Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy
Abstract
:1. Introduction
- -
- Determine the elemental composition of HAs isolated from Chernevaya and oligotrophic taiga soils of Siberia;
- -
- Investigate the molecular composition of HAs isolated from Chernevaya taiga and oligotrophic taiga soils of Siberia according to 13C CP/MAS and 1H-13C HETCOR NMR spectroscopy;
- -
- Estimate the rate of stabilization of organic matter in highly productive Chernevaya taiga and oligotrophic taiga soils of Siberia.
2. Materials and Methods
2.1. The Study Area
Sample ID | Soil № | Horizons * | Depth, cm | Description | Texture Class * | Coordinates | Soil Name * |
---|---|---|---|---|---|---|---|
N1 | 1 | AU | 0–10 | Mineral horizon with accumulation of organic matter | Clay Loam | N 54°08′26.5′′ E 84°56′58.2′′ | Umbric Retisols |
2 | AU | 20–30 | Mineral horizon with accumulation of organic matter | ||||
3 | BEL | 30–40 | Transitional eluvial horizon with loss of silicate clay | ||||
N2 | 4 | AY | 10–20 | Mineral horizon with accumulation of organic matter | Clay Loam | N 54°22′15.0′′ E 82°26′21.5” | Albic Retisols |
N3 | 5 | AY | 3–10 | Mineral horizon with accumulation of organic matter | Sandy Clay Loam | N 54°24′29.2′′ E 82°11′03.1′′ | Albic Retisols |
T1 | 6 | AU | 0–15 | Mineral horizon with accumulation of organic matter | Silty Clay Loam | N 56°18′25.0′′ E 85°28′14.3′′ | Umbric Retisols |
7 | BT | 70–110 | Mineral horizon with accumulation of illuvial clay particles | ||||
T2 | 8 | AU | 0–3 | Mineral horizon with accumulation of organic matter | Clay Loam | N 55°53′10.3′′ E 86°00′15.6′′ | Albic Retisols |
T3 | 9 | AY | 10–20 | Mineral horizon with accumulation of organic matter | Clay | N 56°28′51.8′′ E 84°47′55.0′′ | Albic Retisols |
2.2. Laboratory Analysis
2.2.1. Extraction of HAs
2.2.2. Elemental Composition of HAs
2.2.3. Molecular Composition of HAs
Statistical Analysis
3. Results and Discussion
3.1. Elemental Composition of HAs Isolated from Chernevaya taiga Soils
3.2. Molecular Structure of HAs Isolated from Soils of Chernevaya and Oligotrophic Taiga
3.3. H-13C HETCOR NMR Spectroscopy of Studied Soils
3.4. Stabilization of Organic Matter in the Soils of Chernevaya taiga
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. Global Forest Resources Assessment 2005, Progress towards Sustainable Forest Management; FAO Forestry Paper 147; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Kauppi, P.E.; Posch, M.; Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 2014, 9, e111340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Pisani, O.; Frey, S.D.; Simpson, A.J.; Simpson, M.J. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry 2015, 123, 391–409. [Google Scholar] [CrossRef]
- Startsev, V.V.; Mazur, A.S.; Dymov, A.A. The Content and Composition of Organic Matter in Soils of the Subpolar Urals. Eurasian Soil Sci. 2020, 53, 1726–1734. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Loiko, S.V.; Geras’ko, L.I.; Kulizhskii, S.P.; Amelin, I.I.; Istigechev, G.I. Soil cover patterns in the northern part of the area of aspen-fir taiga in the southeast of Western Siberia. Eurasian Soil Sci. 2015, 48, 359–372. [Google Scholar] [CrossRef]
- Perez-Quezada, J.F.; Pérez, C.A.; Brito, C.E.; Fuentes, J.P.; Gaxiola, A.; Aguilera-Riquelme, D.; Lopatin, J. Biotic and abiotic drivers of carbon, nitrogen and phosphorus stocks in a temperate rainforest. For. Ecol. Manag. 2021, 494, 119341. [Google Scholar] [CrossRef]
- Geraskina, A.P.; Smirnova, O.V.; Korotkov, V.N.; Kudrevatykh, I.Y.u. Productivity and content of macro- and microelements in the phytomass of ground vegetation of typical and unique taiga forests of the Northern Urals (example of spruce-fir forests of the Pechorailych nature reserve). Russ. J. Ecosyst. Ecol. 2020, 5. [Google Scholar] [CrossRef]
- Achat, D.L.; Bakker, M.R.; Augusto, L.; Derrien, D.; Gallegos, N.; Lashchinskiy, N.; Milin, S.; Nikitich, P.; Raudina, T.; Rusalimova, O.; et al. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: Effects of microbiological and physicochemical properties. Biogeosciences 2013, 10, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, D.N.; Bockheim, J.G.; Reich, P.F. Soils of temperate rainforests of the North American Pacific Coast. Geoderma 2014, 230–231, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, O.V.; Bobrovsky, M.; Khanina, L. (Eds.) Boreal forests. In European Russian Forests. Plant and Vegetation; Springer: Dordrecht, The Netherlands, 2017; Volume 15. [Google Scholar] [CrossRef]
- Smirnova, O.V.; Kalyakin, V.N.; Turubanova, S.A.; Bobrovsky, M.V.; Khanina, L.G. Development of the European Russian Forests in the Holocene. In European Russian Forests. Plant and Vegetation; Smirnova, O., Bobrovsky, M., Khanina, L., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 15. [Google Scholar] [CrossRef]
- Shevchenko, N.E.; Smirnova, O.V. Refugia for the floristic diversity of Northern Ural dark conifer forests as markers of natural vegetation of the eastern European Taiga. Russ. J. Ecol. 2017, 48, 212–218. [Google Scholar] [CrossRef]
- Perring, M.P.; Bernhardt-Römermann, M.; Baeten, L.; Midolo, G.; Blondeel, H.; Depauw, L.; Landuyt, D.; Maes, S.L.; De Lombaerde, E.; Carón, M.M.; et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 2018, 24, 1722–1740. [Google Scholar] [CrossRef] [Green Version]
- Nazimova, D.I.; Danilina, D.M.; Stepanov, N.V. Rain-Barrier Forest Ecosystems of the Sayan Mountains Botanica Pacifica. J. Plant Sci. Conserv. 2014, 3, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Abakumov, E.; Loyko, S.; Istigechev, G.; Kulemzina, A.; Lashchinskiy, N.; Andronov, E.; Lapidus, A. Soils of chernevaya taiga of western Siberia—Morphology, agrochemical features, microbiota. Agric. Biol. 2020, 55, 1018–1039. [Google Scholar]
- Smolentsev, B.A.; Smolentseva, E.N. Cambisols of the Kuznetsk Alatau, their properties and diversity. Tomsk. State Univ. J. Biol. 2020, 50, 6–27. [Google Scholar] [CrossRef]
- Olsson, P.; Linder, S.; Giesler, R.; Högberg, P. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob. Chang. Biol. 2005, 11, 1745–1753. [Google Scholar] [CrossRef]
- Abakumov, E.; Polyakov, V.; Orlova, K. Podzol development on different aged coastal bars of Lake Ladoga. Tomsk. State Univ. J. Biol. 2019, 48, 6–31. [Google Scholar] [CrossRef]
- Swift, R.S. Organic Matter Characterization. Methods Soil Anal. 1996, 1011–1069. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Schnitzer, M.; Dennis, L.W.; Maciel, G.E. Aromaticity of Humic Substances in Soils. Soil Sci. Soc. Am. J. 1981, 45, 1089–1094. [Google Scholar] [CrossRef]
- Semenov, V.M.; Ivannikov, L.A.; Tulina, A.S. Stabilization of organic matter in the soil. Agrochimia 2009, 10, 77–96. [Google Scholar]
- Schepaschenko, D.G.; Mukhortova, L.V.; Shvidenko, A.Z.; Vedrova, E.F. The pool of organic carbon in the soils of Russia. Eurasian Soil Sci. 2013, 46, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, V.; Abakumov, E. Assessments of Organic Carbon Stabilization Using the Spectroscopic Characteristics of Humic Acids Separated from Soils of the Lena River Delta. Separations 2021, 8, 87. [Google Scholar] [CrossRef]
- Senesi, N. Application of Electron Spin Resonance (ESR) Spectroscopy in Soil Chemistry. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1990; Volume 14, pp. 77–122. [Google Scholar]
- Orlov, D.S. Soil Humic Acids and General Theory Humification; Moscow State University: Moscow, Russia, 1990; p. 325. [Google Scholar]
- Cao, X.; Lattao, C.; Pignatello, J.J.; Mao, J.; Schmidt-Rohr, K. Sorption Selectivity in Natural Organic Matter Probed with Fully Deuterium-Exchanged and Carbonyl-13C-Labeled Benzophenone and 1H–13C NMR Spectroscopy. Environ. Sci. Technol. 2014, 48, 8645–8652. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.; Abakumov, E.V. Humic Acids Isolated from Selected Soils from the Russian Arctic and Antarctic: Characterization by Two-Dimensional 1H-13C HETCOR and 13C CP/Mas NMR Spectroscopy. Geosciences 2020, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Cao, X.; Olk, D.C.; Chu, W.; Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 17–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, J.; Cao, X. Characterization of heterogeneities and domains in aquatic and sedimentary organic matter by 1H spin diffusion: Potential for elucidating the formation mechanisms. Limnol. Oceanogr. Methods 2011, 9, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Beznosikov, V.A.; Lodygin, E.D. High-molecular organic substances in soils. Trans. Komi Sci. C Cent. Ural. Branch Russ. Acad. Sci. 2010, 1, 24–30. [Google Scholar]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Abakumov, E.; Loiko, S.; Lashchinsky, N.; Istigechev, G.; Kulemzina, A.; Smirnov, A.; Rayko, M.; Lapidus, A. Highly Productive Boreal Ecosystem Chernevaya Taiga—Unique Rainforest in Siberia. Preprints 2020, 2020090340. [Google Scholar] [CrossRef]
- Rossum, B.; Förster, H.; Groot, H.D. High-Field and High-Speed CP-MAS13C NMR Heteronuclear Dipolar-Correlation Spectroscopy of Solids with Frequency-Switched Le Goldburg Homonuclear Decoupling. J. Magn. Reson. 1997, 124, 516–519. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular Composition of Humic Substances in Tundra Soils (C-13-NMR Spectroscopic Study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Piccolo, A.; Spaccini, R.; Savy, D.; Drosos, M.; Cozzolino, V. The soil humeome: Chemical structure, functions and technological perspectives. In Sustainable Agrochemistry; Vaz, J.S., Ed.; Springer: Chambrige, UK, 2019; pp. 183–222. [Google Scholar]
- Lupachev, A.; Abakumov, E.; Gubin, S. The Influence of Cryogenic Mass Exchange on the Composition and Stabilization Rate of Soil Organic Matter in Cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Abakumov, E.; Maksimova, E.; Tsibart, A. Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degrad. Dev. 2018, 29, 2092–2101. [Google Scholar] [CrossRef]
- Beyer, L.; Sorge, C.; Blume, H.P.; Schulten, H.R. Soil organic matter composition and transformation in gelic histosols of coastal continental antarctica. Soil Biol. Biochem. 1995, 27, 1279–1288. [Google Scholar] [CrossRef]
- Kleinhempel, D. Ein Beitrag zur Theorie des Huminstoffezustondes; Akademie-Verlag: Berlin, Germany, 1970; Volume 14. [Google Scholar]
- Lodygin, E.; Beznosikov, V.; Abakumov, E. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Pol. Polar Res. 2017, 38, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Karmanov, A.P.; Kocheva, L.S.; Karmanova, Y.A. Investigation of lignin from moss Polytrichum Commune. Chemistry Plant Raw Mater. 2015, 109. [Google Scholar] [CrossRef] [Green Version]
- Burdelnaya, N.; Bushnev, D.; Mokeev, M.; Dobrodumov, A. Experimental study of kerogen maturation by solid-state 13C NMR spectroscopy. Fuel 2014, 118, 308–315. [Google Scholar] [CrossRef]
- Kostenko, I.V.; Abakumov, E.V. Characterization of Humic Acids in Mountainous Meadow Soils and Burozems of the Crimea Using 13C-NMR. Eurasian Soil Sci. 2018, 51, 1411–1418. [Google Scholar] [CrossRef]
Sample ID | C, g/kg* | Extraction Yields, % of SOM | Ash Content, g | Molecular Weight, Atomic Units of Mass |
---|---|---|---|---|
1 | 0.47 | 14 | 0.005 | 1984 |
2 | 0.24 | 15 | 0.007 | 1768 |
3 | 0.22 | 15 | 0.006 | 1320 |
4 | 0.21 | 38 | 0.028 | 990 |
5 | 0.02 | 10 | 0.014 | 893 |
6 | 0.34 | 10 | 0.013 | 1322 |
7 | 0.08 | 10 | 0.011 | 2689 |
8 | 0.40 | 6 | 0.003 | 988 |
9 | 0.03 | 45 | 0.039 | 1775 |
Sample ID | C, % | H, % | N, % | O, % | C/N | H/C | O/C | H/Cmod |
---|---|---|---|---|---|---|---|---|
1 | 45 | 4 | 4 | 42 | 13 | 1.06 | 0.70 | 2.00 |
2 | 40 | 3 | 3 | 49 | 16 | 0.89 | 0.92 | 2.12 |
3 | 44 | 3 | 3 | 45 | 17 | 0.81 | 0.77 | 1.84 |
4 | 46 | 5 | 4 | 40 | 13 | 1.29 | 0.65 | 2.17 |
5 | 37 | 4 | 3 | 51 | 14 | 1.29 | 1.03 | 2.67 |
6 | 30 | 3 | 2 | 60 | 17 | 1.19 | 1.50 | 3.20 |
7 | 39 | 3 | 1 | 52 | 45 | 0.91 | 1.00 | 2.26 |
8 | 39 | 4 | 4 | 48 | 11 | 1.22 | 0.92 | 2.46 |
9 | 29 | 4 | 3 | 59 | 11 | 1.64 | 1.53 | 3.69 |
SD | 6.1 | 0.7 | 1 | 6.8 | 10.5 | 0.25 | 0.31 | 0.6 |
CV | 15.6 | 19.2 | 33.3 | 13.8 | 60.6 | 22.5 | 31.7 | 24.3 |
Sample ID | Chemical Shifts. ppm | AR, % | AL, % | AR/AL | AL h,r+AR h,r | C,H -Al/O,N—Al | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0–47 | 47–60 | 60–110 | 110–160 | 160–185 | 185–200 | ||||||
1 | 35 | 9 | 20 | 20 | 14 | 2 | 34 | 66 | 0.52 | 55 | 1.21 |
2 | 30 | 5 | 13 | 33 | 15 | 4 | 48 | 52 | 0.92 | 63 | 1.67 |
3 | 27 | 6 | 16 | 33 | 15 | 3 | 48 | 52 | 0.92 | 60 | 1.23 |
4 | 40 | 12 | 22 | 13 | 11 | 2 | 24 | 76 | 0.32 | 53 | 1.18 |
5 | 40 | 11 | 15 | 19 | 12 | 3 | 31 | 69 | 0.45 | 59 | 1.54 |
6 | 34 | 8 | 17 | 22 | 15 | 4 | 37 | 63 | 0.59 | 56 | 1.36 |
7 | 24 | 6 | 17 | 31 | 16 | 6 | 47 | 53 | 0.89 | 55 | 1.04 |
8 | 37 | 9 | 23 | 15 | 12 | 4 | 27 | 73 | 0.37 | 52 | 1.16 |
9 | 34 | 9 | 21 | 19 | 14 | 3 | 33 | 67 | 0.49 | 53 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy 2021, 11, 1998. https://doi.org/10.3390/agronomy11101998
Polyakov V, Loiko S, Istigechev G, Lapidus A, Abakumov E. Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy. 2021; 11(10):1998. https://doi.org/10.3390/agronomy11101998
Chicago/Turabian StylePolyakov, Vyacheslav, Sergey Loiko, Georgiy Istigechev, Alla Lapidus, and Evgeny Abakumov. 2021. "Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy" Agronomy 11, no. 10: 1998. https://doi.org/10.3390/agronomy11101998
APA StylePolyakov, V., Loiko, S., Istigechev, G., Lapidus, A., & Abakumov, E. (2021). Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy, 11(10), 1998. https://doi.org/10.3390/agronomy11101998