Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation System and Elemental Analysis
2.2. Data Analysis
3. Results
3.1. Plant Growth under Different Flow Rates
3.2. Nutrient Uptake of Plants Grown under Different Flow Rates
3.3. Correlation between Plant Growth and Nutrient Uptake
3.4. Nutrient Use Efficiency under Different Flow Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darkoh, M.B.K. The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad. Dev. 1998, 9, 1–20. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Gutierrez, J. Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands. Sustainability 2020, 12, 9556. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Sardare, M.D.; Admane, S.V. A review on plant without soil-hydroponics. Int. J. Res. Eng. Technol. 2013, 2, 299–304. [Google Scholar] [CrossRef]
- De Anda, J.; Shear, H. Potential of vertical hydroponic agriculture in Mexico. Sustainability 2017, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.H. Controlled environment agriculture in deserts, tropics and temperate regions—A world review. Acta Hortic. Int. Symp. Des. Environ. Control. Trop. Subtrop. Greenh. 2002, 578, 19–25. [Google Scholar] [CrossRef]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Hussain, A.; Iqbal, K.; Aziem, S.; Mahato, P.; Negi, A.K. A Review on the science of growing crops without soil (soilless culture)—A novel alternative for growing crops. Int. J. Agric. Crop Sci. 2014, 7, 833. [Google Scholar]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of the flow rate on plant growth and flow visualization of nutrient solution in hydroponics. Horticulturae 2021, 7, 225. [Google Scholar] [CrossRef]
- Dalastra, C.; Teixeira Filho, M.C.; Silva, M.R.; Nogueira, T.A.; Fernandes, G.C. Head lettuce production and nutrition in relation to nutrient solution flow. Hortic. Bras. 2020, 38, 21–26. [Google Scholar] [CrossRef]
- Al-Tawaha, A.R.; Al-Karaki, G.; Al-Tawaha, A.R.; Sirajuddin, S.N.; Makhadmeh, I.; Wahab, P.E.M.; Youssef, R.A.; Al Sultan, W.; Massadeh, A. Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulg. J. Agric. Sci. 2018, 24, 791–798. [Google Scholar]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibaraki, Y. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, S.H. Maximizing agricultural production. Res. Manag. 1970, 13, 89–110. [Google Scholar] [CrossRef]
- Grewal, H.S.; Maheshwari, B.; Parks, S.E. Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agric. Water Manag. 2011, 98, 841–846. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. B 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Rakshit, A.; Singh, H.B.; Sen, A. (Eds.) Nutrient Use Efficiency: From Basics to Advances; Springer: New Delhi, India, 2015; Volume 417. [Google Scholar]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Tsuchiya, R.; Kawai, T.; Bat-Oyun, T.; Shinoda, M.; Morinaga, Y. Electrical conductivity, pH, minerals, and sensory evaluation of Airag (Fermented Mare’s Milk). Foods 2020, 9, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, S.A.; Walker, J.M.; Vasey, E.H. Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. J. Agric. Food Chem. 1963, 11, 204–207. [Google Scholar] [CrossRef]
- Csanady, G.T. Turbulent Diffusion in the Environment; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2012; Volume 3. [Google Scholar]
- Bhagsari, A.S.; Brown, R.H. Leaf photosynthesis and its correlation with leaf area. Crop Sci. 1986, 26, 127–132. [Google Scholar] [CrossRef]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize. World Acad. Sci. Eng. Technol. 2009, 49, 19–24. [Google Scholar]
- Barber, S.A.; Silberbush, M. Plant root morphology and nutrient uptake. Roots Nutr. Water Influx Plant Growth 1984, 49, 65–87. [Google Scholar]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants-A review. Afr. J. Food Sci. 2010, 4, 200–222. Available online: https://academicjournals.org/article/article1380713863_Soetan%20et%20al.pdf (accessed on 8 October 2021).
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient Solutions for Hydroponic Systems Hydroponics—A Standard Methodology for Plant Biological Researches; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Downs, R.J. Environment and the Experimental Control of Plant Growth; Elsevier: Amsterdam, The Netherlands, 2012; Volume 6. [Google Scholar]
- Hawkesford, M.J.; Kopriva, S.; De Kok, L.J. Nutrient Use Efficiency in Plants; Springer International Pu: New York, NY, USA, 2016. [Google Scholar]
- Rao, I.M.; Ayarza, M.A.; Garcia, R. Adaptive attributes of tropical forage species to acid soils i. differences in plant growth, nutrient acquisition and nutrient utilization among C4 grasses and C3 legumes. J. Plant Nutr. 1995, 18, 2135–2155. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Cardarelli, M.; Rea, E.; Battistelli, A.; Colla, G. Yield and quality of leafy lettuce in response to nutrient solution composition and growing season. J. Food Agric. Environ. 2009, 7, 456–462. [Google Scholar]
- Wheeler, R.M.; Sager, J.C.; Berry, W.L.; Mackowiak, C.L.; Stutte, G.W.; Yorio, N.C.; Ruffe, L.M. Nutrient, acid and water budgets of hydroponically grown crops. Acta Hortic. Int. Symp. Grow. Media Hydroponics 1999, 481, 655–662. [Google Scholar] [CrossRef]
- Zhang, P.; Senge, M.; Dai, Y. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev. Agric. Sci. 2016, 4, 46–55. [Google Scholar] [CrossRef]
- Kim, J.K.; Jang, D.C.; Kang, H.M.; Nam, K.J.; Lee, M.H.; Na, J.K.; Choi, K.Y. Effects of light intensity and electrical conductivity level on photosynthesis, growth and functional material contents of Lactuca indica L. ‘Sunhyang’ in Hydroponics. Prot. Hortic. Plant Fact. 2021, 30, 1–9. [Google Scholar]
- Ropokis, A.; Ntatsi, G.; Kittas, C.; Katsoulas, N.; Savvas, D. Effects of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’). Agronomy 2021, 11, 2050. https://doi.org/10.3390/agronomy11102050
Baiyin B, Tagawa K, Yamada M, Wang X, Yamada S, Yamamoto S, Ibaraki Y. Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’). Agronomy. 2021; 11(10):2050. https://doi.org/10.3390/agronomy11102050
Chicago/Turabian StyleBaiyin, Bateer, Kotaro Tagawa, Mina Yamada, Xinyan Wang, Satoshi Yamada, Sadahiro Yamamoto, and Yasuomi Ibaraki. 2021. "Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’)" Agronomy 11, no. 10: 2050. https://doi.org/10.3390/agronomy11102050
APA StyleBaiyin, B., Tagawa, K., Yamada, M., Wang, X., Yamada, S., Yamamoto, S., & Ibaraki, Y. (2021). Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’). Agronomy, 11(10), 2050. https://doi.org/10.3390/agronomy11102050