Comparative Effects of Bio-Wastes in Combination with Plant Growth-Promoting Bacteria on Growth and Productivity of Okra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Biochar, Fruit and Vegetable Waste, and Compost
2.2. Identification through 16S rRNA Gene Sequencing of Bacterial Strain (SMBL 1)
2.3. Analysis of Biochar, Compost, and Fruit and Vegetable Waste
2.4. Inoculation of Seed and Management of Experiment
2.5. Plant and Fruit Analysis
2.6. Bacterial Population
2.7. Statistical Analysis
3. Results
3.1. Growth Parameters
3.2. N, P, K Contents in Shoot and Fruit
3.3. Yield Parameters
3.4. Fe and Zn in Shoot
3.5. Physiological Parameters of Okra
3.6. Microbial Population in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kashif, S.; Yaseen, M.; Arshad, M.U.; Ayub, M. Response of okra (Hibiscus esculentus L.) to soil given encapsulated calcium carbide. Pak. J. Bot. 2008, 4, 175–181. [Google Scholar]
- Bawa, S.H.; Badrie, N. Nutrient profile, bioactive components, and functional properties of okra (Abelmoschus esculentus (L.) Moench). In Fruit, Vegetables, and Herbs: Bioactive Foods in Health Promotion; Watson, R.R., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 365–409. [Google Scholar]
- Norman, J.C. Tropical Vegetable Crops; Arthur, H., Ed.; Stockwell Limited: Ilfracombe, UK, 1992; pp. 97–103. [Google Scholar]
- MINFSR. Fruits Vegetables and Condiment Statistics of Pakistan; Ministry of National Food Security and Research Islamabad: Islamabad, Pakistan, 2019; pp. 11–20.
- Ali, H.A.; Randhawa, S.A.; Yousaf, M.U. Quantitative and qualitative traits of sunflower (Helianthus annus L.) as influenced by planting dates and nitrogen application. Int. J. Agric. Biol. 2004, 6, 4102. [Google Scholar]
- Noorhosseini, S.A.; Damalas, C.A. Environmental Impact of Peanut (Arachis hypogaea L.) Production under Different Levels of Nitrogen Fertilization. Agriculture 2018, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Zhao, L.; Lei, X.; Sarfraz, R.; Xing, S. Dissolved organic nitrogen distribution in differently fertilized paddy soil profiles: Implications for its potential loss. Agric. Ecosyst. Environ. 2018, 262, 58–64. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Peltre, C.; Gregorich, E.G.; Bruun, S.; Jensen, L.S.; Magid, J. Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biol. Biochem. 2017, 104, 117–127. [Google Scholar] [CrossRef]
- Ramesh, P. Organic Farming Research in M.P. In Organic Farming in Rain Fed Agriculture; Central Institute from Dry land Agriculture: Hyderabad, India, 2008; pp. 13–17. [Google Scholar]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Usman, A.R.; Al-Wabel, M.I.; Abdulaziz, A.H.; Mahmoud, W.A.; El-Naggarah, A.H.; Ahmadm, M.; Abdulelah, A.F.; Abdulrasoul, A.O. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 2016, 26, 27–38. [Google Scholar] [CrossRef]
- Sänger, A.; Reibe, K.; Mumme, J.; Kaupenjohann, M.; Ellmer, F.; Roß, C.-L.; Meyer-Aurich, A. Biochar application to sandy soil: Effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 2017, 63, 213–229. [Google Scholar] [CrossRef]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Tahir, M.; Amjad, M.; Murtaza, B.; Yang, A.; Akhtar, S.S. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 2048–2061. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, R.; Nielsen, S.; Joseph, S.D.; Huang, D.; Thomas, T. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 2016, 7, 372. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, T.A.; Wu, Z.; Zhu, P.; Ma, X. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. PLoS ONE 2016, 11, e0154091. [Google Scholar] [CrossRef]
- Atkinson, C.J. How good is the evidence that soil-applied biochar improves water-holding capacity? Soil Use Manag. 2018, 34, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Aranyos, J.T.; Tomócsik, A.; Makádi, M.; Mészáros, J.; Blaskó, L. Changes in physical properties of sandy soil after long-term compost treatment. Int. Agrophys. 2016, 30, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Tafaghodinia, B.; Kamalpour, M. Compost Tea; Sepehr, Ed.; Persian: Tehran, Iran, 2008; p. 75. [Google Scholar]
- Moharana, P.C.; Meena, M.D.; Biswas, D.R. Role of phosphate-solubilizing microbes in the enhancement of fertilizer value of rock phosphate through composting technology. In Role of Rhizospheric Microbes in Soil: Nutrient Management and Crop Improvement; Meena, V.S., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Mus, F.; Crook, M.B.; Garcia, K.; Costas, A.G.; Geddes, B.A.; Kouri, E.D.; Paramasivan, P.; Ryu, M.-H.; Oldroyd, G.E.; Poole, P.S.; et al. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016, 82, 3698–3710. [Google Scholar] [CrossRef] [Green Version]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Adil, Z.; Hussain, A.; Mumtaz, M.Z.; Nafees, M.; Ahmad, I.; Jamil, M. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak. J. Agric. Sci. 2019, 56, 283–289. [Google Scholar]
- Kumar, A.; Patel, J.S.; Meena, V.S.; Ramteke, P.W. Plant growth-promoting rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture. J. Plant Nutr. 2019, 42, 1402–1415. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Hussain, T. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 2017, 202, 51–60. [Google Scholar] [CrossRef]
- Hale, L.; Luth, M.; Crowley, D. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol. Biochem. 2015, 81, 228–235. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Imran, M.; Naveed, M.; Khan, M.Y.; Ahmad, M.; Zahir, Z.A.; Crowley, D.E. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J. Sci. Food Agric. 2017, 97, 5139–5145. [Google Scholar] [CrossRef] [PubMed]
- Mahuku, G.S. A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Mol. Biol. Rep. 2004, 22, 71–81. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Perrière, G.; Gouy, M. WWW-query: An on-line retrieval system for biological sequence banks. Biochimie 1996, 78, 364–369. [Google Scholar] [CrossRef]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2001; p. 172. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Pvt, Ltd.: New Delhi, India, 1973. [Google Scholar]
- McGill, W.B.; Figueiredo, C.T. Total nitrogen: Chapter 22. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Dar, A.; Zahir, Z.A.; Asghar, H.N.; Ahmad, R. Preliminary screening of rhizobacteria for biocontrol of little seed canary grass (Phalaris minor Retz.) and wild oat (Avena fatua L.) in wheat. Can. J. Microbiol. 2020, 66, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Arshad, M.; Zahir, Z. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 2004, 96, 473–480. [Google Scholar] [CrossRef]
- Russel, A.D.; Hugo, W.B.; Ayliffo, G.A.J. Principles and Practices of Disinfection, Preservation and Sterilization; Black Wall Scientific: London, UK, 1982. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Papers 29 (Rev.1); FAO: Rome, Italy, 1985. [Google Scholar]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004, 166, 525–530. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B. The comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Alexander, M. Most probable number method for microbial populations. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA and SSA: Madison, WI, USA, 1982; pp. 815–820. [Google Scholar]
- Steel, P. The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychol. Bull. 2007, 133, 65–94. [Google Scholar] [CrossRef]
- Ahamd, M.; Zahir, Z.A.; Nadeem, S.M.; Nazli, F.; Jamil, M.; Jamshaid, M.U. Physiological response of mung bean to Rhizobium and Pseudomonas based biofertilizers under salinity stress. Pak. J. Agric. Sci. 2014, 51, 555–562. [Google Scholar]
- Ahmad, M.; Zahir, Z.A.; Nadeem, S.M.; Nazli, F.; Jamil, M.; Khalid, M. Field evaluation of Rhizobium and Pseudomonas strains to improve growth, nodulation and yield of mung bean under salt-affected conditions. Soil Environ. 2013, 32, 158–166. [Google Scholar]
- Meunchang, S.; Panichsakpatana, S.; Weaver, R.W. Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresour. Technol. 2005, 96, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, K.; Affrasayab, S.; Hasnain, S. Growth responses of Triticwn aestivum to plant growth promoting rhizobacteria used as a bio fertilizer. Res. J. Microbiol. 2010, 5, 1022–1030. [Google Scholar]
- Ahmad, M.; Zahir, Z.A.; Asghar, H.N.; Asghar, M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2011, 57, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop. Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Asad, S.A.; Hafeez, F. Bacillus strains as potential alternate for zinc biofortification of maize grains. Int. J. Agric. Biol. 2018, 20, 1779–1786. [Google Scholar]
- Fatawi, A.; Pujiasmanto, B.; Zaki, M.K.; Noda, K. Application of organic amendments and PGPR on Salibu Rice yield for drought adaptation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 824, p. 012079. [Google Scholar]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parewa, H.P.; Yadav, J. Response of fertility levels, FYM and bioinoculants on yield attributes, yield and quality of wheat. Agri. Sustain. Dev. 2014, 2, 5–10. [Google Scholar]
- Adesemoye, A.O.; Ugoji, E.O. Evaluating Pseudomonas aeruginosa as plant growth promoting rhizobacteria (PGPR) in West Africa. Arch. Phytopathol. Plant Prot. 2006, 42, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Han, X.-M.; Wang, R.-Q.; Liu, J.; Wang, M.-C.; Zhou, J.; Guo, W.-H. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. J. Environ. Sci. 2007, 19, 1228–1234. [Google Scholar] [CrossRef]
- Richardson, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct. Plant Biol. 2001, 28, 897–906. [Google Scholar] [CrossRef]
- Nardi, S.; Concheri, G.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Soil organic matter mobilization by root exudates. Chemosphere 2000, 41, 653–658. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Khalid, M.; Shahzad, S.M.; Ahmad, M.; Soleman, N.; Akhtar, N. Integrated use of Rhizobium leguminosarum, Plant Growth Promoting Rhizobacteria and Enriched Compost for Improving Growth, Nodulation and Yield of Lentil (Lens culinaris Medik.). Chil. J. Agric. Res. 2012, 72, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Biari, A.; Gholami, A.; Rahmani, H. Growth Promotion and Enhanced Nutrient Uptake of Maize (Zea mays L.) by Application of Plant Growth Promoting Rhizobacteria in Arid Region of Iran. J. Biol. Sci. 2008, 8, 1015–1020. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.; Hamed, M.; Asghar, M.J.; Abbas, G.; Saeed, N.A. Screening of mungbean (Vigna radiata (L.) Wilczek) genotypes against sucking insect pests under natural field conditions. Pak. J. Zool. 2014, 46, 863–866. [Google Scholar]
- Tarin, M.W.K.; Fan, L.; Tayyab, M.; Sarfraz, R.; He, T.; Rong, J.; Chen, L.; Zheng, Y. Effects of bamboo biochar amendment on the growth and physiological characteristics of Fokienia hodginsii. Appl. Ecol. Environ. Res. 2018, 16, 8055–8074. [Google Scholar] [CrossRef]
- Bouain, N.; Shahzad, Z.; Rouached, A.; Khan, G.A.; Berthomieu, P.; Abdelly, C.; Poirier, Y.; Rouached, H. Phosphate and zinc transport and signalling in plants: Toward a better understanding of their homeostasis interaction. J. Exp. Bot. 2014, 65, 5725–5741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayyab, M.; Islam, W.; Arafat, Y.; Pang, Z.; Zhang, C.; Lin, Y.; Waqas, M.; Lin, S.; Lin, W.; Zhang, H. Effect of Sugarcane Straw and Goat Manure on Soil Nutrient Transformation and Bacterial Communities. Sustainability 2018, 10, 2361. [Google Scholar] [CrossRef] [Green Version]
- Estrada, G.A.; Baldani, V.L.D.; de Oliveira, D.M.; Urquiaga, S.; Baldani, J.I. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 2013, 369, 115–129. [Google Scholar] [CrossRef]
- Abaid-Ullah, M.; Hassan, M.N.; Jamil, M.; Brader, G.; Shah, M.K.N.; Sessitsch, A. Plant growth promoting rhizobacteria: An alternate way to improve yield and quality of wheat (Triticum aestivum). Int. J. Agric. Biol. 2015, 17, 51–60. [Google Scholar]
- Zhang, C.; Kong, F. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl. Soil Ecol. 2014, 82, 18–25. [Google Scholar] [CrossRef]
Characteristics | Unit | Values |
---|---|---|
Biochar | ||
EC | (dS m−1) | 1.69 ± 0.0053 |
pH | - | 7.8 ± 0.017 |
Nitrogen | % | 0.20 ± 0.0039 |
Phosphorus | % | 0.31 ± 0.0053 |
Potassium | % | 1.98 ± 0.0053 |
Carbon | % | 36.07 ± 0.048 |
Compost | ||
Organic matter | % | 45.25 ± 0.39 |
pH | - | 6.55 ± 0.035 |
Carbon | % | 26.77 ± 0.22 |
Nitrogen | % | 1.13 ± 0.013 |
Potassium | % | 1.02 ± 0.0085 |
Phosphorus | % | 1.88 ± 0.039 |
Fruit and vegetable waste | ||
Organic matter | % | 46.5 ± 0.24 |
pH | - | 6.8 ± 0.013 |
Carbon | % | 27 ± 0.068 |
Nitrogen | % | 1.15 ± 0.003 |
Potassium | % | 1.035 ± 0.005 |
Phosphorus | % | 1.95 ± 0.053 |
Soil | ||
Clay | % | 15.4 ± 0.045 |
Silt | % | 38.5 ± 0.026 |
Sand | % | 46.1 ± 0.057 |
Textural Class | - | Sandy Loam |
ECe | (dS m−1) | 1.4 ± 0.027 |
pHs | - | 8.1 ± 0.030 |
Saturation percentage | % | 40 ± 0.45 |
Phosphorus | mg kg−1 | 5.4 ± 0.018 |
Potassium | mg kg−1 | 145 ± 0.26 |
Nitrogen | % | 0.021 ± 0.0006 |
Organic matter | % | 0.58 ± 0.0030 |
Treatments | Plant Height (cm) | Shoot Fresh Biomass (g plant−1) | Shoot Dry Biomass (g plant−1) | |||
---|---|---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 53.9 h | 60.4 f | 131.3 g | 140.5 e | 57.1 g | 60.9 f |
Compost | 57.3 g | 66.5 d | 136.8 f | 146.8 cd | 63.6 e | 67.8 cd |
Biochar | 70.0 c | 77.9 a | 148.0 c | 156.0 a | 69.9 c | 75.8 a |
F and V waste | 63.1 e | 72.9 b | 143.8 d | 151.5 b | 67.0 d | 72.6 b |
LSD (p ≤ 0.05) | 2.1113 | 3.1584 | 2.3259 |
Treatments | Root Length (cm) | Root Fresh Biomass (g plant−1) | Root Dry Biomass (g plant−1) | |||
---|---|---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 15.4 g | 17.8 ef | 54.3 g | 57.8 f | 20.9 g | 24.5 de |
Compost | 16.9 f | 20.6 c | 61.0 ef | 65.5 cd | 22.0 fg | 25.8 cd |
Biochar | 19 d | 23 a | 67.0 bc | 74.8 a | 27.0 bc | 31.5 a |
F and V waste | 18.1 e | 22 b | 63.5 de | 70.0 b | 23.1 ef | 28.8 b |
LSD (p ≤ 0.05) | 0.8589 | 3.3449 | 2.1911 |
Treatments | Nitrogen in Shoot % | Phosphorus in Shoot % | Potassium in Shoot % | |||
---|---|---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 1.93 f | 2.35 cd | 0.25 f | 0.31 d | 1.28 f | 1.64 cd |
Compost | 2.08 ef | 2.58 bc | 0.27 ef | 0.36 c | 1.38 ef | 1.80 bc |
Biochar | 2.25 de | 2.85 a | 0.34 c | 0.43 a | 1.50 de | 2.06 a |
F and V waste | 2.18 de | 2.65 ab | 0.30 de | 0.39 b | 1.43 ef | 1.86 b |
LSD (p ≤ 0.05) | 0.2452 | 0.0310 | 0.1867 |
Treatments | Nitrogen in Fruit % | Phosphorus in Fruit % | Potassium in Fruit % | |||
---|---|---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 1.88 f | 2.35 cd | 0.25 f | 0.28 def | 1.28 f | 1.56 cd |
Compost | 2.08 ef | 2.58 bc | 0.27 ef | 0.33 cd | 1.38 ef | 1.80 b |
Biochar | 2.33 d | 3.13 a | 0.33 bc | 0.43 a | 1.64 c | 1.96 a |
F and V waste | 2.20 de | 2.80 b | 0.30 cde | 0.37 b | 1.43 de | 1.86 ab |
LSD (p ≤ 0.05) | 0.2261 | 0.0461 | 0.1383 |
Treatments | Number of Fruit Plant −1 | Fruit Fresh Biomass (g plant−1) | Fruit Dry Biomass (g plant−1) | |||
---|---|---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 8.0 g | 9.0 fg | 59.3 g | 72.8 e | 11.0 g | 12.0 fg |
Compost | 10.0 ef | 11.0 de | 67.5 f | 82.0 c | 13.0 ef | 15.0 cd |
Biochar | 14.0 c | 18.0 a | 78.5 d | 105.3 a | 16.0 bc | 18.50 a |
F and V waste | 12.0 d | 16.0 b | 74.5 e | 96.3 b | 14.0 de | 17.0 b |
LSD (p ≤ 0.05) | 0.2261 | 0.0461 | 0.1383 |
Treatments | Fruit Length (cm) | Average Fruit Diameter (cm) | ||
---|---|---|---|---|
Un-Inoculated | Inoculated | Un-Inoculated | Inoculated | |
Control | 8.36 g | 10.8 e | 1.43 f | 1.55 ef |
Compost | 9.65 f | 12.6 c | 1.60 de | 1.70 b–d |
Biochar | 11.4 d | 15.1 a | 1.75 dc | 1.98 a |
F and V waste | 10.8 e | 14.0 b | 1.68 c–e | 1.83 b |
LSD (p ≤ 0.05) | 0.4200 | 0.1390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, H.; Wang, X.; Hussain, A.; Rafay, M.; Ahmad, M.; Latif, M.; Jamshaid, M.U.; Khalid, I.; Dar, A.; Mustafa, A. Comparative Effects of Bio-Wastes in Combination with Plant Growth-Promoting Bacteria on Growth and Productivity of Okra. Agronomy 2021, 11, 2065. https://doi.org/10.3390/agronomy11102065
Anwar H, Wang X, Hussain A, Rafay M, Ahmad M, Latif M, Jamshaid MU, Khalid I, Dar A, Mustafa A. Comparative Effects of Bio-Wastes in Combination with Plant Growth-Promoting Bacteria on Growth and Productivity of Okra. Agronomy. 2021; 11(10):2065. https://doi.org/10.3390/agronomy11102065
Chicago/Turabian StyleAnwar, Hammad, Xiukang Wang, Azhar Hussain, Muhammad Rafay, Maqshoof Ahmad, Muhammad Latif, Muhammad Usman Jamshaid, Imran Khalid, Abubakar Dar, and Adnan Mustafa. 2021. "Comparative Effects of Bio-Wastes in Combination with Plant Growth-Promoting Bacteria on Growth and Productivity of Okra" Agronomy 11, no. 10: 2065. https://doi.org/10.3390/agronomy11102065
APA StyleAnwar, H., Wang, X., Hussain, A., Rafay, M., Ahmad, M., Latif, M., Jamshaid, M. U., Khalid, I., Dar, A., & Mustafa, A. (2021). Comparative Effects of Bio-Wastes in Combination with Plant Growth-Promoting Bacteria on Growth and Productivity of Okra. Agronomy, 11(10), 2065. https://doi.org/10.3390/agronomy11102065