Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Trait Correlations, Combining Abilities, and Reciprocal Effects
3.2. RNA-Seq of Reciprocal Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kihara, H. Importance of cytoplasm in plant genetics. Cytologia 1982, 47, 435–450. [Google Scholar] [CrossRef]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Greiner, S.; Bock, R. Tuning a ménage à trois: Co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 2013, 35, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Dobler, R.; Rogell, B.; Budar, F.; Dowling, D. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J. Evol. Biol. 2014, 27, 2021–2034. [Google Scholar] [CrossRef]
- Joseph, B.; Corwin, J.; Li, B.; Atwell, S.; Kliebenstein, D.J. Author response: Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. eLife 2013, 2, e00776. [Google Scholar] [CrossRef] [PubMed]
- Lawson, H.; Cheverud, J.M.; Wolf, J. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 2013, 14, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Raissig, M.T.; Baroux, C.; Grossniklaus, U. Regulation and Flexibility of Genomic Imprinting during Seed Development. Plant Cell 2011, 23, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kermicle, J.L. Androgenesis Conditioned by a Mutation in Maize. Science 1969, 166, 1422–1424. [Google Scholar] [CrossRef]
- Adams, S.; Vinkenoog, R.; Spielman, M.; Dickinson, H.; Scott, R. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 2000, 127, 2493–2502. [Google Scholar] [CrossRef]
- Waters, A.J.; Makarevitch, I.; Eichten, S.; Swanson-Wagner, R.A.; Yeh, C.-T.; Xu, W.; Schnable, P.; Vaughn, M.; Gehring, M.; Springer, N.M. Parent-of-Origin Effects on Gene Expression and DNA Methylation in the Maize Endosperm. Plant Cell 2011, 23, 4221–4233. [Google Scholar] [CrossRef]
- Bai, F.; Daliberti, M.; Bagadion, A.; Xu, M.; Li, Y.; Baier, J.; Tseung, C.-W.; Evans, M.M.S.; Settle, A.M. Parent-of-origin-effect rough endosperm mutants in maize. Genetics 2016, 204, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Hornslien, K.S.; Miller, J.R.; Grini, P.E. Regulation of Parent-of-Origin Allelic Expression in the Endosperm. Plant Physiol. 2019, 180, 1498–1519. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.; Scholten, S. Epigenetic Resetting of a Gene Imprinted in Plant Embryos. Curr. Biol. 2009, 19, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, H.; Scholten, S. And baby makes three: Genomic imprinting in plant embryos. PLoS Genet. 2013, 9, e1003981. [Google Scholar] [CrossRef] [PubMed]
- Raissig, M.T.; Bemer, M.; Baroux, C.; Grossniklaus, U. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet. 2013, 9, e1003862. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Shi, C.; Zhang, L.; Sun, M.-X. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. Front. Plant Sci. 2014, 5, 729. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sugiura, M. The chloroplast genome. Plant Mol. Biol. 1992, 19, 149–168. [Google Scholar] [CrossRef]
- Beck, C.F. Signaling pathways from the chloroplast to the nucleus. Planta 2005, 222, 743–756. [Google Scholar] [CrossRef]
- Inaba, T.; Yazu, F.; Ito-Inaba, Y.; Kakizaki, T.; Nakayama, K. Retrograde signaling pathway from plastid to nucleus. In International Review of Cell and Molecular Biology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 167–204. [Google Scholar]
- Barajas-López, J.D.D.; Blanco, N.E.; Strand, Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim. Biophys. Acta 2013, 1833, 425–437. [Google Scholar] [CrossRef]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial–nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. The use of cytoplasmic male sterility for hybrid seed production. In Molecular Biology and Biotechnology of Plant Organelles; Daniel, H., Chase, C., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004; pp. 623–634. [Google Scholar]
- Yamato, K.T.; Newton, K.J. Heteroplasmy and homoplasmy for maize mitochondrial mutants: A rare homoplasmic nad4 deletion mutant plant. J. Hered. 1999, 90, 369–373. [Google Scholar] [CrossRef]
- Bartoszewski, G.; Malepszy, S.; Havey, M.J. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr. Genet. 2004, 45, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Hirschberg, J.; Bleecker, A.; Kyle, D.J.; McIntosh, L.; Arntzen, C.J. The Molecular Basis of Triazine-Herbicide Resistance in Higher-Plant Chloroplasts. Z. Nat. C 1984, 39, 412–420. [Google Scholar] [CrossRef]
- Bühler, M.; Bogenrieder, A.; Sandermann, H.; Ernst, D. Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris. Z. Nat. C 2016, 71, 267–272. [Google Scholar] [CrossRef]
- Flood, P.J.; Theeuwen, T.P.J.M.; Schneeberger, K.; Keizer, P.; Kruijer, W.; Severing, E.; Kouklas, E.; Hageman, J.A.; Wijfjes, R.; Calvo-Baltanas, V.; et al. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nat. Plants 2020, 6, 13–21. [Google Scholar] [CrossRef]
- Reboud, X.; Zeyl, C. Organelle inheritance in plants. Heredity 1994, 72, 132–140. [Google Scholar] [CrossRef]
- Havey, M.J. Predominant Paternal Transmission of the Mitochondrial Genome in Cucumber. J. Hered. 1997, 88, 232–235. [Google Scholar] [CrossRef]
- Havey, M.J.; McCreight, J.D.; Rhodes, B.; Taurick, G. Differential transmission of the Cucumis organellar genomes. Theor. Appl. Genet. 1998, 97, 122–128. [Google Scholar] [CrossRef]
- Bartoszewski, G.; Havey, M.J.; Ziółowska, A.; Długosz, M.; Malepszy, S. The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture—A method to obtain plant mitochondrial mutants. J. Appl. Genet. 2007, 48, 1–9. [Google Scholar] [CrossRef]
- Echevarria, A.D.V.; Kiełkowska, A.; Bartoszewski, G.; Havey, M.J. The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts. G3 Genes Genomes Genet. 2015, 5, 1211–1221. [Google Scholar] [CrossRef]
- Kim, J.-S.; Jung, J.D.; Lee, J.-A.; Park, H.-W.; Oh, K.-H.; Jeong, W.-J.; Choi, D.-W.; Liu, J.R.; Cho, K.Y. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep. 2005, 25, 334–340. [Google Scholar] [CrossRef]
- Chung, S.-M.; Gordon, V.S.; Staub, J.E. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome 2007, 50, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Pląder, W.; Yukawa, Y.; Sugiura, M.; Malepszy, S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis. Cell. Mol. Biol. Lett. 2007, 12, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Alverson, A.; Rice, D.W.; Dickinson, S.; Barry, K.; Palmer, J.D. Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber. Plant Cell 2011, 23, 2499–2513. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Koo, D.-H.; Li, Y.; Zhang, X.; Luan, F.; Havey, M.J.; Jiang, J.; Weng, Y. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012, 71, 895–906. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, D.; Gao, L.-Z. The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber. Mitochondrial DNA Part A 2015, 27, 4627–4628. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Huang, W.; Xu, Y.; Zhou, Q.; Wang, S.; Ruan, J.; Huang, S.; Zhang, Z. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). Gigascience 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Osipowski, P.; Pawełkowicz, M.; Wojcieszek, M.; Skarzyńska, A.; Przybecki, Z.; Pląder, W. A high-quality cucumber genome assembly enhances computational comparative genomics. Mol. Genet. Genom. 2020, 295, 177–193. [Google Scholar] [CrossRef]
- Shen, J.; Dirks, R.; Havey, M.J. Diallel crossing among doubled haploids of cucumber reveals significant reciprocal-cross differences. J. Am. Soc. Hort. Sci. 2015, 140, 178–182. [Google Scholar] [CrossRef]
- Singh, J.; Clavijo Michelangeli, J.A.; Gezan, S.A.; Lee, H.; Vallejos, C.E. Maternal effects on seed and seedling phe-notypes in reciprocal F1 hybrids of the common bean (Phaseolus vulgaris L.). Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R. Studies of seed development in Pisum sativum. Planta 1975, 124, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Lemontey, C.; Mousset-Déclas, C.; Munier-Jolain, N.; Boutin, J. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J. Exp. Bot. 2000, 51, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Revilla, P.; Butrón, A.; Malvar, R.A.; Ordás, A. Relationships among kernel weight, early vigor, and growth in maize. Crop Sci. 1999, 39, 654–658. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Lovett-Doust, J. Maternal effects in the progeny generation in zucchini Cucurbita pepo (Cucurbitaceae). Int. J. Plant Sci. 1999, 160, 331–339. [Google Scholar] [CrossRef]
- Sprague, G.F.; Tatum, L.A. General versus specific combining ability in single crosses of corn. Agronomy 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Ramírez-Madera, A.O.; Miller, N.D.; Spalding, E.P.; Weng, Y.; Havey, M.J. Spontaneous polyploidization in cucumber. Theor. Appl. Genet. 2017, 130, 1481–1490. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.R. R Package “Corrplot”: Visualization of a Correlation Matrix. Version 0.84. 2017. Available online: https://github.com/taiyun/corrplot (accessed on 15 April 2020).
- Griffing, B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.; Smyth, G. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef]
- Reiner, A.; Yekutieli, D.; Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19, 368–375. [Google Scholar] [CrossRef]
- Oliveros, J.C. VENNY: An Interactive Tool for Comparing Lists with Venn Diagrams. 2007. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 8 September 2021).
- Thomas, P.D.; Kejariwal, A.; Guo, N.; Mi, H.; Campbell, M.J.; Muruganujan, A.; Lazareva-Ulitsky, B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006, 34, W645–W650. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2018, 47, D419–D426. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Olberg, M. Evaluation and Elucidation of The Genetic Bases of Maternally-Inherited Cold Tolerance and Parent-of-Origin Effects in Cucumber (Cucumis sativus). Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2020; 158p. [Google Scholar]
- Cramer, C.S.; Wehner, T.C. Little heterosis for yield and yield components in hybrids of six cucumber inbreds. Euphytica 1999, 110, 99–108. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, D.K. Study of heterosis and combining ability for earliness and vegetative traits in Cucumber (Cucumis sativus L.). J. Appl. Nat. Sci. 2016, 8, 999–1005. [Google Scholar] [CrossRef]
- Preger, V.; Tango, N.; Marchand, C.; Lemaire, S.; Carbonera, D.; Di Valentin, M.; Costa, A.; Pupillo, P.; Trost, P. Auxin-Responsive Genes AIR12 Code for a New Family of Plasma Membrane b-Type Cytochromes Specific to Flowering Plants. Plant Physiol. 2009, 150, 606–620. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, X.; Shi, Y.; Qi, X.; Chen, X. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genom. 2017, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kollipara, K.P.; Saab, I.N.; Wych, R.D.; Lauer, M.J.; Singletary, G.W. Expression Profiling of Reciprocal Maize Hybrids Divergent for Cold Germination and Desiccation Tolerance. Plant Physiol. 2002, 129, 974–992. [Google Scholar] [CrossRef] [PubMed]
- Springer, N.M.; Stupar, R. Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize. Plant Cell 2007, 19, 2391–2402. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Rupe, M.A.; Yang, X.; Crasta, O.; Zinselmeier, C.; Smith, O.S.; Bowen, B. Genome-wide transcript analysis of maize hybrids: Allelic additive gene expression and yield heterosis. Theor. Appl. Genet. 2006, 113, 831–845. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhu, X.; Elling, A.A.; Chen, L.; Wang, X.; Guo, L.; Liang, M.; He, H.; Zhang, H.; Chen, F.; et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell 2010, 22, 17–33. [Google Scholar] [CrossRef]
- Groszmann, M.; Greaves, I.K.; Albertyn, Z.I.; Scofield, G.N.; Peacock, W.J.; Dennis, E.S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 2011, 108, 2617–2622. [Google Scholar] [CrossRef]
- Shen, H.; He, H.; Li, J.; Chen, W.; Wang, X.; Guo, L.; Peng, Z.; He, G.; Zhong, S.; Qi, Y.; et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012, 24, 875–892. [Google Scholar] [CrossRef]
Trait | Seed Length | Seed Width | Seed Perimeter | Cotyledon Length | Cotyledon Width | Fresh Weight | Dry Weight |
---|---|---|---|---|---|---|---|
Seed area | 0.82 | 0.81 | 0.92 | 0.34 | 0.38 | 0.12 | 0.09 |
Seed length | 0.35 | 0.97 | 0.18 | 0.3 | 0.11 | 0.11 | |
Seed width | 0.53 | 0.38 | 0.32 | 0.09 | 0.04 NS | ||
Seed perimeter | 0.24 | 0.34 | 0.13 | 0.11 | |||
Cotyledon length | 0.88 | 0.22 | 0.21 | ||||
Cotyledon width | 0.17 | 0.15 | |||||
Fresh weight | 0.88 |
Source | DF | Seed Area | Cotyledon Length | Fresh Weight |
---|---|---|---|---|
Geno (G) | 55 | 5.8 × 10−3 *** | 186.5 *** | 111.4 *** |
GCA | 7 | 8.0 × 10−3 *** | 594.1 *** | 36.7 *** |
SCA | 20 | 1.9 × 10−3 *** | 114.1 *** | 256.8 *** |
Recip | 28 | 8.1 × 10−3 *** | 142.5 *** | 27.0 *** |
Exp (E) | 2 | 1.2 × 10−3 *** | 1766.0 *** | 5969.0 *** |
G × E | 110 | 4.4 × 10−5 | 47.4 *** | 47.5 *** |
GCA × E | 14 | 5.0 × 10−4 | 114.3 *** | 99.2 *** |
SCA × E | 40 | 2.0 × 10−3 | 26.5 *** | 27.0 *** |
Recip × E | 56 | 2.5 × 10−3 | 46.1 *** | 49.5 *** |
Block(E) | 6 | 3.4 × 10−3 *** | 5.2 | 156.8 *** |
Error | 330 | 1.3 × 10−2 | 3.1 | 7.5 |
Parent | Seed Area (mm2) | Cotyledon Length (mm) | Plant Fresh Weight (g) |
---|---|---|---|
9930-3 | −0.009 *** | −0.772 | −0.77 |
9930-5 | −0.009 *** | −0.712 | 0.19 |
GY14-15 | 0.007 *** | −1.615 *** | 0.30 |
GY14-9 | −0.008 *** | −4.079 *** | −0.60 |
ST8-2 | −0.005 *** | 0.174 | 0.03 |
ST8-4 | 0.007 *** | 3.174 *** | 0.82 |
TMG1-4 | 0.012 *** | 2.512 *** | 0.57 |
TMG1-5 | 0.005 ** | 1.319 ** | −0.55 |
Seed Area (mm2) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −0.002 | 0.002 | 0.007 * | −0.014 ** | −0.007 * | −0.003 | 0.017 ** |
9930-5 | - | 0.004 | 0.011 ** | −0.005 | −0.003 | −0.017 ** | 0.013 ** |
GY14-15 | – | −0.003 | 0.009 ** | −0.007 * | 0.004 | −0.010 ** | |
GY14-9 | - | 0.001 | −0.005 | −0.004 | −0.008 * | ||
ST8-2 | – | 0.013 ** | 0.009 ** | −0.013 ** | |||
ST8-4 | - | 0.009 ** | −0.001 | ||||
TMG1-4 | – | 0.002 | |||||
Cotyledon Length (mm) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −3.49 ** | 0.14 | 3.42 ** | −2.85 ** | −0.81 | 0.84 | 2.74 ** |
9930-5 | - | 3.66 ** | 0.98 | −2.15 * | 0.98 | −0.68 | 0.69 |
GY14-15 | – | −3.11 ** | 0.76 | −0.55 | −1.17 | 0.28 | |
GY14-9 | - | 1.28 | −4.39 ** | 0.92 | 0.9 | ||
ST8-2 | – | 2.10 * | 1.81 * | −0.94 | |||
ST8-4 | - | 2.32 * | 0.35 | ||||
TMG1-4 | – | −4.04 ** | |||||
Plant Fresh Weight (g) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −10.18 ** | 0.91 | 3.73 * | 2.30 | 2.72 * | −0.31 | 0.83 |
9930-5 | - | 4.12 ** | 3.43 * | 1.28 | 2.25 | −0.74 | −0.15 |
GY14-15 | – | −5.66 ** | −2.01 | −0.1 | 1.44 | 1.29 | |
GY14-9 | – | 0.27 | −5.31 ** | 2.29 | 1.26 | ||
ST8-2 | - | −2.96 | 0.75 | 0.36 | |||
ST8-4 | – | 1.78 | 1.62 | ||||
TMG1-4 | - | −5.21 ** |
Seed Area (mm2) | ||||||||
Male Parent | Female Parent | |||||||
9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 | |
9930-3 | – | −0.001 | 0.026 ** | 0.024 ** | 0.017 ** | 0.021 ** | 0.018 ** | 0.037 ** |
9930-5 | 0.001 | – | 0.022 ** | 0.024 ** | 0.023 ** | 0.026 ** | 0.032 ** | 0.035 ** |
GY14-15 | −0.026 ** | −0.022 ** | – | 0.004 * | −0.020 ** | 0.008 ** | <0.001 | 0.030 ** |
GY14-9 | −0.024 ** | −0.024 ** | −0.004 * | – | −0.012 ** | 0.016 ** | 0.010 ** | 0.025 ** |
ST8-2 | −0.017 ** | −0.023 ** | 0.020 ** | 0.012 ** | – | 0.003 | 0.021 ** | −0.008 ** |
ST8-4 | −0.021 ** | −0.026 ** | −0.008 ** | −0.016 ** | −0.003 | – | 0.001 | 0.029 ** |
TMG1-4 | −0.018 ** | −0.032 ** | <0.001 | −0.010 ** | −0.021 ** | −0.001 | – | 0.021 ** |
TMG1-5 | −0.037 ** | −0.035 ** | −0.030 * | −0.025 ** | 0.008 ** | −0.029 ** | −0.021 ** | – |
Cotyledon Length (mm) | ||||||||
♀ ♂ | 9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | – | −0.87 | 2.87 ** | 0.9 | −1.17 * | 3.48 ** | 3.13 ** | 3.98 ** |
9930-5 | 0.87 | – | 2.39 ** | 0.85 | 1.73 ** | 4.78 ** | 3.83 ** | 4.43 ** |
GY14-15 | −2.87 ** | −2.39 ** | – | 1.33 * | 2.33 ** | 2.81 ** | 3.88 ** | 3.04 ** |
GY14-9 | −0.9 | −0.85 | −1.33 * | – | 2.11 ** | 4.34 ** | 3.95 ** | 4.33 ** |
ST8-2 | 1.17 * | −1.73 ** | −2.33 ** | −2.11 ** | – | 0.86 | 0.77 | −1.89 ** |
ST8-4 | −3.48 ** | −4.78 ** | −2.81 ** | −4.34 ** | −0.86 | – | −0.7 | 0.78 |
TMG1-4 | −3.13 ** | −3.83 ** | −3.88 ** | −3.95 ** | −0.77 | 0.7 | – | 1.73 ** |
TMG1-5 | −3.98 ** | −4.43 ** | −3.04 ** | −4.33 ** | 1.89 ** | −0.78 | −1.73 ** | – |
Plant Fresh Weight (g) | ||||||||
♀ ♂ | 9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | – | −0.06 | 1.93 * | 0.42 | −0.27 | 2.09 * | 0.84 | −1.29 |
9930-5 | 0.06 | – | 0.7 | 0.51 | 1.52 | 1.69 * | 0.79 | 0.34 |
GY14-15 | −1.93 * | −0.7 | – | 1.80 * | 2.71 ** | −0.06 | 1.91 * | −0.21 |
GY14-9 | −0.42 | −0.51 | −1.80 * | – | 1.01 | 1.32 | 0.34 | 0.39 |
ST8-2 | 0.27 | −1.52 | −2.71 ** | −1.01 | – | −1.59 | 0.4 | −1.75 ** |
ST8-4 | −2.09 * | −1.69 * | 0.06 | −1.32 | 1.59 | – | −0.93 | <0.01 |
TMG1-4 | −0.84 | −0.79 | −1.91 * | −0.34 | −0.4 | 0.93 | – | 0.88 |
TMG1-5 | 1.29 | −0.34 | 0.21 | −0.39 | 1.75 * | <0.01 | −0.88 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oravec, M.W.; Havey, M.J. Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy 2021, 11, 1908. https://doi.org/10.3390/agronomy11101908
Oravec MW, Havey MJ. Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy. 2021; 11(10):1908. https://doi.org/10.3390/agronomy11101908
Chicago/Turabian StyleOravec, Madeline W., and Michael J. Havey. 2021. "Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber" Agronomy 11, no. 10: 1908. https://doi.org/10.3390/agronomy11101908
APA StyleOravec, M. W., & Havey, M. J. (2021). Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy, 11(10), 1908. https://doi.org/10.3390/agronomy11101908