Nutrient Release and Ammonia Volatilization from Biochar-Blended Fertilizer with and without Densification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Total Nitrogen, Phosphorus and Potassium Analysis
2.3. Fourier Transform Infrared Spectra (FTIR) Analysis
2.4. Nutrient Release Analysis
2.5. Soil Ammonia Volatilization Analysis
- (1)
- Soil only (T1)
- (2)
- 10.61 g Mineral NPK fertilizer [7.05 g AS + 2.08 g TSP + 1.48 g MOP] (T2)
- (3)
- 21.81 g Biochar + 10.61 g NPK fertilizer (T3)
- (4)
- 32.42 g Biochar tablet embedded with NPK fertilizer (T4).
2.6. Statistical Analysis
3. Results
3.1. Total Nitrogen, Phosphorus, and Potassium Analysis
3.2. Fourier Transform Infrared Spectra (FTIR) Analysis
3.3. Ammonium Release Analysis
3.4. Nitrate Release Analysis
3.5. Phosphorus Release Analysis
3.6. Potassium Release Analysis
3.7. Percentage of Soluble Nutrient Release during Water Incubation Experiment
3.8. Selected Soil Chemical Characteristics before the Soil Ammonia Volatilization Experiment
3.9. Daily Loss of Ammonia for Ten Days of Incubation
3.10. Effects of Treatments on Selected Soil Chemical Properties after at Ten Day of the Ammonia Volatilization Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majeed, Z.; Ramli, N.K.; Mansor, N.; Man, Z. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Rev. Chem. Eng. 2015, 31, 69–96. [Google Scholar] [CrossRef]
- Wen, P.; Han, Y.; Wu, Z.; He, Y.; Ye, B.C.; Wang, J. Rapid synthesis of a corncob-based semi-interpenetrating polymer network slow-release nitrogen. Arab. J. Chem. 2017, 10, 922–934. [Google Scholar] [CrossRef]
- Roshanravan, B.; Soltani, S.M.; Rashid, S.A.; Mahdavi, F.; Yusop, M.K. Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chem. Spec. Bioavailab. 2015, 27, 44–51. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, K.N. Influence of Accompanying Anions on Potassium Retention and Leaching in Potato Growing Alluvial Soils. Pedosphere 2013, 23, 464–471. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J. Clean. Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Liu, Z.; He, T.; Cao, T.; Yang, T.; Men, J.; Chen, W. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. J. Soil Sci. Plant. Nutr. 2017, 17, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lin, T.P.; Lehmann, J.; Fang, L.J.; Yang, Y.W.; Menyailo, O.V.; Chang, K.H.; Lai, J.S. Sorption properties for black carbon (wood char) after long term exposure in soils. Org. Geochem. 2014, 70, 53–61. [Google Scholar] [CrossRef]
- Hale, S.E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.D.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Lehmann, J.; daSilva, J.P., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol in the Central Amazon basin: Fertiliser, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Yong, S.O.; Naidu, R. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef]
- Sha, Z.; Li, Q.; Lv, T.; Misselbrook, T.; Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Yang, H.; Yao, D.; Zhu, D.; Wang, X.; Shao, J.; Chen, H. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Bioresour. Technol. 2015, 200, 521–527. [Google Scholar] [CrossRef]
- Dunisch, O.; Lima, V.C.; Seehann, G.; Donath, J.; Montoia, V.R.; Schwarz, T. Retention properties of wood residues and their potential for soil amelioration. Wood Sci. Technol. 2007, 41, 169–189. [Google Scholar] [CrossRef]
- Lee, Y.L.; Ahmed, O.H.; Samsuri, A.W.; Zakry, F.A.A. Biochar Tablets with and without Embedded Fertilizer on the Soil Chemical Characteristics and Nutrient Use Efficiency of Zea mays. Sustainability 2021, 13, 4878. [Google Scholar] [CrossRef]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation. FAO Soil Bulletin 1980, 38, 3–70. [Google Scholar]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 2010. [Google Scholar]
- Lan, W.; Mingzhu, L. Preparation and Properties of Chitosan-Coated NPK Compound Fertilizer with Controlled-Release and Water-Retention. Carbohydr. Polym. 2008, 72, 240–247. [Google Scholar]
- Mulvaney, R.L. Nitrogen-Inorganic Forms. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; The Soil Science Society of America, Inc.; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Bouyoucos, G.J. Hydrometer meter improved for making particle size analysis of soils. Agronomy 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Method of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R., Rhoades, J.D., Eds.; Agronomy Monographs, 9; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Wan, C.; Li, H.; Zhao, L.; Li, Z.; Zhang, C.; Tan, X.; Liu, X. Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge. J. Environ. Manage. 2021, 299, 113602. [Google Scholar] [CrossRef]
- Campos, P.; Knicker, H.; Miller, A.Z.; Velasco-Molina, M.; La Rosa, J.M.D. Biochar ageing in polluted soils and trace elements immobilisation in a 2-year field experiment. Environ. Pollut. 2021, 290, 118025. [Google Scholar] [CrossRef]
- Li, X.; Fang, G.; Qian, X.; Tian, Q. Z-scheme heterojunction of low conduction band potential MnO2 and biochar-based g-C3N4 for efficient formaldehyde degradation. Chem. Eng. J. 2022, 428, 131052. [Google Scholar] [CrossRef]
- Liu, X.; Liao, J.; Song, H.; Yang, Y.; Guan, C.; Zhang, Z. A Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Sci. Rep. 2019, 9, 9548. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, J.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manage. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labelling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Nartey, O.D.; Zhao, B. Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Adv. Mater. Sci. Eng. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zheng, H.; Li, G.; Gu, J.; Shao, J.; Zhang, S.; Yang, H.; Chen, H. Ammoniated and activated microporous biochar for enhancement of SO2 adsorption. J. Anal. Appl. Pyrolysis 2021, 156, 105119. [Google Scholar] [CrossRef]
- Chien, S.H.; Gearhart, M.M.; Villagarcia, S. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: A review. Soil Sci. 2011, 176, 327–335. [Google Scholar] [CrossRef]
- Cheng, H.; Jones, D.L.; Hill, P.; Bastami, M.S.; Tu, C.L. Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Arch. Agron. Soil Sci. 2017, 64, 1–11. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Niu, Y.; Chen, Z.; He, T.; Ding, W. Effect of field-aged biochar on fertilizer N retention and N2O emissions: A field microplot experiment with 15N-labeled urea. Sci. Total Environ. 2021, 773, 145645. [Google Scholar] [CrossRef]
- Novak, J.M.; Johnson, M.G.; Spokas, K.A. Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse. Front. Sustain. Food Syst. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Kim, P.; Hensley, D.; Labbe, N. Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma 2014, 232–234, 341–351. [Google Scholar] [CrossRef]
- Schraml, M.; Gutser, R.; Maier, H.; Schmidhalter, U. Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT. J. Agric. Sci. 2016, 154, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Ndzana, G.M.; Huang, L.; Zhang, Z.; Zhu, J.; Liu, F.; Bhattacharyya, R. The transformation of clay minerals in the particle size fractions of two soils from different latitude in China. Catena 2019, 175, 317–328. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, E.; Elhawat, N.; Prokisch, J.; Fari, M. Soil Quality and Plant Nutrition. Sustain. Agric. Rev. 2014, 14, 345–447. [Google Scholar]
- Wang, Y.; Li, M.; Yan, H. Ammonia volatilization from urea in alfalfa field with different nitrogen application rates, methods and timing. Agric. Ecosyst. Environ. 2021, 312, 107344. [Google Scholar] [CrossRef]
- Mencaroni, M.; Dal Ferro, N.; Furlanettoa, J.; Longoa, M.; Lazzarob, B.; Sartoric, L.; Grantd, B.B.; Smithd, W.N.; Morari, F. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach. J. Environ. Manage. 2021, 277, 111445. [Google Scholar] [CrossRef] [PubMed]
- Chathurika, J.A.S.; Kumaragamage, D.; Zvomuya, F.; Akinremi, O.O.; Flaten, D.N.; Indraratne, S.P.; Dandeniya, W.S. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can. J. Soil Sci. 2016, 96, 472–484. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Zhang, H.; Wang, M.; Liang, Z. Assessment of Ammonia Volatilization Losses and Nitrogen Utilization during the Rice Growing Season in Alkaline Salt-Affected Soils. Sustainability 2017, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Aggarwal, R.K. Interdependence of ammonia volatilization and nitrification in arid soils. Nutr. Cycling Agroecosyst. 1998, 51, 201–207. [Google Scholar] [CrossRef]
Samples | Total Nutrient Content | ||
---|---|---|---|
N (%) | P (%) | K (%) | |
B-T | 0.75c ± 0.01 | 0.07c ± 0.01 | 1.23c ± 0.09 |
BF-T | 4.96b ± 0.11 | 0.36b ± 0.01 | 2.45b ± 0.06 |
BF-NT | 5.05b ± 0.09 | 0.36b ± 0.01 | 2.58b ± 0.04 |
F-NT | 13.73a ± 0.27 | 4.40a ± 0.10 | 8.28a ± 0.23 |
Samples | Corresponding Characteristic Vibration | Functional Groups | References |
---|---|---|---|
B-T | O-H (3400–3200), C-O (1300–1000) C=C (1600–1475), =C-H (900–690) | Alcohol and phenolic Aromatic | [22] [23] |
BF-T | N-H (3100–2700), NH bending (1640–1550), C-N (1350–1000) C=C (1600–1475), =C-H (900–690) S=O (1420–1370) | Amine Aromatic Organic sulfate | [24,25] [23] [26] |
BF-NT | C=C (1600–1475), =C-H (900–690) C-O (1300–1000) | Aromatic Alcohol | [23] [22] |
F-NT | N-H (3100–2700), C-N (1350–1000) S=O (1420–1370) | Amine Organic sulfate | [24,25] [26] |
Samples | Percent Nutrient Release (%) | |||
---|---|---|---|---|
Ammonium | Nitrate | Phosphorus | Potassium | |
B-T | 0.32d ± 0.05 | 0.35a ± 0.04 | 0.06b ± 0.01 | 0.05c ± 0.01 |
BF-T | 1.81c ± 0.03 | 0.05b ± 0.01 | 0.34a ± 0.01 | 0.16b ± 0.01 |
BF-NT | 3.23b ± 0.04 | 0.06b ± 0.01 | 0.35a ± 0.01 | 0.24a ± 0.01 |
F-NT | 4.03a ± 0.22 | 0.03b ± 0.01 | 0.06b ± 0.01 | 0.17b ± 0.01 |
Chemical Characteristics | Soil |
---|---|
pH | 5.68 ± 0.07 |
Electrical conductivity (mS cm−1) | 0.02 ± 0.01 |
Available ammonium (mg kg−1) | 42.93 ± 4.94 |
Available nitrate (mg kg−1) | 17.87 ± 1.94 |
Treatments | Total Ammonia Volatilization (%) |
---|---|
T1 | 0 |
T2 | 0 |
T3 | 8.98b ± 0.22 |
T4 | 13.52a ± 0.25 |
Treatments | Soil Chemical Properties | |||
---|---|---|---|---|
pH | EC | Ammonium (mg/kg) | Nitrate (mg/kg) | |
T1 | 5.68a ± 0.07 | 0.02c ± 0.01 | 42.93c ± 4.94 | 17.87b ± 1.94 |
T2 | 4.95b ± 0.04 | 6.95ab ± 0.14 | 2251.2a ± 64.48 | 36.4ab ± 2.80 |
T3 | 5.52a ± 0.08 | 6.45b ± 0.20 | 1770.53b ± 9.47 | 42.93ab ± 6.53 |
T4 | 5.04b ± 0.18 | 7.02a ± 0.06 | 1936.67b ± 35.13 | 46.67ab ± 8.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.L.; Ahmed, O.H.; Wahid, S.A.; Jalloh, M.B.; Muzah, A.A. Nutrient Release and Ammonia Volatilization from Biochar-Blended Fertilizer with and without Densification. Agronomy 2021, 11, 2082. https://doi.org/10.3390/agronomy11102082
Lee YL, Ahmed OH, Wahid SA, Jalloh MB, Muzah AA. Nutrient Release and Ammonia Volatilization from Biochar-Blended Fertilizer with and without Densification. Agronomy. 2021; 11(10):2082. https://doi.org/10.3390/agronomy11102082
Chicago/Turabian StyleLee, Yit Leng, Osumanu Haruna Ahmed, Samsuri Abdul Wahid, Mohamadu Boyie Jalloh, and Adiza Alhassan Muzah. 2021. "Nutrient Release and Ammonia Volatilization from Biochar-Blended Fertilizer with and without Densification" Agronomy 11, no. 10: 2082. https://doi.org/10.3390/agronomy11102082