral, M.C.S. Nano-filtration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep. Purif. Technol. 2014, 126, 21–29. [Google Scholar] [CrossRef]
- Chopra, A.K.; Srivastava, S.; Kumar, V.; Pathak, C. Agro-potentiality of distillery effluent on soil and agronomical characteristics of Okra. Environ. Monit. Assess. 2013, 185, 6635–6644. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Influence of sugar mill effluent on physio-chemical characteristics of soil at Haridwar (Uttarakhand), India. J. Appl. Nat. Sci. 2010, 2, 269–279. [Google Scholar] [CrossRef]
- Mohana, S.; Acharya, B.K.; Madamwar, D. Distillery spent wash: Treatment technologies and potential applications. J. Hazard. Mater. 2009, 163, 12–25. [Google Scholar] [CrossRef]
- Bezuneh, T.T.; Kebede, E.M. Physicochemical characterization of distillery effluent from one of the distilleries found in Addis Ababa, Ethiopia. J. Environ. Earth Sci. 2015, 5, 41–46. [Google Scholar]
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane vinasse: Environmental implications of its use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Stadlbauer, E.A. Sustainable paths for managing solid and liquid waste from distilleries and breweries. J. Clean. Prod. 2017, 149, 38–48. [Google Scholar] [CrossRef]
- Ghulam, S.; Khan, M.J.; Usman, K. Effect of different rates of press mud on plant growth and yield of lentil in calcareous soil. Sarhad J. Agric. 2012, 28, 8–11. [Google Scholar]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actino-bacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S.; Mohanb, D. Effect of distillery sludge on seed germination and growth parameters of green gram. J. Hazard. Mater. 2007, 152, 431–439. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Chandra, R. Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L. J. Hazard. Materials. 2010, 180, 730–734. [Google Scholar] [CrossRef]
- Kalaiselvi, P.; Mahimairaja, S. Effect of biomethanated spentwash on soil enzymatic activities. Bot. Res. Int. 2009, 2, 267–272. [Google Scholar]
- Bhalerao, V.P.; Jadhav, M.B.; Power, A.B.; Bhoi, P.G. Effect of pre-sowing application and fertigation of secondary treated biomethanated effluent on soil property and growth of green manuring crop. Co-Oper. Sugar 2004, 36, 155–159. [Google Scholar]
- Banerjee, A.C.; Bajwa, I.; Behal, K.K. Effect of distillery effluent on growth of Casuarina equisetifolia. J. Indus. Poll. Cont. 2004, 20, 199–204. [Google Scholar]
- Sukanya, T.S.; Meli, S.S. Effect of distillery effluent irrigation on growth, yield and quality of maize grown on sandy loam in northern transitional zone of Karnataka. Karnataka J. Agric. Sci. 2004, 17, 405–409. [Google Scholar]
- Ramana, S.; Biswas, A.K.; Kundu, S.; Saha, J.K.; Yadava, B.R. Effect of distillery effluent on seed germination in some vegetable crops. Bioresour. Technol. 2001, 82, 273–275. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, S.; Naveen, S.; Masood, S.; Khattak, M.R.; Malook, I.; Shah, G.; Rha, E.S.; Jamil, M. Effect of wastewater on physiological and biochemical characteristics of rice (Oryza sativa L.). Interciencia J. 2018, 43, 102–123. [Google Scholar]
- Pandey, G.C.; Neralia, S. Distillery effluents induced alternations on seed germination, seedling growth, chlorophyll contents and protein of bengal gram cicerarietinum. J. Agric. Biol. Sci. 2002, 2, 265–267. [Google Scholar]
- Orhue, E.R.; Osaigbova, A.U.; Vwioko, D.E. Growth of maize (Zea mays L.) and changes in some chemical properties of an Utisol amended with brewery effluent. Afr. J. Biotechnol. 2005, 4, 973–978. [Google Scholar]
- Krishna, K.; Leelavathi, S. Toxicity of sugar factory effluent to germination, vigour index and chlorophyll content of paddy. Nature Environ. Pollut. Technol. 2002, 1, 249–253. [Google Scholar]
- Swarup, A.; Yaduvansiii, N. Effects of Integrated Nutrient Management on Soil Properties and yield of rice in alkali soils. J. Ind. Soc. Soil Sci. 2000, 48, 279–282. [Google Scholar]
- Yadana, K.L.; Aung, K.M.; Takeo, K.O. The effects of green manure (sesbania rostrata) on the growth and yield of rice. J. Fac. Agric. Kyushu Univ. 2009, 54, 313–319. [Google Scholar]
- Mysliwa-Kurdziel, B.; Strzałka, K. Influence of Metals on Biosynthesis of Photosynthetic Pigments. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants; Springer: Dordrecht, The Netherlands, 2002; pp. 201–227. [Google Scholar]
- Mahesh, K.S.; Chandrashekara, K.T.; Rajashekar, N.; Jagannath, S. Physiological behaviour of few Cultivars of Paddy (Oryza sativa L.) during Seed Germination and early Growth, subjecting to distillery Effluent Stress. Int. Res. J. Biol. Sci. 2013, 2, 5–10. [Google Scholar]
- Zeng, L.S.; Liao, M.; Chen, C.L.; Huang, C.Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf. 2007, 67, 67–74. [Google Scholar] [CrossRef]
- Riaz, M.; Yan, L.; Wu, X.; Hussain, S.; Aziz, O.; Wang, Y.; Imran, M.; Jiang, C. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J. Environ. Manag. 2018, 208, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Aamer, M.; Hassan, M.U.; Li, Z.; Abid, A.; Su, Q.; Liu, L.; Ramzan, A.; Muhammad, A.U.K.; Tahir, A.K.; Haung, G. Foliar application of Glycinebetaine alleviates the cadmium toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system. Appl. Ecol. Environ. Res. 2018, 16, 7575–7583. [Google Scholar] [CrossRef]
- Muhammad, U.H.; Muhammad, U.C.; Imran, K.; Muhammad, B.C.; Muhammad, A.; Muhammad, N.; Abid, A.; Muhammad, A.U.K.; Tahir, A.K. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar]
- Singh, A.B.; Biswas, A.K.; Ramana, S. Effect of distillery effluents on plant and soil enzymatic activities and groundnut quality. J. Plant Nutr. Soil Sci. 2003, 166, 345–347. [Google Scholar] [CrossRef]
- Chidankumar, C.S.; Chandraju, S.; Nagendraswamy, G.; Nagendraswamy, R. Comparative study on the growth and yields of leafy vegetables irrigated by distillery spentwash in normal and spentwash treated soil. Sugar Technol. 2010, 12, 9–14. [Google Scholar] [CrossRef]
- Chandraju, S.; Chidankumar, C.S.; Venkatachalapathy, R. Irrigational impact of distillery spentwash on the growth, yield and nutrients of leafy vegetables. Biores. Bull. 2010, 2, 85–93. [Google Scholar]
- Sharma, A. Effect of Spent Wash and Chemical Fertilizer on Yield, Nutrient Uptake and Quality of Sugarcane. Technofame 2013, 2, 35–38. [Google Scholar]
- Kaloi, G.M.; Memon, M.; Memon, K.S.; Tunio, S. Integrated use of spentwash and mineral fertilizers on germination and initial growth of sugarcane (Saccharum officinarum L.). Soil Environ. 2015, 34, 1–8. [Google Scholar]
- Baghel, R.S. Toxicity of distillery effluent seed germination, seedling growth and metabolism in Pisum sativum. Res. Environ. Life Sci. 2008, 1, 29–32. [Google Scholar]
- Gemtos, T.A.; Chouliaras, N.; Marakis, S.T. Vinasse rate, time of application and compaction effect on soil properties and durum wheat crop. J. Agric. Eng. Res. 1999, 73, 283–296. [Google Scholar] [CrossRef]
- Mahimairaja, S.; Bolan, N.S. Problems and prospects of agricultural use of distillery spent wash in India. In Proceedings of the 3rd Australian New Zealand Soils Conference (SuperSoil 2004), Sydney, Australia, 5–9 December 2004; pp. 5–9. [Google Scholar]
- Chidankumar, C.S.; Chandraju, S.; Nagendraswamy, N. Impact of distillery spent wash irrigation on the yields of top vegetables (Creepers). World Appl. Sci. J. 2009, 6, 1270–1273. [Google Scholar]
- Kumari, K.; Phogat, V.K. Solubilisation of low-grade rock phosphate by spent w ash and its effect on germination, yield and p uptake by sorghum as a fodder crop. J. Ind. Soc. Soil Sci. 2012, 60, 244–248. [Google Scholar]
- Chandraju, S.; Basavaraju, H.C.; Chidankumar, C.S. Investigation of impact of Irrigation of distillery spent wash on the growth, yield and nutrients of leafy vegetable. Chem. Environ. Res. 2008, 17, 84–92. [Google Scholar]
- Nagendra, S.; Chandaraju, R.; Girija, N.S.; Chidankumar, C.S. Studies on the impact of irrigation of distillery spentwash on the yields of tuber/root medicinal plants. Biomed. Pharmacol. J. 2010, 3, 99–105. [Google Scholar]
- Chattha, M.U.; Ali, H.; Chattha, M.U.; Hassan, M.U.; Chattha, M.B.; Nawaz, M.; Hussain, S. Combined application of distillery spent wash, bio-compost and inorganic fertilizers improves growth, yield and quality of wheat. JAPS J. Anim. Plant Sci. 2018, 28, 1112–1120. [Google Scholar]
- Das, M.; Chakraborty, H.; Singandhupe, R.; Muduli, S.; Kumar, A. Utilization of distillery wastewater for improving production in underproductive paddy grown area in India. J. Sci. Ind. Res. 2010, 69, 560–563. [Google Scholar]
- Rath, P.; Biswal, K.; Misra, M. Effects of sugar factory distillery spentwash on germination and seedling growth of rice (Oryza sativa L.). Int. J. Sci. Innov. Disc. 2013, 3, 191–201. [Google Scholar]
- Naveed, S.; Rehim, A.; Imran, M.; Bashir, M.A.; Anwar, M.F.; Ahmad, F. Organic manures: An efficient move towards maize grain biofortification. Int. J. Rec. Org. Waste Agric. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alia, K.V.; Prasad, S.K.; Saradhi, P.P. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 1995, 39, 45–47. [Google Scholar] [CrossRef]
- Wahid, A.; Ghani, A.; Ali, I.; Ashraf, M. Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. J. Agron. Crop Sci. 2007, 193, 357–365. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Rao, G.P.; Solomon, S. Application of distillery spent wash and its effect on sucrose content in sugarcane. Sugar Technol. 2007, 9, 61–66. [Google Scholar] [CrossRef]
- Bhalerao, V.P.; Jadhav, M.B.; Bhoi, P.G. Effect of spent wash press mud compost on soil properties, yield and quality of seasonal sugarcane. Indian Sugar 2006, 56, 57–65. [Google Scholar]
- Selvamurugan, M.; Doraisamy, P.M. Effect of biomethanated distillery spent wash and pressmud biocompost on microbial and enzyme dynamics in sugarcane grown soil. J. Biol. Sci. 2011, 11, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Latha, P.; Valliappan, K. Effect of distillery spent wash and bio-compost on microbial and enzyme activity in soil. Ind. J. Environ. Res. 2010, 22, 84–89. [Google Scholar]
- Burns, R.G. (Ed.) Enzyme Activity in Soil: Some Theoretical and Practical Considerations. In Soil Enzymes; Academic Press: New York, NY, USA, 1978; pp. 295–340. [Google Scholar]
- Frankenberger, W.T.; Dick, W.A. Relationship between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Adak, T.; Singha, A.; Kumar, K.; Shukla, S.K.; Singh, A.; Singh, V.K. Soil organic carbon, dehydrogenase activity, nutrient availability and leaf nutrient content as affected by organic and inorganic source of nutrient in mango orchard soil. J. Soil Sci. Plant Nutr. 2014, 2, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Saliha, B.B.; Krishnakumar, S.; Saravanan, A.; Natarajan, S.K. Microbial and enzyme dynamics in distillery spentwash treated soil. Res. J. Agric. Biol. Sci. 2005, 1, 166–169. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphates enzymes in soil. Soil Biol. 2011, 100, 215–243. [Google Scholar]
- Dinesh, R.; Dubey, R.P.; Ganeshamurthy, A.N.; Prasad, G.S. Organic manuring in rice-based cropping system: Effects on soil microbial biomass and selected enzyme activities. Curr. Sci. 2000, 79, 1716–1720. [Google Scholar]
- Kaur, J.; Singh, H.; Benbi, D.; Sharma, S.; Banta, G. Effect of Distillery Effluent, Biomethanated Spent Wash, on Microbial Activity Parameters in Soil Under Rice-Wheat Cropping System. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 467–475. [Google Scholar] [CrossRef]
- Sarode, P.B.; More, S.D.; Ghatvade, P.T. Mineralization of carbon and nutrient availability in soil amended with organic residue. J. Soils Crops 2009, 19, 79–80. [Google Scholar]
- Deshpande, A.N.; Kamble, B.M.; Shinde, R.B.; Gore, S.B. Effect of primary treated biomethanated spent wash on soil properties and yield of sunflower (Helianthus annuus L.) on sodic soil. Commun. Soil Sci. Plant Anal. 2012, 43, 730–743. [Google Scholar] [CrossRef]
- Jedidi, N.; Hassen, A.; van Cleemput, O.; M’Hiri, A. Microbial biomass in a soil amended with different types of organic wastes. Waste Manag. Res. 2004, 22, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kremer, R.J.; Li, J. Developing weed suppressing soils through soil quality management. Soil Tillage Res. 2003, 72, 193–202. [Google Scholar] [CrossRef]
- Baskar, M.; Saravanan, A.; Chitra, L.; Dhevagi, P.; Lenin, R.D.; Pandiyarajan, P.; Ambast, S.K. Ecofriendly Utilization of Distillery Waste Water in Agriculture; AICRP on Management of Salt Affected Soils and Use of Saline Water in Agriculture; Tamil Nadu Agricultural University: Tamil Nadu, India; Indian Council of Agricultural Research: New Delhi, India, 2013; pp. 1–50. [Google Scholar]
- Chandra, S.; Joshi, H.C.; Pathak, H.; Jain, M.C.; Kalra, N. Effect of potassium salts and distillery effluent on carbon mineralization in soil. Bioresour. Technol. 2002, 83, 255–257. [Google Scholar] [CrossRef]
- Pujar, S.S. Effect of Distillery Effluent Irrigation on Growth, Yield and Quality of Crops. Master’s Thesis, University of Agricultural Sciences, Dharwad, India, 1995. [Google Scholar]
- Basavaraju, H.C.; Chandraju, S. Impact of distillery spentwash on the nutrients of Leaves vegetables. Asian J. Chem. 2008, 20, 5301–5310. [Google Scholar]
- Baskar, M.; Kayalvizhi, C.M.; Subhash, C.B. Ecofriendly utilization of distillery effluent in Agriculture. Agric. Rev. 2003, 24, 16–30. [Google Scholar]
- Sukanya, T.S.; Meli, S.S.; Patil, R.H. Performance of wheat under graded dilution of liquid distillery effluent as a source of irrigation. J. Maharashtra Agric. Univ. 2004, 29, 119–121. [Google Scholar]
- Anandakrishanan, B.M.; Dawood, M.; Soundarrajan, S.; Jebaraj, S.; Murugesan, M. Micronutrient status assessment in the distillery effluent applied long-term sugarcane field experiment. Adv. Plant Sci. 2009, 22, 565–569. [Google Scholar]
- Kaushik, A.; Nisha, R.; Jagjeeta, K.; Kaushik, C.P. Impact of long term and short-term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Biores. Technol. 2005, 96, 1860–1866. [Google Scholar] [CrossRef]
- Gupta, R.; Khan, M.Z. Evaluation of distillery effluent application effect on physico-chemical properties and exchangeable sodium content of sodic soils. Sugar Technol. 2009, 11, 330–337. [Google Scholar] [CrossRef]
- Saliha, B.B. Eco-Friendly Utilization of Distillery Spentwash for Improving Agricultural Productivity in Dryland and High pH Soils of Theni District. Ph.D. Thesis, Tamil Nadu Agricultural University, Tamil Nadu, India, 2003. [Google Scholar]
- Zalawadia, N.M.; Raman, S.; Patil, R.G. Influence of diluted spentwash of sugar industries application on yield and nutrient uptake by sugarcane and change in soil properties. J. Ind. Soc. Soil Sci. 1997, 45, 767–769. [Google Scholar]
- Deshpande, A.N.; Kamble, B.M.; Said, L.B.; Wadekar, S.M. Effect of Primary Biomethanated Spentwash on Soil Properties, Nutrient Uptake, and Yield of Wheat on Sodic Soil. Commun. Soil Sci. Plant Anal. 2017, 48, 963–976. [Google Scholar] [CrossRef]
- Hati, K.M.; Biswas, A.K.; Bandyopadhyay, K.K.; Misra, A.K. Soil properties and crop yields on a vertisol in India with application of distillery effluent. Soil Tillage Res. 2007, 92, 60–68. [Google Scholar] [CrossRef]
- Chidankumar, C.S.; Chandraju, S. Impact of irrigation of distillery spent wash on the nutrients of pulses in untreated and treated soil. Sugar Technol. 2008, 10, 314–318. [Google Scholar] [CrossRef]
- Biswas, A.K.; Mohanty, M.; Hati, K.M.; Misra, A.K. Distillery effluents effect on soil organic carbon and aggregate stability of a Vertisol in India. Soil Tillage Res. 2009, 104, 241–246. [Google Scholar] [CrossRef]
- Vadivel, K.; Thangavel, P.; Avudainayagam, S.; Rajannan, G. Effect of Biomethanated Spent Wash on Enzymatic Activities under Irrigated Condition. Madras Agric. J. 2017, 104, 118–120. [Google Scholar]
- Kaloi, G.M.; Mehrunisa, M.; Kazi, S.M.; Sagheer, A.; Saghir, A.S.; Ghulam, M.J. Effect of sugar industry spentwash (diluted) on the characteristics of soil and sugarcane (Saccharum officinarum L.) growth in the subtropical environment of Sindh, Pakistan. Environ. Monit. Assess. 2017, 189, 127. [Google Scholar] [CrossRef]
- Choudhary, A.N.; Farooq, M.S.; Zeeshan, M.; Khan, G.; Choudhary, T.K. Crop Yield and Soil Characteristics as Affected by Composts from Different Organic Materials with Spent Wash. Adv. Crop Sci. Tech. 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Sivaloganathan, P.; Baskar, M.; Saravanan, A.; Leninraja, D. Effect of dilution of treated distillery effluent (TDE) on soil properties and yield of sugarcane. Am. J. Plant Sci. 2013, 4, 1811–1814. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, C.A.; Srinivasamurthy, A.; Sathish, N.; Lingaraju, N.; Geetha, K.N. Effect of Distillery Spent wash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G). Int. J. Environ. Ecol. Eng. 2018, 12, 1. [Google Scholar]
- Chattha, M.U.; Hakoomat, A.; Muhammad, B.C.; Muhammad, U.C. Management of sugarcane distillery spent wash for improving the growth, yield and quality of wheat crop. Appl. Ecol. Environ. Res. 2018, 16, 4375–4385. [Google Scholar] [CrossRef]
- Vadivel, K.; Rajannan, G.; Avudainayagam, S. Dynamics of soil microbial population and enzymes activities under distillery spentwash irrigation. Adv. Res. 2019, 1–8. [Google Scholar] [CrossRef]
- Nawaz, M.; Khan, S.; Ali, H.; Ijaz, M.; Chattha, M.U.; Hassan, M.U.; Irshad, S.; Hussain, S.; Khan, S. Assessment of environment-friendly usage of spent wash and its nutritional potential for sugarcane production. Commun. Soil Sci. Plant Anal. 2019, 50, 1239–1249. [Google Scholar] [CrossRef]
- Shinde, K.; Shikka, V.; Sarika, G.; Deshpande, A.N. Use of post biomethanated spent wash as a soil amendment for sodic soils. Int. J. Chem. Stud. 2019, SP6, 582–586. [Google Scholar]
- Armengol, J.E.; Lorenzo, B.; Noemi, F. Use of vinasses dilutions in water as an alternative for improving chemical properties of sugarcane planted verticals. Cultiv. Trop. 2003, 24, 73–76. [Google Scholar]
- Nayamangra, J.; Gotosa, J.; Mpofu, S.E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Tillage Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Li, Y.R.; Wei, G.P.; Liao, Q.; Su, T.M.; Meng, Y.C.; Zhang, H.Y.; Lu, C.Y. Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils. Sugar Technol. 2012, 14, 412–417. [Google Scholar] [CrossRef]
- Aggelides, S.M.; Londra, P.A. Effect of compost produced from town wastes and sewage sludge on the physical properties. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Pagaria, P.; Totawat, K.L. Reclamation of calcareous sodic soil of southwestern Rajasthan using industrial waste. J. Adv. Dev. Res. 2011, 2, 167–170. [Google Scholar]
- Shinde, R.B. Effect of Post Biomethanated Spentwash on Soil Physical, Chemical Properties and Yield of Sunflower on Sodic Soil. Master’s Thesis, Mahatma Phule Krishi Vidyapeeth, Rahuri, India, 2009. [Google Scholar]
- Silva, M.A.S.; Griebeler, N.P.; Borges., L.C. Use of vinasse and impacts on soil properties and groundwater (Uso de vinhaça e impactos nas propriedades do solo e lençol freático). Rev. Bras. Eng. Agrícola Ambient. 2007, 11, 108–114. [Google Scholar] [CrossRef]
- Lyra, M.; Rolim, M.M.; Silva, J.A.A. Topo sequence of fertigated soils with vinasse: Contribution to the quality of the waters of the water table. Braz. Magaz. Agric. Environ. Eng. 2003, 7, 525–532. [Google Scholar]
- Zuniga, F.B.; Baz’ua, M.C.D.; Lozano, R. Chemical changes in the soil due to the application of soluble organic matter such as vinasse. Int. J. Environ. Pollut. 2007, 16, 89–101. [Google Scholar]
- Ceron, V.Z.; Ayerbe, M.A.G. Environmental characterization of sugarcane waste stillage resulting from, ethanol production. Dyna 2013, 80, 124–131. [Google Scholar]
- Ramalho, J.F.G.P.; Sobrinho, N.M.B.A. Heavy metals in soils cultivated with sugar cane by the use of agro-industrial residues. For. Environ. 2001, 8, 120–129. [Google Scholar]
- Brito, F.L.; Rolim, M.M.; Pedrosa, E.M.R. Concentration of cations present in the leachate of soils treated with vines. Agric. Eng. 2007, 27, 773–781. [Google Scholar]
- Jain, N.; Bhatiam, A.; Kaushikm, R.; Sanjeevm, K.; Joshim, H.C.; Pathak, H. Impact of Post-Methanation Distillery Effluent Irrigation on Groundwater Quality. Environ. Monit. Assess. 2005, 110, 243–255. [Google Scholar] [CrossRef]
- Kumar, S.; Gopal, K. Impact of distillery effluent on physiological consequences in the freshwater teleost Channa punctatus. Bull. Environ. Contam. Toxicol. 2001, 6, 617–622. [Google Scholar] [CrossRef]
- Schoor, V.L.H. A Prototype ISO 14001 Environmental Management System for Wine Cellars. Ph.D. Thesis, Stellenbosch University, Matieland, South Africa, 2004. [Google Scholar]
- Muhammad, T.M.; Muhammad, Y.K.; Mushtaq, A.B.; Taj, M.J. Effects of spent wash of ethanol industry on groundwater: A case study of Rahimyar Khan district, Pakistan. J. Environ. Sci. Water Resour. 2012, 4, 85–94. [Google Scholar]
- Allred, B.J.; Glenn, O.B.; Jerry, M.B. Nitrate Mobility Under unsaturated flow conditions in four initially dry soils. J. Soil Sci. 2007, 172, 27–41. [Google Scholar] [CrossRef]
- Karanam, P.; Joshi, H.C. Application of distillery effluents to agricultural land: Is it a win-win option for soils and environment. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Shenbagavalli, S.; Mahimairaja, S.; Kalaiselvi, P. Impact of biomethanated distillery spentwash application on soil and water quality: A field appraisal. Int. J. Environ. Sci. 2011, 1, 7. [Google Scholar]
- Vadivel, R.; Minhas, P.S.; Singh, Y.; DVK, N.R.; Nirmale, A. Significance of vinasses waste management in agriculture and environmental quality—Review. Afr. J. Agric. Res. 2014, 9, 2862–2873. [Google Scholar]
- Bose, S.; Bhattacharyya, A.K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008, 70, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Quartacci, M.F.; Argilla, A.; Baker, A.J.M.; Navari-Izzo, F. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphre 2006, 63, 918–925. [Google Scholar] [CrossRef]
- USEPA. United States of America Environmental Protectio Agency Preliminary Remediation Gols. 2002. Available online: https://archive.epa.gov/epawaste/hazard/web/pdf (accessed on 15 January 2021).
Characteristic | Value | Characteristic | Value |
---|---|---|---|
pH | 3.9–4.3 | Copper | 0.4–2.1 |
EC (dS/m) | 30.5–45.2 | Manganese | 4.6–5.1 |
Nitrogen | 1660–4200 | Sodium | 492–670 |
Phosphorous | 225–3038 | Iron | 6.3–7.5 |
Potassium | 9600–17,475 | Gibberellic acid | 3246–4943 |
Calcium | 2050–7000 | Indole acetic acid | 25–61 |
Magnesium | 1715–2100 | Cadmium | 0.005–0.036 |
Sodium | 492–670 | Lead | 0.16–0.19- |
Sulphate | 3240–3425 | Chromium | 0.05–0.067 |
Zinc | 3.5–10.4 | Nickel | 0.09–0.14 |
Chemical oxygen demand | 104,000–134,400 | Biological oxygen demand | 46,100–96,000 |
All the values are given mg L−1 except EC. [5,35,36] |
Recommended Practices | Crop | Effects | References |
---|---|---|---|
200 m3 ha−1 (liquid DSW) | Groundnut (Arachis hypogaea L.) | Increased the protein and chlorophyll contents seed yield and methionine and cysteine contents | [65] |
10% (w/w) (iquid DSW) | green gram (Vigna radiate L.) | Increased biomass production, photosynthetic pigments, and protein and starch contents. | [46] |
1:3 (DWS:Water) (liquid DSW) | Amaranth (Amaranthus viridis L.) | Increased the grain protein, carbohydrates, zinc and iron. | [66] |
1:3 (DWS:Water) (iquid DSW) | Leafy Vegetables | Improved the growth, yield and nutrients uptake (Ca, Mg, Fe, Zn etc.) | [67] |
100 mL kg−1 soil (liquid DSW) | Sugarcane (Saccharum officinarum L.) | Improved the bud sprouting, root length, chlorophyll a and b and activities of catalase. | [6] |
25% NPK+75 DSW (iquid DSW) | Sugarcane (Saccharum officinarum L.) | Increase in cane and sugar yield, and uptake of N, P and K. | [68] |
10% DWS + 2/3rd NP | Sugarcane (Saccharum officinarum L.) | DSW improved root and shoot length, tillers, shoot weight and seedling vigor index. | [69] |
Crops | Treatment | Effects | Reference |
---|---|---|---|
Wheat (Triticum aestivum L.) and soybean (Glycine max) | 2.5 cm DSW (liquid DSW) | DSW significantly increased the SHC, field capacity, and reduced the bulk density | [110] |
Black gram (Vigna mungo L.) and cow pea (Vigna unguiculata L.) | 33% DSW (liquid DSW) | DSW application significantly increased nutrient uptake | [111] |
Wheat (Triticum aestivum L.) and soybean (Glycine max) | 2.5 cm DSW (liquid DSW) | DSW improved the soil organic carbon and aggregate stability | [112] |
Okra (Abelmoschus esculentus L.) | 100% DSW (liquid DSW) | DSW increased the moisture contents, EC, K, Ca+2, Mg2+ and available P and total nitrogen. | [38] |
Sesame (Sesamum indicum L.) | 75% DSW (liquid DSW) | DSW increased the microbial and fungal population and increased activities of dehydrogenase and Phosphatase | [113] |
Sugarcane (Saccharum officinarum L.) | 10% DSW: (liquid DSW) | Increased cane yield, soil organic matter, soil NPK contents | [114] |
Tomato (Solanum lycopersicum L.) | 10% DSW (liquid DSW) | DSW application decreased the pH and increased the EC, N, P, K, Fe, Zn, Cu, Mn plant height and tomato yield | [115] |
Sugarcane (Saccharum officinarum L.) | DSW: Water (1:10) (liquid DSW) | DSW increased the soil carbon and N, P and K contents | [116] |
Finger millet (Eleusine coracanaand L.) maize (Zea mays L.) | 100 m3 ha⁻1 (liquid DSW) | DSW enhanced the soil pH, K, and yield of both maize and finger millet. | [117] |
Wheat (Triticum aestivum L.) | 25% DWS (liquid DSW) | DSW increased the, N, P and K uptakes and yield, grain weight and yield | [118] |
Sesame (Sesamum indicum L.) | 100% DSW (liquid DSW) | DSW increased the microbial, fungal and actinomycetes population and activities of phosphatase, dehydregenase and urease | [119] |
Sugarcane (saccharum officinarum L.) | 160 t ha−1 (liquid DSW) | DWS increased the N and P uptake, sugar yield and juice quality | [120] |
Sunflower (Helianthus annuus L.) | 180 m3 ha−1 (liquid DSW) | DSW application increased Ca+2, Mg2+, and K+ and reduced the exchangeable sodium | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Khan, I.; Seleiman, M.F.; Rasheed, A.; Nawaz, M.; Rehman, A.; Talha Aslam, M.; et al. Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production. Agronomy 2021, 11, 183. https://doi.org/10.3390/agronomy11010183
Umair Hassan M, Aamer M, Umer Chattha M, Haiying T, Khan I, Seleiman MF, Rasheed A, Nawaz M, Rehman A, Talha Aslam M, et al. Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production. Agronomy. 2021; 11(1):183. https://doi.org/10.3390/agronomy11010183
Chicago/Turabian StyleUmair Hassan, Muhammad, Muhammad Aamer, Muhammad Umer Chattha, Tang Haiying, Imran Khan, Mahmoud F. Seleiman, Adnan Rasheed, Muhammad Nawaz, Abdul Rehman, Muhammad Talha Aslam, and et al. 2021. "Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production" Agronomy 11, no. 1: 183. https://doi.org/10.3390/agronomy11010183
APA StyleUmair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Khan, I., Seleiman, M. F., Rasheed, A., Nawaz, M., Rehman, A., Talha Aslam, M., Afzal, A., & Huang, G. (2021). Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production. Agronomy, 11(1), 183. https://doi.org/10.3390/agronomy11010183