Economic Analysis of Biochar Use in Soybean Production in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Review
2.2. Agronomic Methods
2.3. Economic Analysis
2.4. Carbon Sequestration in Soil
3. Results
3.1. Systematic Literature Review
3.2. CBA
3.2.1. Breakeven Analysis
3.2.2. Payback Analysis
3.2.3. Carbon Sequestration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where should we apply biochar? Environ. Res. Lett. 2019, 14, 044005. [Google Scholar] [CrossRef]
- Dickinson, D.; Balduccio, L.; Buysse, J.; Ronsse, F.; Van Huylenbroeck, G.; Prins, W. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 2015, 7, 850–864. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Laird, D.A.; Heaton, E.A.; Rathke, S.; Acharya, B.S. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy 2020, 12, 240–251. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, A.T.; Wu, Z.; Zhu, P.; Ma, X. Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. PLoS ONE 2016, 11, e0154091. [Google Scholar] [CrossRef]
- Castro, A.; da Silva Batista, N.; Latawiec, A.; Rodrigues, A.; Strassburg, B.; Silva, D.; Araujo, E.; de Moraes, L.F.D.; Guerra, J.G.; Galvão, G.; et al. The effects of Gliricidia-derived biochar on sequential maize and bean farming. Sustainability 2018, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Latawiec, A.; Strassburg, B.N.B.; Junqueira, A.B.; Araujo, E.; de Moraes, L.F.D.; Pinto, H.A.N.; Castro, A.; Rangel, M.; Malaguti, G.A.; Rodrigues, A.F.; et al. Biochar amendment improves degraded pasturelands in Brazil: Environmental and cost-benefit analysis. Sci. Rep. 2019, 9, 11993. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Liao, Y.; Yang, J. Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. J. Clean. Prod. 2020, 277, 123506. [Google Scholar] [CrossRef]
- Gluba, Ł.; Rafalska-Przysucha, A.; Szewczak, K.; Łukowski, M.; Szlązak, R.; Vitková, J.; Kobyłecki, R.; Bis, Z.; Wichliński, M.; Zarzycki, R.; et al. Effect of fine size-fractionated sunflower husk biochar on water retention properties of arable sandy soil. Materials 2021, 14, 1335. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Alberti, G.; Panzacchi, P.; Delle Vedove, G.; Miglietta, F.; Tonon, G. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biol. Fertil. Soils 2019, 55, 67–78. [Google Scholar] [CrossRef]
- Victoria Hatherick. Argus Media Page. Available online: https://www.argusmedia.com/en/news/2142240-eu-ets-price-3265t-under-2030-scenarios (accessed on 24 September 2021).
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in North-western Ontario, Canada. For. Ecosyst. 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Zimmerman, A.R.; Pandit, B.H.; Cornelissen, G. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 2018, 637, 1333–1334. [Google Scholar] [CrossRef]
- Williams, M.M.; Arnott, J.C. A comparison of variable economic costs associated with two proposed biochar application methods. Ann. Environ. Sci. 2010, 4, 23–30. [Google Scholar]
- Filiberto, D.M.; Gaunt, J.L. Practicality of biochar additions to enhance soil and crop productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Butnan, S.; Deenik, J.; Toomsan, B.; Antal, M.J. Biochar characteristics and application rates affecting corn growth and properties of soils contrast in texture and mineralogy. Geoderma 2015, 237−238, 105–116. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Maaienza, A.; Miglietta, F.; Baronti, S. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric. Ecosyst. Environ. 2015, 207, 163–170. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Marczak, M.; Karczewski, M.; Makowska, D.; Burmistrz, P. Impact of the temperature of waste biomass pyrolysis on the quality of the obtained biochar. Agric. Eng. 2016, 20, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef] [PubMed]
- Tavva, V.S.; Kim, Y.H.; Kagan, I.A.; Dinkins, R.D.; Kim, K.H.; Collins, G.B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep. 2007, 26, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar] [PubMed]
- Zarkadas, C.G.; Yu, Z.; Voldeng, H.D.; Minero-Amador, A. Assessment of the protein quality of a new high-protein soybean cultivar by amino acid analysis. J. Agric. Food Chem. 1993, 41, 616–623. [Google Scholar] [CrossRef]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Michalak, I.; Lewandowska, S.; Niemczyk, K.; Detyna, J.; Bujak, H.; Arik, P.; Bartniczak, A. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng. Life Sci. 2019, 19, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Jerzak, M.A.; Smiglak-Krajewska, M. Globalization of the market for vegetable protein feed and its impact on sustainable agricultural development and food security in EU countries illustrated by the example of Poland. Sustainability 2020, 12, 888. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Protein Deficit. In European Parliament Resolution of 8 March 2011 on the EU Protein Deficit: What Solution for a Long-Standing Problem? European Commission: Brussels, Belgium, 2012; No.2012/C 199E/07. [Google Scholar]
- Lewandowska, S. Perspectives of soybean cultivation in Poland. In Proceedings of the Agric XXI Century Problems Challenges, Krzyzowa, Poland, 30–31 March 2016. [Google Scholar]
- Alexandratos, N.; Bruinsma, J.; Bödeker, G.; Schmidhuber, J.; Broca, S.; Shetty, P.; Ottaviani, M.G. World agriculture: Towards 2030/2050. Prospects for Food, Nutrition, Agriculture, and Major Commodity Groups; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Available online: http://www.fao.org/fileadmin/templates/em2009/docs/FAO_2006_.pdf (accessed on 20 February 2021).
- Lewandowska, S.; Łoziński, M.; Marczewski, K.; Kozak, M.; Schmidtke, K. Influence of priming on germination, development, and yield of soybean varieties. Open Agric. 2020, 5, 930–935. [Google Scholar] [CrossRef]
- Shea, Z.; Singer, W.M.; Zhang, B. Soybean production, versatility, and improvement. In Legume Crops—Prospects, Production and Uses; Hasanuzzaman, M., Ed.; Intech Open: London, UK, 2020; ISBN 978-1-83968-275-9. [Google Scholar]
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union; European Comission: Brussels, Belgium, 2018. [Google Scholar]
- Vereš, J.; Koloničný, J.; Ochodek, T. Biochar status under international law and regulatory issues for the practical application. Chem. Eng. Trans. 2014, 37, 799–804. [Google Scholar] [CrossRef]
- USS Working Group WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 978-925-108-369-7. [Google Scholar]
- Klimek-Kopyra, A.; Sadowska, U.; Kuboń, M.; Gliniak, M.; Sikora, J. Sunflower Husk Biochar as a Key Agrotechnical Factor Enhancing Sustainable Soybean Production. Agriculture 2021, 11, 305. [Google Scholar] [CrossRef]
- Kuboń, M. Analytical Study of Changes in Soil Moisture with the Addition of Biochar. Tasks no. “Water in Soil—Satellite Monitoring to Improve Water Retention Using Biochar”. Report Published for BIOSTRATEG3/345940/7/NCBR/2017; Krakow, Poland. 2020. Available online: https://cbkpan.pl/en/soilaqchar-water-in-soil-%E2%80%90-satellite-monitoring-and-improving-the-retention-using-biochar/ (accessed on 1 October 2021).
- Dietl, J. Elementy rynku produktów rolnych. Ruch Praw. I Ekon. 1958, 3, 199–224. (In Polish) [Google Scholar]
- Medyńska-Juraszek, A.; Latawiec, A.; Królczyk, J.; Bogacz, A.; Kawałko, D.; Bednik, M.; Dudek, M. Biochar improves maize growth but has a limited effect on soil properties: Evidence from a three-year field experiment. Sustainability 2021, 13, 3617. [Google Scholar] [CrossRef]
- Jadczyszyn, T.; Kowalczyk, J.; Lipiński, W. Zalecenia nawozowe dla roślin uprawy polowej i trwałych użytków zielonych (in polish). Puławy. Mat. Szkol. 2010, 95, 23. [Google Scholar]
- Purakayastha, T.; Chauhan, S.K.; Sasmal, S.; Pathak, S. Biochar carbon sequestration in soil: A myth or reality? Int. J. Bio-Resour. Stress Manag. 2015, 6, 623–630. [Google Scholar] [CrossRef]
- High-Level Commission on Carbon Prices. Report of the High-Level Commission on Carbon Prices; World Bank: Washington, DC, USA, 2017; Available online: https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59b7f2409f8dce5316811916/1505227332748/CarbonPricing_FullReport.pdf (accessed on 10 February 2021).
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Junqueira, A.B.; Lacerda, E.; Latawiec, A.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Cowie, A.; Cayuela, M.L.; Whitman, T.; Sohi, S. Biochar for climate change mitigation. Navigating from Science to Evidence-Based Policy. In Soil and Climate, 1st ed.; Lal, R., Stewart, B.A., Eds.; CRC Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Dumortier, J.; Dokoohaki, J.; Elobeid, H.; Hayes, A.; Laird, D.J.; Miguez, D.; Fernando, E. Global land-use and carbon emission implications from biochar application to cropland in the United States. J. Clean. Prod. 2020, 258, 120684. [Google Scholar] [CrossRef]
- Aller, M.D.; Archontoulis, S.V.; Zhang, W.; Sawadgo, W.; Laird, D.A.; Moore, K. Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crop. Res. 2018, 227, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Australian Organic Food Directory. Available online: https://www.organicfooddirectory.com.au/organic-answers/why-organic-food-costs-more/ (accessed on 6 October 2021).
- McBride, W.D.; Greene, C. The profitability of organic soybean production. Renew. Agric. Food Syst. 2009, 24, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Pawlewicz, A. Change of price premiums trend for organic food products: The example of the Polish egg market. Agriculture 2020, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J. Evaluation of the EU Legislation on Organic Farming; Thünen Institute of Farm Economics: Braunschweig, Germany, 2013; Available online: https://orgprints.org/id/eprint/28713/1/Final_StudyReport_(BlackWhite).pdf (accessed on 1 April 2021).
- DeLuca, T.H.; Gao, S. Use of biochar in organic farming. In Organic Farming; Chandran, S.C., Thomas, S., Unni, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 25–41. ISBN 978-303-004-657-6. [Google Scholar]
- Boardman, C.; Reinhart, W.J.; Celec, S.E. The role of the payback period in the theory and application of duration to capital budgeting. J. Bus. Financ. Account. 2006, 9, 511–522. [Google Scholar] [CrossRef]
- Pernes-Debuyser, A.; Tessier, D. Soil physical properties affected by long-term fertilization. Eur. J. Soil Sci. 2004, 55, 505–512. [Google Scholar] [CrossRef]
- Wang, H.; Ren, T.; Yang, H.; Feng, Y.; Feng, H.; Liu, G.; Yin, Q.; Shi, H. Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability 2020, 12, 1922. [Google Scholar] [CrossRef] [Green Version]
- Dahal, R.K.; Acharya, B.; Farooque, A. Biochar: A sustainable solution for solid waste management in agro-processing industries. Biofuels 2018, 12, 237–245. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Saravanan, A.; Varjani, S.; Ramamurthy, R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Sci. Total Environ. 2020, 748, 141312. [Google Scholar] [CrossRef]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What is the bioeconomy? A review of the literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef] [Green Version]
- Oni, B.A.; Oziegbeb, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.P. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Mete, F.Z.; Shamim, M.; Dijkstra, F.A.; Abuyusuf, M.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Yu, L.; Lu, X.; He, Y.; Brookes, P.C.; Liao, H.; Xu, J. Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop. J. Soils Sediments 2017, 17, 599–610. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Sci. Total Environ. 2020, 714, 136722. [Google Scholar] [CrossRef] [PubMed]
- Latawiec, A.; Królczyk, J.B.; Kuboń, M.; Szwedziak, K.; Drosik, A.; Polańczyk, E.; Grotkiewicz, K.; Strassburg, B.B.N. Willingness to Adopt Biochar in Agriculture: The Producer’s Perspective. Sustainability 2017, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Analysis of links between CAP Reform and Green Deal; Commission Staff Working Document: Brussels, Belgium, 2020. [Google Scholar]
pH | Chemical Nutrients | |||||||
---|---|---|---|---|---|---|---|---|
In H2O | In KCl | N Total | C org | N min | P | K | Mg | Ca |
(g·kg−1) | (mg·kg−1) | |||||||
6.73 | 6.28 | 0.116 | 1.33 | 32.1 | 99.4 | 81.9 | 42.01 | 836.9 |
Type of Biochar | Dose | Yield (Average for Two Years) | 1 | 2 | 3 |
---|---|---|---|---|---|
Mg ha−1 | t ha−1 | ||||
Sunflower husk | 0 | 2.232463 | **** | ||
Wood chips | 0 | 2.326317 | **** | ||
Sunflower husk | 40 | 3.249853 | **** | ||
Wood chips | 40 | 3.387327 | **** | ||
Sunflower husk | 80 | 3.468700 | **** | ||
Wood chips | 80 | 3.939717 | **** | **** | |
Sunflower husk | 60 | 4.242873 | **** | ||
Wood chips | 60 | 4.284597 | **** |
Frequency of Conventional Fertilization | Financial Results (USD) | ||
---|---|---|---|
Income | Costs | Results | |
Once a year | 1387.63 | 861.60 | 526.03 |
Twice a year | 1387.63 | 1221.95 | 165.68 |
Biochar Dose | Year | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
−2010.09 | −253.0832 | 1088.1315 | 998.2858 | |
−2010.09 | −2263.174 | −1175.042 | −176.756 | |
−2726.249 | −455.7599 | 1492.2826 | 1369.067 | |
−2726.249 | −3182.009 | −1689.726 | −320.66 |
Carbon Price | Biochar BA Dose | Biochar BB Dose | ||||
---|---|---|---|---|---|---|
USD tCO2−1 | Mg ha−1 | |||||
40 | 60 | 80 | 40 | 60 | 80 | |
10 | 821 | 1232 | 1643 | 791 | 1186 | 1581 |
20 | 1643 | 2464 | 3285 | 1581 | 2372 | 3162 |
30 | 3696 | 3696 | 4928 | 2372 | 3557 | 4743 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latawiec, A.E.; Koryś, A.; Koryś, K.A.; Kuboń, M.; Sadowska, U.; Gliniak, M.; Sikora, J.; Drosik, A.; Niemiec, M.; Klimek-Kopyra, A.; et al. Economic Analysis of Biochar Use in Soybean Production in Poland. Agronomy 2021, 11, 2108. https://doi.org/10.3390/agronomy11112108
Latawiec AE, Koryś A, Koryś KA, Kuboń M, Sadowska U, Gliniak M, Sikora J, Drosik A, Niemiec M, Klimek-Kopyra A, et al. Economic Analysis of Biochar Use in Soybean Production in Poland. Agronomy. 2021; 11(11):2108. https://doi.org/10.3390/agronomy11112108
Chicago/Turabian StyleLatawiec, Agnieszka Ewa, Agnieszka Koryś, Katarzyna Anna Koryś, Maciej Kuboń, Urszula Sadowska, Maciej Gliniak, Jakub Sikora, Adam Drosik, Marcin Niemiec, Agnieszka Klimek-Kopyra, and et al. 2021. "Economic Analysis of Biochar Use in Soybean Production in Poland" Agronomy 11, no. 11: 2108. https://doi.org/10.3390/agronomy11112108
APA StyleLatawiec, A. E., Koryś, A., Koryś, K. A., Kuboń, M., Sadowska, U., Gliniak, M., Sikora, J., Drosik, A., Niemiec, M., Klimek-Kopyra, A., Sporysz, M., Usowicz, B., & Medeiros, B. (2021). Economic Analysis of Biochar Use in Soybean Production in Poland. Agronomy, 11(11), 2108. https://doi.org/10.3390/agronomy11112108