Stability and Adaptability of Maize Hybrids for Precision Crop Production in a Long-Term Field Experiment in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iizumi, T.; Shin, Y.; Kim, W.; Kim, M.; Choi, J. Global crop yield forecasting using seasonal climate information from a multi-model ensemble. Clim. Serv. 2018, 11, 13–23. [Google Scholar] [CrossRef]
- Brown, M.E.; Hintermann, B.; Higgins, N. Markets, climate change, and food security in West Africa. Environ. Sci. Technol. 2009, 43, 8016–8020. [Google Scholar] [CrossRef] [Green Version]
- Nagy, J. Maize Production; Akadémiai Kiadó: Budapest, Hungary, 2006. [Google Scholar]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Bierkens, M.F.; Reinhard, S.; de Bruijn, J.A.; Veninga, W.; Wada, Y. The shadow price of irrigation water in major groundwater-depleting countries. Water Resour. Res. 2019, 55, 4266–4287. [Google Scholar] [CrossRef] [Green Version]
- Nyéki, A.; Kerepesi, C.; Daróczy, B.; Benczúr, A.; Milics, G.; Nagy, J.; Harsányi, E.; Kovács, A.J.; Neményi, M. Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precis. Agric. 2021, 22, 1397–1415. [Google Scholar] [CrossRef]
- Vitázek, I.; Vereš, P. Drying rate of grain maize. Acta Technol. Agric. 2013, 16, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Re, M.I.; Dukes, M.D.; Hensley, D.; Rowland, D.; Graham, W. The effect of irrigation strategies and nitrogen fertilizer rates on maize growth and grain yield. Irrig. Sci. 2020, 38, 461–478. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Barlog, P.; Kunzová, E.; Vach, M.; Menšík, L. Biomass yield of silage maize, fertilizers efficiency, and soil properties under different soil-climate conditions and fertilizer treatments. Agron. Res. 2020, 18. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L. Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertil. Plant. Nutr. Bull. 2006, 16, 368. [Google Scholar]
- Lamptey, S.; Yeboah, S.; Zhang, R. Dry matter accumulation and nitrogen concentration in forage and grain maize in dryland areas under different soil amendments. Crop. Res. Inst. 2017, 15, 1646–1658. [Google Scholar]
- Potarzycki, J.; Grzebisz, W. Effect of zinc foliar application on grain yield of maize and its yielding compone. Plant Soil Environ. 2009, 55, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Ali, A.; Syed, W.H.; Asif, M.; Khaliq, T.; Abid, A.A. Growth and yield of maize (Zea mays L.) cultivars affected by NPK application in different proportion. Pak. J. Sci. 2010, 62, 211–216. [Google Scholar]
- Sharif, M.; Ahmad, M.; Sarir, M.S.; Khattak, R.A. Effect of organic and inorganic fertilizers on the yield and yield components of maize. Pak. J. Agric. Agric. Eng. Vet. Sci. 2004, 20, 11–16. [Google Scholar]
- Mousavi, S.M.N.; Illés, Á.; Bojtor, C.; Nagy, J. The impact of different nutritional treatments on maize hybrids morphological traits based on stability statistical methods. Emir. J. Food Agric. 2020, 8, 666–672. [Google Scholar] [CrossRef]
- Illés, Á.; Mousavi, S.M.N.; Bojtor, C.; Nagy, J. The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Res. Commun. 2020, 48, 565–573. [Google Scholar] [CrossRef]
- Bojtor, C.; Illés, Á.; Mousavi, S.M.N.; Széles, A.; Tóth, B.; Nagy, J.; Marton, C.L. Evaluation of the Nutrient Composition of Maize in Different NPK Fertilizer Levels Based on Multivariate Method Analysis. Int. J. Agron. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; El-Greadly, N.H.; Helmy, Y.I.; Singer, S.M. Responses of tomato plants to different rates of humic-based fertilizer and NPK fertilization. J. Appl. Sci. Res. 2007, 3, 169–174. [Google Scholar]
- Wang, X.; Liu, S.; Yin, X.; Bellaloui, N.; Winings, J.H.; Agyin-Birikorang, S.; Singh, U.; Sanabria, J.; Mengistu, A. Maize Grain Composition with Additions of NPK Briquette and Organically Enhanced N Fertilizer. Agronomy 2020, 10, 852. [Google Scholar] [CrossRef]
- Anugrah, C.; Indradewa, D.; Putra, E.T. Biochemical response of hybrid maize (Zea mays L.) to NPK fertilization based on spent bleaching earth in field scale. E3S Web Conf. 2020, 142, 01004. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef] [PubMed]
- Olad, A.; Gharekhani, H.; Mirmohseni, A.; Bybordi, A. Superabsorbent nanocomposite based on maize bran with integration of water-retaining and slow-release NPK fertilizer. Adv. Polym. Technol. 2018, 37, 1682–1694. [Google Scholar] [CrossRef]
- Dhlamini, B.; Paumo, H.K.; Katata-Seru, L.; Kutu, F.R. Sulphate-supplemented NPK nanofertilizer and its effect on maize growth. Mater. Res. Express 2020, 7, 095011. [Google Scholar] [CrossRef]
- Khan, M.J.; Muhammad, D.; Fahad, S.; Adnan, M.; Wahid, F.; Alamri, S.; Khan, F.; Dawar, K.M.; Irshad, I.; Danish, S.; et al. Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops. Plants 2020, 9, 1389. [Google Scholar]
- Kandil, E.E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef] [PubMed]
- Hammad, H.M.; Farhad, W.; Abbas, F.; Fahad, S.; Saeed, S.; Nasim, W.; Bakhat, H.F. Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ. Sci. Pollut. Res. 2017, 24, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Božović, D.; Popović, V.; Rajicić, V.; Kostić, M.; Filipović, V.; Kolarić, L.; Ugrenović, V.; Spalević, V. Stability of the expression of the maize productivity parameters by AMMI models and GGE-biplot analysis. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1387–1397. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Leonidakis, D.; Katsaros, G.; Kakabouki, I.; Vlachakis, D.; Efthimiadou, A. Effect of Genotype× Environment Interaction on Yield of Maize Hybrids in Greece Using AMMI Analysis. Agronomy 2021, 11, 479. [Google Scholar] [CrossRef]
- Nagy, J. Complex long-term experiments on soil use, water and nutrient management at the University of Debrecen since 1983. Növénytermelés 2019, 68, 5–28. [Google Scholar]
- Gombos, B.; Nagy, J. Az időjárás értékelése kukorica (Zea mays L.) tartamkísérletek eredményei alapján. Növénytermelés 2019, 68, 5–23. [Google Scholar]
- Gombos, B.; Nagy, J. Weather evaluation based on long-term maize (Zea mays L.) experiment data. Növénytermelés 2019, 2, 5–23. [Google Scholar]
- Annicchiarico, P. Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years. Theor. Appl. Genet. 1997, 94, 1072–1077. [Google Scholar] [CrossRef]
- Fernandez, J.A.; DeBruin, J.; Messina, C.D.; Ciampitti, I.A. Late-season nitrogen fertilization on maize yield: A meta-analysis. Field Crop. Res. 2020, 247, 107586. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Miao, Y.; Sun, Q.; Li, F.; Chen, X.; Li, J.; Ye, Y.; Yang, Z.; Zhang, Q.; et al. Soil nitrate-N levels required for high yield maize production in the North China Plain. Nutr. Cycl. Agroecosystems 2008, 82, 187–196. [Google Scholar] [CrossRef]
- Ghimire, B.; Timsina, D.; Nepal, J. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). J. Maize Res. Dev. 2015, 1, 134–145. [Google Scholar] [CrossRef]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1. [Google Scholar] [CrossRef] [Green Version]
- El-Bana, A.Y.; Gomaa, M.A.; Gomaa, M.A. Effect of N and K fertilization on maize grown in different populations under newly reclaimed sandy soil. Zagazig J. Agric. Res. 2000, 27, 1179–1190. [Google Scholar]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat. Field Crop. Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Byrne, F.N.; Gillman, B.; Kiely, M.; Bowles, M.; Connolly, P.; Earlie, J.; Murphy, J.; Rennick, T.; O’Reilly, E.; Shiely, F.; et al. Translation of nutrient level recommendations to control serum phosphate into food-based advice. J. Ren. Nutr. 2021, 31, 43–48. [Google Scholar] [CrossRef]
- Souza, R.S.; Chaves, L.H. Initial growth of chia (Salvia hispanica L.) submitted to nitrogen, phosphorus and potassium fertilization. Aust. J. Crop. Sci. 2017, 11, 610–615. [Google Scholar] [CrossRef]
- Singh, R.; Singh, V.; Singh, P.; Yadav, R.A. Effect of phosphorus and PSB on yield attributes, quality and economics of summer greengram (Vigna radiata L.). J. Pharmacogn. Phytochem. 2018, 7, 404–408. [Google Scholar]
- Przygocka-Cyna, K.; Grzebisz, W. The multifactorial effect of digestate on the availability of soil elements and grain yield and its mineral profile—The case of maize. Agronomy 2020, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Mulyani, O.; Trinurani, E.; Sudirja, R.; Joy, B. The effect of bio-fertilizer on soil chemical properties of sugarcane in Purwadadi Subang. KnE Life Sci. 2017, 2, 164–171. [Google Scholar] [CrossRef] [Green Version]
Treatments | Level | N(Kg\ha) | P2O5(Kg\ha) | K2O(Kg\ha) | Total(Kg\ha) |
---|---|---|---|---|---|
Treatment I | 0 | 0 | 0 | 0 | 0 |
1 | 30 | 23 | 27 | 80 | |
2 | 60 | 46 | 54 | 160 | |
3 | 90 | 69 | 81 | 240 | |
4 | 120 | 92 | 108 | 320 | |
5 | 150 | 115 | 135 | 400 | |
Treatment II | 0 | 0 | 0 | 0 | 0 |
1 | 60 | 184 | 216 | 460 | |
2 | 120 | 184 | 216 | 520 | |
3 | 180 | 184 | 216 | 580 | |
4 | 240 | 184 | 216 | 640 | |
5 | 300 | 184 | 216 | 700 |
Hybrids in Figures | Hybrids | FAO Number |
---|---|---|
A | FAO300 | 300 |
B | FAO330 | 330 |
C | FAO340 | 340 |
D | FAO350 | 350 |
E | FAO380 | 380 |
F | FAO360 | 360 |
G | FAO420 | 420 |
H | FAO490 | 490 |
I | FAO370 | 370 |
J | FAO430 | 430 |
Treatment I | Sources of Variance | df | Yield | Oil | Protein | Starch |
Genotypes | 9 | 20.25 ** | 92.87 ** | 53.54 ** | 37.45 ** | |
Treatments (NPK) | 5 | 400.12 ** | 2.98 * | 268.83 ** | 19.70 ** | |
Year | 2 | 381.71 ** | 1732.50 ** | 4470.83 ** | 275.90 ** | |
Genotype × Treatments | 45 | 1.04 | 1.03 | 1.67 ** | 1.16 | |
Genotype × Year | 18 | 22.62 ** | 53.16 ** | 46.73 ** | 25.72 ** | |
Treatments ×Year | 10 | 4.73 ** | 5.59 ** | 30.29 ** | 14.96 ** | |
Genotypes × Treatments × Year | 90 | 1.14 | 1.10 | 1.16 | 1.10 | |
Treatment II | Genotypes | 9 | 6.38 ** | 83.65 ** | 21.24 ** | 15.47 ** |
Treatments (N) | 5 | 338.36 ** | 4.39 ** | 253.82 ** | 25.96 ** | |
Year | 2 | 162.71 ** | 2678.21 ** | 3554.64 ** | 541.76 ** | |
Genotype × Treatments | 45 | 1.21 | 1.17 | 1.54 * | 1.19 | |
Genotype × Year | 18 | 15.87 ** | 43.56 ** | 24.11 ** | 16.52 ** | |
Treatments × Year | 10 | 18.32 ** | 7.29 ** | 12.35 ** | 9.69 ** | |
Genotypes × Treatments × Year | 90 | 1.41 * | 1.20 | 1.17 | 1.19 |
Fertilizer | Index | Genotypes | Mean (t/ha) | Grouping | Genotypes | Mean (%) | Grouping | Genotypes | Mean (%) | Grouping | Genotypes | Mean (%) | Grouping | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T I | Yield | FAO370 | 9.91 | A | Oil | FAO340 | 4.10 | A | Protein | FAO350 | 7.19 | A | Starch | FAO300 | 65.06 | A |
FAO420 | 9.77 | B | FAO300 | 3.80 | B | FAO340 | 6.93 | B | FAO380 | 64.89 | B | |||||
FAO490 | 9.71 | B | FAO420 | 3.80 | B | FAO380 | 6.92 | B | FAO370 | 64.45 | C | |||||
FAO430 | 9.58 | B | FAO330 | 3.75 | C | FAO360 | 6.87 | B | FAO420 | 64.40 | C | |||||
FAO300 | 9.42 | B | FAO370 | 3.69 | D | FAO490 | 6.80 | C | FAO350 | 64.29 | C | |||||
FAO330 | 9.29 | B | FAO430 | 3.68 | E | FAO330 | 6.65 | D | FAO490 | 64.15 | D | |||||
FAO340 | 9.26 | B | FAO490 | 3.63 | F | FAO370 | 6.62 | D | FAO330 | 64.15 | D | |||||
FAO380 | 9.21 | B | FAO380 | 3.62 | G | FAO430 | 6.54 | E | FAO360 | 63.79 | D | |||||
FAO360 | 8.26 | C | FAO350 | 3.61 | G | FAO300 | 6.43 | F | FAO430 | 63.73 | D | |||||
FAO350 | 8.17 | C | FAO360 | 3.55 | G | FAO420 | 6.30 | F | FAO340 | 62.94 | E | |||||
T II | Yield | FAO430 | 11.87 | A | Oil | FAO340 | 4.1155 | A | Protein | FAO350 | 7.83 | A | Starch | FAO300 | 64.07 | A |
FAO380 | 11.25 | B | FAO420 | 3.80 | B | FAO340 | 7.75 | B | FAO370 | 64.01 | A | |||||
FAO300 | 11.24 | B | FAO300 | 3.76 | C | FAO380 | 7.66 | B | FAO380 | 64.00 | A | |||||
FAO490 | 11.20 | B | FAO330 | 3.70 | D | FAO490 | 7.58 | C | FAO330 | 63.85 | B | |||||
FAO330 | 11.13 | C | FAO490 | 3.68 | E | FAO360 | 7.44 | D | FAO350 | 63.41 | C | |||||
FAO340 | 11.12 | C | FAO430 | 3.67 | E | FAO430 | 7.37 | E | FAO420 | 63.24 | D | |||||
FAO370 | 11.10 | C | FAO370 | 3.66 | E | FAO300 | 7.34 | E | FAO430 | 63.14 | D | |||||
FAO420 | 10.63 | C | FAO380 | 3.62 | E | FAO330 | 7.33 | E | FAO490 | 63.08 | D | |||||
FAO350 | 10.56 | C | FAO350 | 3.61 | F | FAO370 | 7.24 | E | FAO360 | 63.04 | D | |||||
FAO360 | 10.46 | C | FAO360 | 3.54 | F | FAO420 | 7.16 | E | FAO340 | 62.76 | D |
TI | Source | df | SS | MS | F | Percentage | F_prob |
Total | 2879 | 92.99 | 0.032 | - | - | ||
Treatments | 59 | 59.68 | 1.530 | 130.21 | 0.00000 | ||
Genotypes | 9 | 0.31 | 0.034 | 2.90 | 0.00206 | ||
NPK | 5 | 57.67 | 19.222 | 3143.42 | 0.90308 | ||
Block | 18 | 0.07 | 0.006 | 0.52 | 0.00000 | ||
Interactions | 45 | 1.71 | 0.063 | 5.39 | 0.00000 | ||
IPCA1 | 13 | 1.10 | 0.100 | 8.53 | 0.64 | 0.00000 | |
IPCA2 | 11 | 0.51 | 0.057 | 4.84 | 0.30 | 0.33687 | |
Residuals | 21 | 0.09 | 0.013 | 1.14 | 0.06 | - | |
Error | 2802 | 33.24 | 0.012 | - | |||
TII | Total | 2879 | 80.86 | 0.028 | - | - | |
Treatments | 59 | 41.75 | 1.070 | 77.54 | 0.00000 | ||
Genotypes | 9 | 0.35 | 0.039 | 2.82 | 0.00264 | ||
NPK | 5 | 40.41 | 13.471 | 2303.35 | 0.00000 | ||
Block | 18 | 0.07 | 0.006 | 0.42 | 0.95497 | ||
Interactions | 45 | 0.98 | 0.036 | 2.64 | 0.00001 | ||
IPCA1 | 13 | 0.53 | 0.048 | 3.51 | 0.54 | 0.00007 | |
IPCA2 | 11 | 0.34 | 0.037 | 2.70 | 0.34 | 0.00390 | |
Residuals | 21 | 0.12 | 0.017 | 1.20 | 0.12 | 0.29955 | |
Error | 2802 | 39.04 | 0.014 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojtor, C.; Mousavi, S.M.N.; Illés, Á.; Széles, A.; Nagy, J.; Marton, C.L. Stability and Adaptability of Maize Hybrids for Precision Crop Production in a Long-Term Field Experiment in Hungary. Agronomy 2021, 11, 2167. https://doi.org/10.3390/agronomy11112167
Bojtor C, Mousavi SMN, Illés Á, Széles A, Nagy J, Marton CL. Stability and Adaptability of Maize Hybrids for Precision Crop Production in a Long-Term Field Experiment in Hungary. Agronomy. 2021; 11(11):2167. https://doi.org/10.3390/agronomy11112167
Chicago/Turabian StyleBojtor, Csaba, Seyed Mohammad Nasir Mousavi, Árpád Illés, Adrienn Széles, János Nagy, and Csaba L. Marton. 2021. "Stability and Adaptability of Maize Hybrids for Precision Crop Production in a Long-Term Field Experiment in Hungary" Agronomy 11, no. 11: 2167. https://doi.org/10.3390/agronomy11112167
APA StyleBojtor, C., Mousavi, S. M. N., Illés, Á., Széles, A., Nagy, J., & Marton, C. L. (2021). Stability and Adaptability of Maize Hybrids for Precision Crop Production in a Long-Term Field Experiment in Hungary. Agronomy, 11(11), 2167. https://doi.org/10.3390/agronomy11112167