Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
- −
- Experiment E—5-field crop rotation: potatoes, spring barley, yellow lupine, winter wheat, rye—in the years of the study, spring barley (2012) and yellow lupine (2013) were cultivated,
- −
- Experiment D—rye monoculture.
2.2. CO2-C Emissions Measurement
2.3. Soil and Plant Analysis
2.4. Data Analysis
3. Results
3.1. Atmospheric Conditions
3.2. Soil Properties
3.3. Plants Yields and Nitrogen Uptake
3.4. Soil Respiration
3.5. Distribution of CO2-C Soil Fluxes in 2012
3.6. Distribution of CO2-C Soil Fluxes in 2013
3.7. Cumulative Soil Respiration
3.8. Correlation between Soil Respiration and Environmental Factors
4. Discussion
4.1. Effect of Temperature and Season
4.2. Effect of Soil Moisture
4.3. Effect of Cropping System
4.4. Effect of Legumes Cultivation
4.5. Effect of Fertilization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde. 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.F.; Li, B.; Qin, Y.; Gregorich, E. Soil CO2 emission and carbon budget of a wheat/maize annual double-cropped system in response to tillage and residue management in the North China Plain. Int. J. Agr. Sustain. 2017, 15, 253–263. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations. Appl. Soil Ecol. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Cias, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil condition: Results from a meta-analysis. Biogeoscience 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Sasnauskienė, J.; Masilionytè, L.; Kriaučiünienė, Z. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci. Total Environ. 2015, 514, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dhadli, H.S.; Brar, B.S.; Black, T.A. Influence of crop growth and weather variables on soil CO2 emissions in a maize-wheat cropping system. J. Agric. Res. 2015, 52, 28–34. [Google Scholar] [CrossRef]
- Sainju, U.; Jabro, J.D.; William, B.S. Soil carbon dioxide emissions and carbon content as affected by irrigation, tillage, cropping system and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Maljanen, M.; Hytönen, J.; Mäkiranta, P.; Alm, J.; Minkinen, K.; Laine, J.; Martikainen, P.J. Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland. Boreal. Environ. Res. 2007, 12, 133–140. [Google Scholar]
- Zhang, X.B.; Xu, M.G.; Sun, N.; Wang, X.J.; Wu, L.; Wang, B.R.; Li, D.C. How do environmental factors and different fertilizer strategies affect soil CO2 emission and carbon sequestration in the upland soils of southern China. Appl. Soil Ecol. 2013, 72, 109–118. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agric. Scand. B 2009, 59, 97–106. [Google Scholar] [CrossRef]
- Buragienė, S.; Šaruskis, E.; Romaneckas, K.; Adamavičienė, A.; Kriaučiünienė, Z.; Zvižienytė, D.; Mazoras, V.; Naujokienė, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Skinulienė, L.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirbyste 2018, 105, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Alluvione, F.; Hall, V.; Orson, A.D.; Del Grosso, S.J. Nitrogen, Tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J. Environ. Qual. 2009, 38, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Feiziene, D.; Feiza, V.; Kadziene, G.; Vaideliene, A.; Povilaitis, V.; Deveikyte, I. CO2 fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 311–328. [Google Scholar]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 324, 75–84. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. A 2011, 18, 601–609. [Google Scholar]
- Munkholm, L.J.; Schjonning, P.; Debosz, K.; Jansen, H.E.; Christensen, B.T. Aggregate strength and mechanical behavior of a sandy loam soil under long-term fertilization treatments. Eur. J. Soil Sci. 2002, 53, 129–137. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wu, L.; Sun, N.; Ding, X.; Li, J.; Wang, B.; Li, D. Soil CO2 and N2O emissions in maize growing season under different fertilizer regimes in upland red soil region of South China. J. Integr. Agric. 2014, 13, 604–614. [Google Scholar] [CrossRef]
- Zhai, L.; Liu, H.; Zhang, J.; Huang, J.; Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Yagi, K.; Zheng, X. Soil respiration under maize crops: Effect of water, temperature and nitrogen fertilization. Soil Sci. Soc. Am. J. 2007, 71, 944–951. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Cantero-Martinez, C.; Alvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emission. Soil Till. Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Grant, B.; Smith, W.N.; Desjardins, R.; Lemke, R. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim. Change. 2004, 65, 315–332. [Google Scholar] [CrossRef]
- Verdi, L.; Mancini, M.; Napoli, M.; Violi, R.; Pardini, A.; Orlandini, S.; Marta, A.D. Soil carbon emissions from maize under different fertilization methods in an extremely dry summer in Italy. Ital. J. Agrometeorol. 2019, 2, 3–10. [Google Scholar]
- Li, L.J.; You, M.Y.; Shi, H.A.; Ding, X.L.; Qiao, Y.F.; Han, X.Z. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Biol. 2013, 55, 83–90. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killy, D.; Maratha, P.; Williams, M.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223, 9–20. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J.; Smith, D.R.; Hegymegi, P.; Gál, A. Soil carbon dioxide and methane fluxes from long-term tillage systems in continous corn and corn-soybean rotations. Soil Till. Res. 2007, 95, 182–195. [Google Scholar] [CrossRef]
- Campbell, B.; Chen, L.; Dygert, C.; Dick, W. Tillage and crop rotation impacts on greenhouse gas fluxes from soil at two long term agronomic experimental sites in Ohio. J. Soil Water Conserv. 2014, 69, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Sui, P.; Huang, J.; Wang, D.; Whalen, J.K. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain. Field Crops Res. 2018, 225, 117–127. [Google Scholar] [CrossRef]
- Norberg, L.; Berglund, Ö.; Berglund, K. Seasonal CO2 emission under different cropping systems on Histosols in southern Sweden. Geoderma Reg. 2016, 7, 338–345. [Google Scholar] [CrossRef]
- Herrige, D.; Brock, P.M. Annual crop legumes may not mitigate greenhouse gas emissions because of the high carbon cost of nitrogen fixation. In Proceedings of the 2016 International Nitrogen Initiative Conference, Melbourne, Australia, 4–8 December 2016. [Google Scholar]
- Burton, D.L.; Zebarth, B.J.; Gillam, K.M.; MacLeod, J.A. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil Sci. 2008, 88, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Bosco, S.; Volpi, I.; Antichi, D.; Ragaglini, G.; Frasconi, C. Greenhouse gas emissions from soil cultivated with vegetables in crop rotation under integrated, organic and organic conservation management in a mediterranean environment. Agronomy 2019, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Sosulski, T.; Szara, E.; Stępień, W.; Rutkowska, B. The influence of mineral fertilization and legumes cultivation on the N2O soil emissions. Plant Soil Environ. 2015, 12, 529–536. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M. Nitrous oxide emissions from the soil under different fertilization systems on a long-term experiment. Plant Soil Environ. 2014, 60, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Gevan, D.; Behnke, S.M.; Zuber, C.M.; Pittelkow, E.D.; Nafziger, V.M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar]
- Lee, J.; McKnight, J.S.; Skinner, L.; Sherfy, A.; Tyler, D.; English, B. Soil carbon dioxide respiration in switchgrass fields: Assessing annual, seasonal and daily flux patterns. Soil Syst. 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Tie, L.; Liao, J.L.; Liu, X.; Du, M.; Lan, S.L.; Li, C.; Zhan, H.; Huang, C. Nitrogen and phosphorus co-addition stimulates soil respiration in a subtropical evergreen broad-leaved forest. Plant Soil 2020, 450, 171–182. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob. Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Rochette, P.; Flanagan, L.B.; Gregorich, E.G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Biology and biochemistry. Soil Sci. Soc. Am. J. 1999, 63, 1207–1213. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B. Nitrous oxide and carbon dioxide emissions from monoculture and rotation cropping of corn, soybean and winter wheat. Can. J. Soil Sci. 2007, 88, 163–174. [Google Scholar] [CrossRef]
- Aslam, T.; Choudhary, M.A.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production. Agron. Res. 2011, 9, 189–195. [Google Scholar]
- Abagandura, G.O.; Şentürklü, S.; Singh, N.; Kumar, S.; Landblom, D.G.; Kris Ringwall, K. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes. PLoS ONE 2019, 14, e0217069. [Google Scholar] [CrossRef] [Green Version]
- Kalkhoran, S.S.; Pannell, D.J.; Thamo, T.; White, B.; Polyakow, M. Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management. Agric. Syst. 2019, 176, 102684. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggard-Nielsen, H.; Alves, B.J.R.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Sosulski, T.; Szara, E.; Szymańska, M.; Stępień, W. N2O emission and nitrogen and carbon leaching from the soil in relation to long-term and current mineral and organic fertilization—A laboratory study. Plant Soil Environ. 2017, 63, 97–104. [Google Scholar]
- Dai, Z.; Mengjie Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Chang. Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E. CO2 emissions from soil under fodder maize cultivation. Agronomy 2020, 10, 1087. [Google Scholar] [CrossRef]
- Jäger, N.; Stange, C.F.; Ludwig, B.; Flessa, H. Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments—A laboratory study. Biol. Fert. Soils. 2011, 47, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Leitner, S.; Sae-Tun, O.; Kranzinger, L.; Zechmeister-Boltenstern, S.; Zimmermann, M. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest. Plant. Soil. 2016, 403, 455–469. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.Q.; Zhou, X.H. Processes of CO2 transport from soil to the atmosphere. In Soil Respiration and the Environment; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 61–76. [Google Scholar]
Treatment | Soil Horizon | Soil Organic Carbon | Total Nitrogen | C:N |
---|---|---|---|---|
g C kg−1 | g N kg−1 | |||
D—CaNPK+M | Ap (0–25 cm) | 8.802 c ± 0.102 | 0.884 c ± 0.005 | 9.96 |
E—CaNPK+M | 7.348 b ± 0.086 | 0.712 b ± 0.008 | 10.34 | |
E—Ca+M | 6.141 a ± 0.156 | 0.585 a ± 0.017 | 10.51 | |
D—CaNPK+M | Eet (26–45 cm) | 2.014 c ± 0.016 | 0.201 c ± 0.001 | 10.00 |
E—CaNPK+M | 2.668 b ± 0.120 | 0.276 b ± 0.010 | 9.68 | |
E—Ca+M | 1.720 a ± 0.049 | 0.183 a ± 0.007 | 9.39 | |
D—CaNPK+M | Bt (>45 cm) | 2.245 a ± 0.121 | 0.290 a ± 0.016 | 8.02 |
E—CaNPK+M | 2.668 b ± 0.093 | 0.295 b± 0.011 | 8.87 | |
E—Ca+M | 2.212 a ± 0.080 | 0.254 a ± 0.013 | 8.72 |
Year | Cropping System | Treatment | Grain | Straw | Total N Uptake | ||||
---|---|---|---|---|---|---|---|---|---|
Yield | N Content | N Uptake | Yield | N Content | N Uptake | ||||
t ha−1 | g N kg−1 | kg N ha−1 | t ha−1 | g N kg−1 | kg N ha−1 | kg N ha−1 | |||
2012 | Monoculture of rye (D) | CaNPK+M | 2.28 c ±0.23 | 12.7 c ±0.1 | 30.4 c ± 2.8 | 2.83 c ± 0.27 | 5.2 c ± 0.1 | 14.6 c ± 1.5 | 45.0 c ± 3.3 |
5-crop rotation (E) | CaNPK+M | 2.78 a ± 0.27 | 19.8 a ± 0.2 | 55.0 a ± 5.4 | 1.97 a ± 0.04 | 8.2 a ± 0.4 | 20.5 a ± 0.6 | 75.5 a ± 5.4 | |
Ca+M | 2.29 b ± 0.19 | 13.5 b ± 0.4 | 31.0 b ± 3.1 | 0.69 b ± 0.05 | 10.4 b ± 0.1 | 5.7 b ± 0.7 | 36.7 b ± 3.1 | ||
2013 | Monoculture of rye (D) | CaNPK+M | 2.37 c ± 0.20 | 16.0 d ± 0.6 | 37.7 d ± 1.9 | 1.87 d ± 0.08 | 5.28 c ± 0.26 | 9.8 d ± 0.4 | 47.6 c ± 1.9 |
5-crop rotation (E) | CaNPK+M | 1.56 a ± 0.16 | 53.0 a ± 1.2 | 82.3 a ± 6.6 | 8.45 a ± 0.9 | 13.1 a ± 0.8 | 110.0 a ± 8.9 | 192.3 a ± 14.7 | |
Ca+M | 1.17 a ± 0.47 | 53.9 a ± 5.0 | 61.2 a ± 19.6 | 5.55 b ± 1.42 | 13.2 a ± 3.2 | 67.0 b ± 6.3 | 131.2 b ± 20.9 |
Cropping System | Treatment | 2012 | 2013 | |||
---|---|---|---|---|---|---|
CO2-C Soil Emissions | ||||||
Daily | Cumulative | Daily | Cumulative | |||
kg CO2-C ha−1 | ||||||
Rye monoculture (D) | CaNPK+M | mean ± SD | 21.71 ± 16.2 | 4989.5 ± 229.3 | 22.88 ± 16.6 | 3982.7 ± 284.2 |
median | 17.39 b | 5043.1 | 16.43 a | 4028.0 | ||
min-max | 4.25–94.34 | 4688.8–5283.4 | 1.49–67.25 | 3605.1–4315.6 | ||
5-crop rotation (E) | CaNPK+M | mean ± SD | 22.06 ± 21.0 | 4809.2 ± 164.3 | 37.43 ± 29.4 | 6997.5 ± 407.5 |
median | 15.43 b | 4743.3 | 32.49 b | 7137.9 | ||
min-max | 0.93–102.53 | 4670.1–5079.6 | 1.59–158.22 | 6306–7331.6 | ||
Ca+M | mean ± SD | 16.36 ± 15.9 | 3535.1 ± 235.3 | 25.63 ± 24.5 | 4552.7 ± 429.1 | |
median | 10.45 a | 3557.1 | 16.11 a | 4617.7 | ||
min-max | 0.72–72.24 | 3223.8–3868.1 | 0.47–102.27 | 4092.4–5023.4 |
Soil Fluxes | Ta | Ts | WFPS | NO3− | NH4+ |
---|---|---|---|---|---|
CO2 | 0.52 * | 0.57 * | −0.12 * | 0.48 * | 0.41 * |
Soil Horizons | SOC | TN |
---|---|---|
Ap (0–25 cm) | 0.12 | 0.14 |
Eet (26–45 cm) | 0.68 * | 0.69 * |
Bt (>45 cm) | 0.58 * | 0.45 * |
Plant | Grain | Straw | Total N Uptake | ||
---|---|---|---|---|---|
Yield | N Content | Yield | N Content | ||
Rye | 0.45 | 0.88 * | 0.83 * | −0.31 | 0.98 * |
Barley | 0.66 * | 0.94* | 0.96 * | 0.93 * | 0.92 * |
Lupine | 0.41 | −0.07 | 0.71 * | 0.07 | 0.80 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosulski, T.; Szymańska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2021, 11, 21. https://doi.org/10.3390/agronomy11010021
Sosulski T, Szymańska M, Szara E, Sulewski P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy. 2021; 11(1):21. https://doi.org/10.3390/agronomy11010021
Chicago/Turabian StyleSosulski, Tomasz, Magdalena Szymańska, Ewa Szara, and Piotr Sulewski. 2021. "Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland" Agronomy 11, no. 1: 21. https://doi.org/10.3390/agronomy11010021
APA StyleSosulski, T., Szymańska, M., Szara, E., & Sulewski, P. (2021). Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy, 11(1), 21. https://doi.org/10.3390/agronomy11010021