Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design and Treatments
- CT—ploughing up to 30 cm depth, followed by disk-harrowing (1 pass), pre-sowing surface preparation with rotary harrow + wedge ring roller (2 passes);
- SS—subsoiling up to 35–40 cm depth, pre-sowing surface preparation with rotary harrow + wedge ring roller (1 pass);
- CH—chiseling up to 25 cm depth, pre-sowing surface preparation with rotary harrow + wedge ring roller (1 pass); DH—disk-harrowing up to 10–15 cm depth (2 passes); and
- NT—no till (without any soil tillage preparation).
2.2. Plant Material Sampling and Analysis
2.3. Data Analysis
3. Results
3.1. Maize Yield and Yield Components
3.2. Winter Wheat Yield and Yield Components
4. Discussion
4.1. Maize Yield and Yield Components
4.2. Winter Wheat Yield and Yield Components
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. 2020. Available online: https://ec.europa.eu/eurostat/web/products-statistical-books/-/ks-fk-20-001 (accessed on 25 August 2021).
- Carpici, E.B.; Celik, N. Determining Possible Relationship between Yield and Yield-related Components in Forage Maize (Zea mays L.) Using Correlation and Path Analyses. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 280–285. [Google Scholar] [CrossRef]
- Abbas, G.; Hussain, A.; Ahmad, A.; Wajid, S.A. Effect of Irrigation Schedules and Nitrogen Rates on Yield and Yield Components of Maize. J. Agri. Soc. Sci. 2005, 1, 335–338. [Google Scholar]
- Yilmaz, E.; Akçay, S.; Gürbüz, T.; Dağdelen, N.; Sezgin, F. Effect of Different Water Stress on the Yield and Yield Components of Second Crop Corn in Semiarid Climate. J. Food Agric. Environ. 2010, 8, 415–421. [Google Scholar] [CrossRef]
- Ibrahim, K.; Shamsudin, M.N.; Yacob, V.; Radam, A. Economic Impact of Climate Change on Maize Production in Northern Nigeria. Trends Appl. Sci. Res. 2014, 9, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Arens, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting Maize Production to Climate Change in sub-Saharan Africa. Food Sec. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Liliane, T.N.; Mutwenga, S.C. Factors affecting yield of crops. In Agronomy-Climate Change & Food Security; Amanullah, IntechOpen: London, UK, 2020; Volume 9, pp. 1–16. [Google Scholar] [CrossRef]
- Bašić, F. The regionalisation of Croatian agriculture in the common agricultural policy of the EU. Civ. Cris. 2014, 1, 143–176. (In Croatian) [Google Scholar]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.P. Management of crop water under drought: A review. Agron. Sust. Develop. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Jug, D.; Jug I: Brozović, B.; Vukadinović, V.; Stipešević, B.; Đurđević, B. The role of conservation agriculture in mitigation and adaptation to climate change. Poljoprivreda 2018, 24, 35–44. [Google Scholar] [CrossRef]
- Jug, D.; Đurđević, B.; Birkás, M.; Brozović, B.; Lipiec, J.; Vukadinović, V.; Jug, I. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Tillage Res 2019, 194, 1–15. [Google Scholar] [CrossRef]
- Rahman, M.; Aravindakshan, S.; Hoque, M.A.; Rahman, M.A.; Gulandaz, A.; Rahman, J.; Islam, T. Conservation tillage (CT) for climate-smart sustainable intensification: Assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh. Environ. Sustain. Indic. 2021, 10, 100–106. [Google Scholar] [CrossRef]
- FAO. What Is Conservation Agriculture? 2016. Available online: http://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/ (accessed on 25 August 2021).
- Sadiq, M.; Li, G.; Rahim, N.; Tahir, M.M. Effect of conservation tillage on yield of spring wheat (Triticum aestivum L.) and soil mineral nitrogen and carbon content. Int. Agrophys. 2021, 35, 83–95. [Google Scholar] [CrossRef]
- Omara, P.; Aula, L.; Eickhoff, E.M.; Dhillon, J.S.; Lynch, T.; Wehmeyer, G.B.; Raun, W. Influence of no-tillage on soil organic carbon, total soil nitrogen, and winter wheat (Triticum aestivum L.) grain yield. Int. J. Agron. 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hirzel, J.; Undurraga, P.; León LPanichini, M.; Carrasco, J.; González, J.; Matus, I. Different Residues Affect Wheat Nutritional Composition. J. Soil Sci. Plant. Nutr. 2020, 20, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon Management in Agricultural Soils. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Zhang, S.X.; Li, Q.; Zhang, X.P.; Wei, K.; Chen, L.J.; Liang, W.J. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Liao, Y. Conservation tillage increases carbon sequestration of winter wheat-summer maize farmland on Loess Plateau in China. PLoS ONE 2018, 13, 1–16. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Hobley, E.; Hübner, R.; Wiesmeier, M. Chapter 23-Climate-Smart Soil Management in Semiarid Regions. In Soil Management and Climate Change; Muñoz, M.A., Zornoza, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 349–368. [Google Scholar] [CrossRef]
- Shah, Z.; Shah, S.H.; Peoples, M.B.; Schwenke, G.D.; Herriedge, D.F. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jug, I.; Đurđević, B.; Vukadinović, V.; Jug, D.; Brozović, B. Optimization of nitrogen crop fertilization in sustainable agriculture practices. Glas. Zaštite Bilja 2018, 41, 28–39. (In Croatian) [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Chu, C.; Xu, Z. Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification. Sci. Rep. 2020, 10, 1033. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Ren, T.; Hussain, S.; Guo, C.; Wang, S.; Cong, R.; Li, X. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB PLANTS 2017, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Shi, Y.; Yu, Z. Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Sci. Rep. 2020, 10, 20310. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.; Ting-mei, Y.; Xue, F.; Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric Ecosyst Environ. 2012, 146, 103–112. [Google Scholar] [CrossRef]
- Roggatz, U.; McDonald, A.J.S.; Stadenberg, I.; Schurr, U. Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant Cell Environ. 1999, 22, 81–89. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Li, C.; Chang, W.; Zhang, S.; Zeng, Y.; Zeng, C.; Peng, M. Effect of Different Rates of Nitrogen Fertilization on Crop Yield, Soil Properties and Leaf Physiological Attributes in Banana Under Subtropical Regions of China. Front. Plant Sci. 2020, 11, 613760. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014, Update 2015—International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No.106; FAO: Rome, Italy, 2015; Available online: www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 August 2021).
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden, II: Chemische Extractionsmetoden zu Phosphorund Kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Bahadori, M.; Tofighi, H. Communications in soil science and plant analysis a modified Walkley-Black method based on spectrophotometric procedure a modified Walkley-Black method based on spectrophotometric. Commun. Soil Sci. Plant Anal. 2016, 47, 213–220. [Google Scholar] [CrossRef]
- International Organisation for Standardization ISO 11277. Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- USDA. Natural Resources Conservation Service, General Description for NCSS Soil Characterization Data. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/research/?cid=nrcs142p2_053543 (accessed on 22 August 2021).
- TIBCO Software Inc. Statistica (Data Analysis Software System) 2018, Version 13. Available online: http://tibco.com (accessed on 22 August 2021).
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003; p. 682. [Google Scholar]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather During Key Growth Stages Explains Grain Quality and Yield of Maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of Water Deficit Stress in Maize: Phenology and Yield Components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Denmead, O.T.; Shaw, R.H. The Effects of Soil Moisture Stress at Different Stages of Growth on the Development and Yield of Corn 1. Agron. J. 1960, 52, 272–274. [Google Scholar] [CrossRef]
- Jug, D.; Jug, I.; Vukadinović, V.; Đurđević, B.; Stipešević, B.; Brozović, B. Conservation Soil Tillage as a Measure of Climate Change Mitigation; University of Osijek, Faculty of Agriculture in Osijek: Osijek, Croatia, 2017. (In Croatian) [Google Scholar]
- Quilleré, I.; Dargel-Graffin, C.; Lea, P.J.; Hirel, B. Variability for Nitrogen Management in Genetically-Distant Maize (Zea mays L.) Lines: Impact of Post-Silking Nitrogen Limiting Conditions. Agronomy 2018, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Cui, Z.; Yang, H.; Zhang, F.; Chen, X. Establishing high-yielding maize systems for sustainable intensification in China. Adv. Agron. 2018, 148, 85–109. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of Excessive Nitrogen Fertilization on the Biochemical Quality, Phenolic Compounds, and Antioxidant Power of Sesamum indicum L Seeds. J. Food Qual. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vukadinović, V. Plant Nutrition, 3rd ed.; Faculty of Agriculture in Osijek: Osijek, Croatia, 2011; pp. 174–180. (In Croatian) [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of Human Modification of the Global Nitrogen Cycle. Phil. Trans. R. Soc. B 2013, 368. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Ye, Y.L.; Chen, X.P.; Cui, Z.L. Determining the Optimal Nitrogen Rate for Summer Maize in China by Integrating Agronomic, Economic, and Environmental Aspects. Biogeosciences 2014, 11, 3031–3041. [Google Scholar] [CrossRef] [Green Version]
- Suchy, M.; Wassenaar, L.I.; Graham, G.; Zebarth, B. High-frequency NO3- isotope (delta N-15, delta O-18) patterns in groundwater recharge reveal that short-term changes in land use and precipitation influence nitrate contamination trends. Hydrol. Earth Syst. Sci. 2018, 22, 4267–4279. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK; San Diego, CA, USA, 1995; pp. 250–255. [Google Scholar]
- Corazzina, E.; Gething, M.A.; Mazzali, E. Fertilizing for High Yield of Maize. IPI Bulletin 5, 2nd ed.; International Potash Institute: Bern, Switzerland, 1991; p. 15. [Google Scholar]
- El Sabagh, A.; Majid, M.; Hasan, M.; Saddam, M.; Barutcular, C.; Ratnasekera, D.; Abdelaal, K.A.; Islam, M. Influence of varying nitrogen levels on growth, yield and nitrogen use efficiency of hybrid maize (Zea mays). J. Exp. Biol. Agric. Sci. 2017, 5, 134–142. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M.; Sadiq, A.; Iqbal, M.; Zafar, M. Yield and Nitrogen Use Efficiency of Rainfed Maize Response to Splitting and Nitrogen Rates in Kashmir, Pakistan. Agron. J. 2012, 104, 448–457. [Google Scholar] [CrossRef]
- Nyiraneza, J.; Ziadi, N.; Zebarth, B.J.; Sharifi, M.; Burton, D.L.; Drury, C.F.; Bittman, S.; Grant, C.A. Prediction of Soil Nitrogen Supply in Corn Production Using Soil Chemical and Biological Indices. Soil Sci. Soc. Am. J. 2012, 76, 925–935. [Google Scholar] [CrossRef]
- Anwar, S.; Ullah, W.; Islam, M.; Shafi, M.; Iqbal, A.; Alamzeb, M. Effect of nitrogen rates and application times on growth and yield of maize (Zea mays L.). PAB 2017, 6, 908–916. [Google Scholar] [CrossRef]
- Barrios-Sánchez, M.G.; Rodríguez-Yzquierdo, G.A.; Alvarez-Escobar, M.G. Efecto de La Fertilización Nitroazufrada Sobre El Rendimiento y Calidad de Tres Genotipos de Maíz Con Diferentes Texturas de Endospermo. Cienc. Y Tecnol. Agropecu. 2019, 20, 565–577. [Google Scholar] [CrossRef]
- Colombi, T.; Keller, T. Developing Strategies to Recover Crop Productivity after Soil Compaction—A Plant Eco-Physiological Perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Ramadhan, M.N. Yield and yield components of maize and soil physical properties as affected by tillage practices and organic mulching. Saudi J. Biol. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Khan, F.U.H.; Tahir, A.R.; Yule, I.J. Intrinsic implication of different tillage practices on soil penetration resistance and crop growth. Int. J. Agric. Biol. 2001, 1, 23–26. [Google Scholar]
- Khurshid, K.; Iqbal, M.; Arif, M.S.; Nawaz, A. Effect of tillage and mulch on soil physical properties and growth of maize. Int. J. Agric. Biol. 2006, 5, 593–596. [Google Scholar]
- Yusuf, D.D. Effect of variation in tillage systems on maize (Zea mays L.) establishment and grain yield in semi-arid tropical climate. J. Agric. Sci. Technol. 2006, 8, 171–179. [Google Scholar]
- Wang, S.; Guo, L.; Zhou, P.; Wang, X.; Shen, Y.; Han, H.; Ning, T.; Han, K. Effect of Subsoiling Depth on Soil Physical Properties and Summer Maize (Zea mays L.) Yield. Plant Soil Environ. 2019, 65, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Mafongoya, P.; Jiri, O.; Phophi, M. Evaluation of Tillage Practices for Maize (Zea mays) Grown on Different Land-Use Systems in Eastern Zambia. Sustain. Agric. Res. 2015, 5, 10–23. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, E.U.; Tanveer, M.; Qamar, R.; Khan, I. Morphological and Phenological Attributes of Maize Affected by Different Tillage Practices and Varied Sowing Methods. Am. J. Plant Sci. 2014, 5, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Marković, M.; Josipović, M.; Šoštarić, J.; Jambrović, A.; Brkić, A. Response of Maize (Zea mays L.) Grain Yield and Yield Components to Irrigation and Nitrogen Fertilization. JCEA 2017, 18, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Jatto, M.I.; Aisha, M.; Kadams, A.M.; Fakuta, N.M. Correlation among Yield and Yield Components In Maize (Zea mays L.). J. Adv. Res. 2015, 3, 413–416. [Google Scholar]
- Khazaei, F.; Alikhani, M.A.; Yari, L.; Khandan, A. Study the correlation, regression and path coefficient analysis in sweet corn (Zea mays var. saccharata) under different levels of plant density and nitrogen rate. ARPN J. Agric. Biol. Sci. 2010, 5, 14–19. [Google Scholar]
- Knezevic, D.; Paunovic, A.; Madic, M.; Djukic, N. Genetic Analysis of Nitrogen Accumulation in Four Wheat Cultivars and Their Hibrids. Cereal Res. Comm. 2007, 35, 633–636. [Google Scholar] [CrossRef]
- Jug, I.; Jug, D.; Sabo, M.; Stipešević, B.; Stošić, M. Winter wheat yield and yield components as affected by soil tillage systems. Turk. J. Agric. For. 2011, 35, 1–7. [Google Scholar] [CrossRef]
- Halliday, K.J.; Salter, M.G.; Thingnaes, E.; Whitelam, G.C. Phytochrome Control of Flowering Is Temperature Sensitive and Correlates with Expression of the Floral Integrator FT: Phytochrome Regulation of FT. Plant J. 2003, 33, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Salomé, P.A.; McClung, C.R. The Arabidopsis Thaliana Clock. J. Biol. Rhythm. 2004, 19, 425–435. [Google Scholar] [CrossRef]
- Salomé, P.A.; Weigel, D.; McClung, C.R. The Role of the Arabidopsis Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation. Plant Cell 2010, 22, 3650–3661. [Google Scholar] [CrossRef] [Green Version]
- Capovilla, G.; Schmid, M.; Pose, D. Control of Flowering by Ambient Temperature. J. Exp. Bot. 2015, 66, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Rieu, I.; Twell, D.; Firon, N. Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiol. 2017, 173, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Talukder, A.S.M.H.M.; McDonald, G.K.; Gill, G.S. Effect of Short-Term Heat Stress Prior to Flowering and Early Grain Set on the Grain Yield of Wheat. Field Crops Res. 2014, 160, 54–63. [Google Scholar] [CrossRef]
- Arduini, I.; Baldanzi, M.; Pampana, S. Reduced Growth and Nitrogen Uptake During Waterlogging at Tillering Permanently Affect Yield Components in Late Sown Oats. Front. Plant Sci. 2019, 10, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertic, B.; Loncaric, Z.; Vukadinovic, V.; Vukobratovic, Z.; Vukadinovic, V. Winter Wheat Yield Responses to Mineral Fertilization. Cereal Res. Commun. 2007, 35, 245–248. [Google Scholar] [CrossRef]
- Dargie, S.; Wogi, L.; Kidanu, S. Nitrogen Use Efficiency, Yield and Yield Traits of Wheat Response to Slow-Releasing N Fertilizer under Balanced Fertilization in Vertisols and Cambisols of Tigray, Ethiopia. Cogent Environ. Sci. 2020, 6, 1778996. [Google Scholar] [CrossRef]
- Rahman, M.A.; Sarker, M.; Amin, M.; Jahan, A.; Akhter, M. Yield Response and Nitrogen Use Efficiency of Wheat Under Different Doses And Split Application Of Nitrogen Fertilizer. Bangladesh J. Agric. Res 2011, 36, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Usman, K.; Khan, E.A.; Khan, N.; Khan, M.A.; Ghulam, S.; Khan, S.; Baloch, J. Effect of Tillage and Nitrogen on Wheat Production, Economics, and Soil Fertility in Rice-Wheat Cropping System. Am. J. Plant Sci. 2013, 4, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Spiertz, J.H.J. Nitrogen, Sustainable Agriculture and Food Security. A Review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The Effect of Deep Tillage on Crop Yield—What Do We Really Know? Soil Till Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Wang, H.; Bai, W.; Han, W.; Song, J.; Lv, G. Effect of Subsoiling on Soil Properties and Winter Wheat Grain Yield. Soil Use Manag. 2019, 35, 643–652. [Google Scholar] [CrossRef]
- Knezevic, D.; Zecevic, V.; Stamenkovic, S.; Atanasijevic, S.; Milosevic, B. Variability of number of kernels per spike in wheat cultivars (Triticum aestivum L.). J. Cent. Eur. Agric. 2012, 13, 617–623. [Google Scholar] [CrossRef]
- Álvaro, F.; Isidro, J.; Villegas, D.; García del Moral, L.F.; Royo, C. Old and Modern Durum Wheat Varieties from Italy and Spain Differ in Main Spike Components. Field Crop. Res. 2008, 106, 86–93. [Google Scholar] [CrossRef]
- Philipp, N.; Weichert, H.; Bohra, U.; Weschke, W.; Schulthess, A.W.; Weber, H. Grain Number and Grain Yield Distribution along the Spike Remain Stable despite Breeding for High Yield in Winter Wheat. PLoS ONE 2018, 13, e0205452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sd | pHH2O | pHKCl | P | K | Hy | OM | Sand | Silt | Clay | St | |
---|---|---|---|---|---|---|---|---|---|---|---|
Stagnosol | 0–30 | 5.09 | 4.03 | 62 | 127 | 2.54 | 2.49 | 15.65 | 55.25 | 29.10 | SiCL |
30–60 | 18.47 | 53.23 | 28.30 | SiCL | |||||||
Gleysol | 0–30 | 5.29 | 4.27 | 172 | 227 | 4.39 | 1.45 | 9.92 | 71.78 | 18.30 | SiL |
30–60 | 10.80 | 66.21 | 23.00 | SiL |
Site | Year | Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Ta | Aa | ||
Precipitation (mm) | |||||||||||||||
S1 | 2013 | 87 | 101 | 97 | 53 | 80 | 83 | 28 | 99 | 143 | 42 | 102 | 1 | 916 | |
2014 | 40 | 65 | 49 | 98 | 160 | 64 | 79 | 135 | 108 | 116 | 25 | 78 | 1017 | ||
LTA | 56 | 41 | 54 | 63 | 75 | 95 | 69 | 70 | 77 | 70 | 74 | 65 | 809 | ||
S2 | 2013 | 62 | 112 | 113 | 46 | 113 | 54 | 15 | 73 | 97 | 29 | 67 | 1 | 782 | |
2014 | 52 | 76 | 25 | 69 | 139 | 62 | 82 | 83 | 119 | 143 | 24 | 68 | 942 | ||
LTA | 50 | 39 | 46 | 57 | 68 | 86 | 63 | 66 | 69 | 61 | 65 | 56 | 726 | ||
Air temperature (°C) | |||||||||||||||
S1 | 2013 | 2.2 | 2.8 | 5.1 | 13.1 | 16.5 | 19.8 | 23.3 | 22.7 | 15.7 | 13.6 | 7.6 | 2.5 | 12.1 | |
2014 | 4.3 | 5.5 | 9.6 | 12.8 | 15.4 | 20.3 | 21.8 | 20.3 | 16.4 | 11.3 | 5.8 | 1.9 | 12.1 | ||
LTA | 0.6 | 1.8 | 6.3 | 11.6 | 16.3 | 19.7 | 21.8 | 21.1 | 16.4 | 11.4 | 6.0 | 1.7 | 11.2 | ||
S2 | 2013 | 2.0 | 2.8 | 4.9 | 13.3 | 17.0 | 19.9 | 23.3 | 22.8 | 15.6 | 13.3 | 7.6 | 1.8 | 12.0 | |
2014 | 3.6 | 5.2 | 9.8 | 13.2 | 15.7 | 20.4 | 22.0 | 20.4 | 16.7 | 12.9 | 7.5 | 1.9 | 12.0 | ||
LTA | 0.3 | 1.8 | 6.5 | 12.0 | 17.0 | 20.3 | 22.3 | 21.8 | 16.9 | 11.6 | 5.9 | 1.3 | 11.5 |
PH (cm) | EW (g) | GWPC (g) | SW (g) | 1000 GW (g) | HLM (kg hl−1) | GY (t ha−1) | SY (t ha−1) | ||
---|---|---|---|---|---|---|---|---|---|
S | S1 | 190.89 b | 283.68 b | 146.88 b | 283.39 b | 299.04 | 75.61 a | 9.15 b | 35.33 b |
S2 | 214.62 a | 385.84 a | 198.01 a | 363.44 a | 302.14 | 74.14 b | 13.46 a | 50.95 a | |
FS | 38.07 | 54.55 | 55.09 | 47.94 | ns | 19.31 | 92.19 | 91.72 | |
TT | CT | 200.50 | 373.81 a | 189.62 a | 363.32 a | 324.56 a | 75.11 | 12.43 a | 48.16 a |
SS | 201.06 | 354.40 a | 183.42 a | 331.97 ab | 305.16 bc | 74.94 | 12.07 a | 45.12 a | |
CH | 206.94 | 347.09 a | 174.11 a | 331.23 ab | 307.67 ab | 74.34 | 11.44 a | 44.58 a | |
DH | 211.33 | 336.18 a | 174.80 a | 318.70 b | 289.26 cd | 75.08 | 11.48 a | 43.06 a | |
NT | 193.94 | 262.30 b | 140.26 b | 271.84 c | 276.30 d | 74.91 | 9.13 b | 34.77 b | |
FT | ns | 7.65 | 6.15 | 6.60 | 8.59 | ns | 6.57 | 7.61 | |
FT | N1 | 196.67 | 296.99 b | 152.34 b | 297.26 b | 294.47 | 74.84 | 9.98 b | 38.92 b |
N2 | 208.20 | 363.61 a | 186.56 a | 344.72 a | 309.74 | 75.05 | 12.23 a | 46.41 a | |
N3 | 203.40 | 343.68 a | 178.43 a | 328.27 a | 297.56 | 74.73 | 11.71 a | 44.09 a | |
FF | ns | 8.15 | 8.98 | 5.79 | ns | ns | 9.13 | 7.38 | |
average | 202.76 | 334.76 | 172.44 | 323.41 | 300.59 | 74.87 | 11.31 | 43.14 |
PH | EW | GWPC | SW | 1000 GW | HLM | GY | |
---|---|---|---|---|---|---|---|
EW | 0.620 * | ||||||
GWPC | 0.645 * | 0.981 * | |||||
SW | 0.601 * | 0.949 * | 0.915 * | ||||
1000 GW | 0.205 | 0.667 * | 0.617 * | 0.671 * | |||
HLM | −0.087 | 0.015 | −0.002 | −0.002 | 0.322 * | ||
GY | 0.663 * | 0.975 * | 0.993 * | 0.908 * | 0.579 * | −0.061 | |
SY | 0.643 * | 0.984 * | 0.962 * | 0.974 * | 0.633 * | −0.053 | 0.969 * |
PH (cm) | NFS | NSS | NGPS | 1000 GW (g) | HLM (kg hl−1) | GY (t ha−1) | SY (t ha−1) | ||
---|---|---|---|---|---|---|---|---|---|
S | S1 | 61.81 b | 16.17 a | 2.12 b | 36.50 a | 28.81 b | 65.73 b | 5.21 b | 6.44 b |
S2 | 63.16 a | 14.69 b | 3.67 a | 30.47 b | 35.32 a | 68.38 a | 6.53 a | 7.26 a | |
FS | 4.60 | 17.68 | 37.22 | 12.04 | 71.70 | 21.77 | 41.98 | 10.39 | |
TT | CT | 63.99 b | 15.08 | 3.23 | 31.27 | 32.43 | 67.16 | 5.27 c | 7.33 b |
SS | 66.23 a | 15.90 | 2.67 | 35.44 | 32.52 | 67.44 | 6.69 a | 8.54 a | |
CH | 62.01 b | 15.79 | 3.07 | 35.04 | 31.10 | 67.19 | 5.68 bc | 5.72 c | |
DH | 63.73 b | 15.28 | 2.76 | 32.61 | 32.43 | 66.86 | 6.09 ab | 6.27 c | |
NT | 56.46 c | 15.11 | 2.77 | 33.06 | 31.85 | 66.62 | 5.62 bc | 6.41 c | |
FT | 27.42 | ns | ns | ns | ns | ns | 5.69 | 15.15 | |
FT | N1 | 55.18 c | 14.75 b | 3.50 a | 29.76 b | 33.45 a | 67.41 | 4.64 b | 5.61 c |
N2 | 67.10 a | 15.86 a | 2.59 b | 35.49 a | 31.28 b | 67.20 | 6.31 a | 7.15 b | |
N3 | 65.17 b | 15.69 a | 2.60 b | 35.20 a | 31.47 b | 66.55 | 6.66 a | 7.80 a | |
FF | 137.52 | 3.88 | 5.62 | 4.60 | 3.24 | ns | 36.87 | 26.31 | |
average | 62.48 | 15.43 | 2.90 | 33.48 | 32.06 | 67.05 | 5.87 | 6.85 |
PH | NFS | NSS | NGPS | 1000 GW | HLM | GY | |
---|---|---|---|---|---|---|---|
NFS | 0.347 * | ||||||
NSS | −0.201 | −0.738 * | |||||
NGPS | 0.345 * | 0.927 * | −0.783 * | ||||
1000 GW | 0.065 | −0.208 | 0.465 * | −0.230 | |||
HLM | 0.035 | −0.089 | 0.291 | −0.112 | 0.641 * | ||
GY | 0.491 * | 0.227 | −0.126 | 0.290 | 0.284 | 0.258 | |
SY | 0.568 * | 0.192 | −0.076 | 0.223 | 0.110 | 0.065 | 0.480 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jug, I.; Brozović, B.; Đurđević, B.; Wilczewski, E.; Vukadinović, V.; Stipešević, B.; Jug, D. Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions. Agronomy 2021, 11, 2156. https://doi.org/10.3390/agronomy11112156
Jug I, Brozović B, Đurđević B, Wilczewski E, Vukadinović V, Stipešević B, Jug D. Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions. Agronomy. 2021; 11(11):2156. https://doi.org/10.3390/agronomy11112156
Chicago/Turabian StyleJug, Irena, Bojana Brozović, Boris Đurđević, Edward Wilczewski, Vesna Vukadinović, Bojan Stipešević, and Danijel Jug. 2021. "Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions" Agronomy 11, no. 11: 2156. https://doi.org/10.3390/agronomy11112156
APA StyleJug, I., Brozović, B., Đurđević, B., Wilczewski, E., Vukadinović, V., Stipešević, B., & Jug, D. (2021). Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions. Agronomy, 11(11), 2156. https://doi.org/10.3390/agronomy11112156