Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review
Abstract
:1. Introduction
2. Consequences of Abiotic Stresses and Their Mitigation through PEG
2.1. Drought Stress
2.2. Temperature Stress
2.3. Salinity Stress
2.4. Multiple Abiotic Stresses
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.; Qadeer, U.; Ahmed, Z.I.; Hassan, F. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch. Agron. Soil Sci. 2016, 62, 299–315. [Google Scholar] [CrossRef]
- Ansari, O.; Azadi, M.; Sharif-Zadeh, F.; Younesi, E. Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. J. Stress Physiol. Biochem. 2013, 9, 61–71. [Google Scholar]
- Kazemi, K.; Eskandari, H. Does priming improve seed performance under salt and drought stress. J. Basic Appl. 2012, 2, 3503–3507. [Google Scholar]
- Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant. Sci. 2016, 21, 329–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Yu, J.; Johnston, C.R.; Wang, Y.; Zhu, K.; Lu, F.; Zhang, Z.; Zou, J. Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS ONE 2015, 10, e0140620. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Tao, Y.; Hussain, S.; Jiang, Q.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant. Growth Regul. 2016, 78, 167–178. [Google Scholar] [CrossRef]
- Bai, Y.; Kissoudis, C.; Zhe, Y.; Visser, R.G.F.; Van Der Linden, G. Plant behaviour under combined stress. Plant. J. 2018, 93, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Back, K. 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J. Pineal Res. 2016, 61, 303–316. [Google Scholar] [CrossRef]
- Zhang, H.; Dou, W.; Jiang, C.-X.; Wei, Z.-J.; Liu, J.; Jones, R.L. Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant. Signal. Behav. 2010, 5, 1031–1033. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Liu, W.; Zhang, S. Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J. Integr. Plant. Biol. 2009, 51, 942–950. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2017, 147, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, Z.; Yan, Z.; Qian, H.; Song, A.; Liu, L.; Yang, X.; Xia, S.; Liang, Y. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. a meta-analysis. Agron. Sustain. Dev. 2018, 38, 26. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Bioph. Res. Co. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018, 145, 104–120. [Google Scholar] [CrossRef]
- Abedi, T.; Pakniyat, H. Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech., J. Gene. Plant. Breed. 2010, 46, 27–34. [Google Scholar] [CrossRef]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Ashraful Alam, M.; Syed, M.A.; Hossain, J.; Sarkar, S.; Saha, S.; Bhadra, P. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 2021, 11, 241. [Google Scholar] [CrossRef]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. Inter. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Abumhadi, N.M.; Atanassov, A.I. Future challenges of plant biotechnology and genomics. Rom. Biotechnol. Let. 2010, 15, 127–142. [Google Scholar]
- Bansal, K.C.; Lenka, S.K.; Mondal, T.K. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant. Breed. 2014, 133, 1–11. [Google Scholar] [CrossRef]
- Boscaiu, M.; Donat, P.M.; Llinares, J.; Vicente, O. Stress-tolerant wild plants: A source of knowledge and biotechnological tools for the genetic improvement of stress tolerance in crop plants. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2012, 40, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop. Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Vinocur, B.; Altman, A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol. 2005, 16, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front. Plant. Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Lone, A.A.; Khan, M.H.; Dar, Z.A.; Wani, S.H. Breeding strategies for improving growth and yield under waterlogging conditions in maize: A review. Maydica 2018, 61, 11. [Google Scholar]
- Wang, Y.; Li, D.; Gao, J.; Li, X.; Chen, P. The 2’-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates salt stress tolerance in rice. J. Exp. Bot. 2017, 68, 1479–1491. [Google Scholar] [CrossRef]
- Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant. Cell Rep. 2008, 27, 411–424. [Google Scholar] [CrossRef]
- Raina, M.; Pandotra, P.; Salgotra, R.; Ali, S.; Mir, Z.A.; Bhat, J.A.; Ali, A.; Tyagi, A.; Upadhahy, D. Genetic Engineering and Environmental Risk. In Modern Age Environmental Problems and Their Remediation; Oves, M., Zain Khan, M., Ismail, M.I.I., Eds.; Springer: Cham, Switzerland, 2018; pp. 69–82. [Google Scholar]
- Scott, S.E.; Inbar, Y.; Wirz, C.D.; Brossard, D.; Rozin, P. An overview of attitudes toward genetically engineered food. Ann. Rev. Nutr. 2018, 38, 459–479. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Mariani, L. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Mariani, L.; Ferrante, A. Agronomic management for enhancing plant tolerance to abiotic stresses—Drought, salinity, hypoxia, and lodging. Horticulturae 2017, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Amini, R. Drought stress tolerance of barley (Hordeum vulgare L.) affected by priming with PEG. Inter. J. Farm. All. Sci. 2013, 2, 803–808. [Google Scholar]
- Bittencourt, M.; Dias, D.; Dias, L.; Araújo, E. Effects of priming on asparagus seed germination and vigour under water and temperature stress. Seed Sci. Technol. 2004, 32, 607–616. [Google Scholar] [CrossRef]
- Bush, E.W.; Wilson, P.; Shepard, D.P.; McClure, G. Enhancement of seed germination in common carpetgrass and centipedegrass seed. HortScience 2000, 35, 769–770. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant. Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Jisha, K.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Abdelhamid, M.T.; El-Masry, R.R.; Darwish, D.S.; Abdalla, M.M.; Oba, S.; Ragab, R.; Sabagh, A.E.; El Kholy, M.H.; Omer, E. Mechanisms of Seed Priming Involved in Salt Stress Amelioration. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 219–251. [Google Scholar]
- Farooq, M.; Basra, S.; Wahid, A.; Cheema, Z.; Cheema, M.; Khaliq, A. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop. Sci. 2008, 194, 325–333. [Google Scholar] [CrossRef]
- Farooq, M.; Irfan, M.; Aziz, T.; Ahmad, I.; Cheema, S. Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop. Sci. 2013, 199, 12–22. [Google Scholar] [CrossRef]
- Kaya, M.D.; Okçu, G.; Atak, M.; Cıkılı, Y.; Kolsarıcı, Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Europ. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Li, J.; Yin, L.; Jongsma, M.; Wang, C. Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Indus. Crop. Prod. 2011, 34, 1543–1549. [Google Scholar] [CrossRef]
- Varier, A.; Vari, A.K.; Dadlani, M. The subcellular basis of seed priming. Cur. Sci. 2010, 99, 450–456. [Google Scholar]
- Whitesides, G.M. Poly(ethylene glycol) chemistry biotechnical and biomedical applications. App. Biochem. Biotech. 1993, 41, 233–234. [Google Scholar] [CrossRef]
- Branch, D.W.; Wheeler, B.C.; Brewer, G.J.; Leckband, D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 2001, 22, 1035–1047. [Google Scholar] [CrossRef]
- Janes, B.E. The effect of molecular size, concentration in nutrient solution, and exposure time on the amount and distribution of polyethylene glycol in pepper plants. Plant. Physiol. 1974, 54, 226–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, B.E.; Kaufmann, M.R. The osmotic potential of polyethylene glycol 6000. Plant. Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef]
- Parera, C.A.; Cantliffe, D.J. Presowing seed priming. Hort. Rev. 1994, 16, 109–141. [Google Scholar]
- Farooq, S.; Hussain, M.; Jabran, K.; Hassan, W.; Rizwan, M.S.; Yasir, T.A. Osmopriming with CaCl2 improves wheat (Triticum aestivum L.) production under water-limited environments. Environ. Sci. Pol. Res. 2017, 24, 13638–13649. [Google Scholar] [CrossRef]
- Kubala, S.; Wojtyla, Ł.; Quinet, M.; Lechowska, K.; Lutts, S.; Garnczarska, M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J. Plant. Physiol. 2015, 183, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouradi, M.; Bouizgaren, A.; Farissi, M.; Latrach, L.; Qaddoury, A.; Ghoulam, C. Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.)—Rhizobia symbiosis under drought stress. Sci. Hortic. 2016, 213, 232–242. [Google Scholar] [CrossRef]
- Tabassum, T.; Ahmad, R.; Farooq, M.; Basra, S.M.A. Improving salt tolerance in barley by osmopriming and biopriming. Int. J. Agric. Biol. 2018, 20, 2455–2464. [Google Scholar]
- Paparella, S.; Araújo, S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant. Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trend. Plant. Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trend. Plant. Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.i.; Kolapo, K. Drought resistance in rice from conventional to molecular breeding: A review. Inter. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, D.; Joshi, A.; Khan, P.; Gothkar, P.; Sodhi, P. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Experi. Agric. 1999, 35, 15–29. [Google Scholar] [CrossRef]
- Goswami, A.; Banerjee, R.; Raha, S. Drought resistance in rice seedlings conferred by seed priming. Protoplasma 2013, 250, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Jisha, K.C.; Puthur, J.T. Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J. Crop. Sci. Biotechnol. 2014, 17, 209–219. [Google Scholar] [CrossRef]
- Azadi, M.; Younesi, E.; Tabatabaei, S. Seed germination, seedling growth and enzyme activity of wheat seed primed under drought and different temperature conditions. J. Stress Physiol. Biochem. 2013, 9, 310–318. [Google Scholar]
- Bradford, K.J.; Somasco, O.A. Water relations of lettuce seed thermoinhibition. I. Priming and endosperm effects on base water potential. Seed Sci. Res. 1994, 4, 1–10. [Google Scholar] [CrossRef]
- Corbineau, F.; Picard, M.; Côme, D. Germinability of leek seeds and its improvement by osmopriming. Acta Hortic. 1993, 371, 45–52. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Suresh Kumar, J.; Suprasanna, P. Seed ‘primeomics’: Plants memorize their germination under stress. Biol. Rev. 2021, 96, 1723–1743. [Google Scholar] [CrossRef] [PubMed]
- Tiryaki, I.; Kizilsimsek, M.; Kaplan, M. Rapid and enhanced germination at low temperature of alfalfa and white clover seeds following osmotic priming. Trop. Grassland. 2009, 43, 171–177. [Google Scholar]
- Ahmad, P.; Jaleel, C.A.; Azooz, M.; Nabi, G. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot. Res. Inter. 2009, 2, 11–20. [Google Scholar]
- Ahmad, P.; Sarwat, M.; Sharma, S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant. Biol. 2008, 51, 167–173. [Google Scholar] [CrossRef]
- Zhang, C.; He, P.; Yu, Z.; Hu, S. Effect of zinc sulphate and PEG priming on ageing seed germination and antioxidase activities of Perilla frutescens seedlings. China J. Chin. Mater. Med. 2010, 35, 2372–2377. [Google Scholar]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S. Crop production under drought and heat stress: Plant responses and management options. Front. Plant. Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr. Opin. Plant. Biol. 2010, 13, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahan, J.; McMichael, B.; Wanjura, D. Methods for reducing the adverse effects of temperature stress on plants: A review. Environ. Exp. Bot. 1995, 35, 251–258. [Google Scholar] [CrossRef]
- Ruelland, E.; Zachowski, A. How plants sense temperature. Environ. Exp. Bot. 2010, 69, 225–232. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J. Total sugars, α-amylase activity, and germination after priming of normal and aged rice seeds. Korean J. Crop. Sci. 2000, 45, 108–111. [Google Scholar]
- Murray, G.; Swensen, J.B.; Gallian, J.J. Emergence of sugar beet seedlings at low soil temperature following seed soaking and priming. HortScience 1993, 28, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Murray, G.A.; Swensen, J.B.; Beaver, G. Emergence of spring-and summer-planted onions following osmotic priming. HortScience 1992, 27, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, W.; Huber, D.; Cantliffe, D. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Sci. Technol. 2013, 41, 164–169. [Google Scholar] [CrossRef]
- Nascimento, W.M.; Huber, D.J.; Cantliffe, D.J. Carrot seed germination and ethylene production at high temperature in response to seed osmopriming. Hortic. Bras. 2013, 31, 554–558. [Google Scholar] [CrossRef]
- Parera, C.A.; Cantliffe, D.J. Priming leek seed for improved germination and emergence at high temperature. HortScience 1992, 27, 1077–1079. [Google Scholar] [CrossRef] [Green Version]
- Bodsworth, S.; Bewley, J. Osmotic priming of seeds of crop species with polyethylene glycol as a means of enhancing early and synchronous germination at cool temperatures. Can. J. Bot. 1981, 59, 672–676. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Y. Effects of PEG pretreatment on seed vigour of Masson pine. J. Nanjing For. Uni. 2000, 24, 38–40. [Google Scholar]
- Patanè, C.; Cavallaro, V.; Cosentino, S.L. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Indust. Crop. Prod. 2009, 30, 1–8. [Google Scholar] [CrossRef]
- Fu, K.; Lu, D. Reaction kinetics study of α-amylase in the hydrolysis of starch size on cotton fabrics. J. Text. Inst. 2014, 105, 203–208. [Google Scholar] [CrossRef]
- Goswami, A.; Jain, M.; Paul, B. α-and β-Amylases in seed germination. Biolog. Plant. 1977, 19, 469–471. [Google Scholar] [CrossRef]
- Kirschenbaum, D.M. The action of α-amylase on starch. Biochem. Educ. 1983, 11, 152–153. [Google Scholar] [CrossRef]
- Martínez, J.L.; Meza, E.; Petranovic, D.; Nielsen, J. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae. Met. Eng. Com. 2016, 3, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Henson, C.A. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch. Biochem. Biophys. 1991, 284, 298–305. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Hong, S.; Yun, S.; Park, E. Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J. Crop. Sci. 1998, 43, 194–198. [Google Scholar]
- Lee, W.S.; Slaughter, D.; Giles, D. Robotic weed control system for tomatoes. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef]
- Chiu, K.; Chen, C.; Sung, J. Effect of priming temperature on storability of primed sh-2 sweet corn seed. Crop. Sci. 2002, 42, 1996–2003. [Google Scholar] [CrossRef]
- Debbarma, A.; Devi, J.; Barua, M. Seed priming durations and concentrations influence on germination and seedling growth of bitter gourd. Veg. Sci. 2018, 45, 137–139. [Google Scholar]
- Girolamo, D.G.; Barbanti, L. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ita. J. Agron. 2012, 7, e25. [Google Scholar] [CrossRef] [Green Version]
- Stephen, K.; Khan, F.; Bhat, S.; Narayan, S.; Mir, S.; Mir, M.; Hussain, K.; Gul, M.; Khurshid, A.; Siddiqi, I. Optimizing priming concentration and duration of various priming agents for improved seed germination in chilli (Capsicum annum L.). J. Pharm. Phytochem. 2018, 7, 2689–2693. [Google Scholar]
- Yang, Y.; Chen, W.; Guo, J. Effects of PVA and PEG pretreatment on development and ultrastructure of plumular root mitochondria in soybean seed during low temperature imbibition process. J. Integr. Plant. Biol. 1992, 34, 432–436. [Google Scholar]
- Morohashi, Y. Patterns of mitochondrial development in reserve tissues of germinated seeds: A survey. Physiol. Plant. 1986, 66, 653–658. [Google Scholar] [CrossRef]
- Noctor, G.; De Paepe, R.; Foyer, C.H. Mitochondrial redox biology and homeostasis in plants. Trends Plant. Sci. 2007, 12, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Smiri, M.; Chaoui, A.; El Ferjani, E. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J. Plant. Physiol. 2009, 166, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, Z.; Liu, J.; Chen, M.; Pan, R.; Hu, W.; Guan, Y.; Hu, J. Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. J. Plant. Growth Regul. 2020, 39, 669–679. [Google Scholar] [CrossRef]
- Khan, A.A.; Tao, K.-L.; Knypl, J.; Borkowska, B.; Powell, L.E. Osmotic conditioning of seeds: Physiological and biochemical changes. Acta Hortic. 1977, 83, 267–278. [Google Scholar] [CrossRef]
- Bailly, C.; Benamar, A.; Corbineau, F.; Côme, D. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci. Res. 2000, 10, 35–42. [Google Scholar] [CrossRef]
- Guan, Y.; Hu, J.; Wang, X.; Shao, C. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. 2009, 10, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Hussain, S.; Khaliq, A.; Ali, S.; Khan, I. Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 43–62. [Google Scholar]
- Kaur, H.; Goyal, M. Salicylic acid priming enhances low temperature stress tolerance in Egyptian clover (Trifolium alexandrinum L.) by influencing antioxidant system. Indian J. Exp. Biol. 2019, 24, 291–295. [Google Scholar]
- Shah, T.; Latif, S.; Khan, H.; Munsif, F.; Nie, L. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy 2019, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Patanè, C.; Cavallaro, V.; D’Agosta, G.; Cosentino, S. Plant emergence of PEG-osmoprimed seeds under suboptimal temperatures in two cultivars of sweet sorghum differing in seed tannin content. J. Agron. Crop. Sci. 2008, 194, 304–309. [Google Scholar] [CrossRef]
- Harris, H.B.; Burns, R.E. Influence of tannin content on preharvest seed germination in sorghum. Agron. J. 1970, 62, 835–836. [Google Scholar] [CrossRef]
- Kantar, F.; Pilbeam, C.; Hebblethwaite, P. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Ann. App. Biol. 1996, 128, 85–93. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. Plant. Soil 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pol. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, K.; Hu, Y.; Steppuhn, H. Physiological responses of plants to salinity: A review. Can. J. Plant. Sci. 1998, 78, 19–27. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sust. Develop. 2012, 32, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Goyal, M.R.; Singh, A. Physiological and biochemical changes in plants under soil salinity stress: A review. In Engineering Practices for Management of Soil Salinity; Apple Academic Press: New York, NY, USA, 2018; pp. 159–200. [Google Scholar]
- Biswas, S.; Rasal-Monir, M.; Islam, M.; Modak, S.; Kabir, M.H. Induction of salt tolerance in tomato through seed priming. Plant. 2019, 7, 47. [Google Scholar] [CrossRef]
- Chatterjee, P. Sodium chloride primed seeds modulate glutathione metabolism in legume cultivars under NaCl stress. Amer. J. Plant. Physiol. 2018, 13, 8–22. [Google Scholar] [CrossRef] [Green Version]
- Senturk, B.; Sivritepe, H.O. NaCl priming alleviates the inhibiting effect of salinity during seeding growth of peas (Pisum sativum L.). Fresen. Environ. Bull. 2016, 11, 4202. [Google Scholar]
- Shahi-Gharahlar, A.; Farhoudi, R.; Mosavi, M. Effect of seed pretreatment on summer squash (Cucurbita pepo) seed germination and seedling characteristics under salinity condition. Seed Sci. Biotechnol. 2009, 3, 15–23. [Google Scholar]
- Moosavi, A.; Tavakkol Afshari, R.; Sharif-Zadeh, F.; Aynehband, A. Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. Seed Sci.Technol. 2009, 37, 781–785. [Google Scholar] [CrossRef]
- Amjad, M.; Ziaf, K.; Iqbal, Q.; Ahmad, I.; Riaz, M.; Saqib, Z.A. Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pak. J. Agri. Sci. 2007, 44, 408–416. [Google Scholar]
- Pradhan, N.; Prakash, P.; Manimurugan, C.; Tiwari, S.K.; Sharma, R.; Singh, P. Screening of tomato genotypes using osmopriming with PEG 6000 under salinity stress. Res. Environ. Life Sci. 2015, 8, 245–250. [Google Scholar]
- Patade, V.Y.; Bhargava, S.; Suprasanna, P. Better osmotic adjustment mediates salt and PEG stress tolerance in primed plants of contrasting cultivars of sugarcane. Sugar Tech. 2015, 17, 348–355. [Google Scholar] [CrossRef]
- Bejandi, T.K.; Sedghi, M.; Sharifi, R.S.; Namvar, A.; Molaei, P. Seed priming and sulfur effects on soybean cell membrane stability and yield in saline soil. Pes. Agro. Bra. 2009, 44, 1114–1117. [Google Scholar] [CrossRef] [Green Version]
- Ghiyasi, M.; Myandoab, M.P.; Tajbakhsh, M.; Salehzadeh, H.; Meshkat, M. Influence of different osmopriming treatments on emergency and yield of maize (Zea mays L.). Res. J. Biological. Sci. 2008, 3, 1452–1455. [Google Scholar]
- Salama, K.H.; Mansour, M.M.; Hassan, N.S. Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust. J. Basic. Appl. Sci. 2011, 5, 126–132. [Google Scholar]
- Dawood, M.G.; El-Awadi, M.E. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colom. 2015, 20, 223–235. [Google Scholar] [CrossRef]
- Farooq, M.; Tabassum, R.; Afzal, I. Enhancing the performance of direct seeded fine rice by seed priming. Plant. Prod. Sci. 2006, 9, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Jia, G.; Yu, X. Water uptake and WUE of apple tree-corn agroforestry in the loess hilly region of China. Agric. Wat. Manag. 2020, 234, 106138. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Yu, X.; Jia, G.; Jiang, J. Evidence of foliar water uptake in a conifer species. Agric. Wat. Manag. 2021, 255, 106993. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R.; Arora, U. Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed Sci. Technol. 2010, 38, 36–48. [Google Scholar] [CrossRef]
- Frett, J.; Pill, W. Germination characteristics of osmotically primed and stored impatiens seeds. Sci. Hortic. 1989, 40, 171–179. [Google Scholar] [CrossRef]
- Moghanibashi, M.; Karimmojeni, H.; Nikneshan, P. Seed treatment to overcome drought and salt stress during germination of sunflower (Helianthus annuus L.). J. Agrobiol. 2013, 30, 89–96. [Google Scholar]
- Rahimi, A. Seed priming improves the germination performance of cumin (Cuminum syminum L.) under temperature and water stress. Ind. Crop. Prod. 2013, 42, 454–460. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, G.; Yu, X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain. Agric. Ecosys. Environ. 2020, 287, 106697. [Google Scholar] [CrossRef]
- Carpenter, W.J. Priming dusty miller seeds: Role of aeration, temperature, and relative humidity. HortScience 1990, 25, 299–302. [Google Scholar] [CrossRef] [Green Version]
- El-Saidy, A.E.; Farouk, S.; El-Ghany, H.A. Evaluating of different seed priming on seedling growth, yield and quality componenets in two sunflower (Helianthus annuus L.) cultivars. Trends App. Sci. Res. 2011, 6, 977–991. [Google Scholar] [CrossRef] [Green Version]
Abiotic Stress Type | Crop Species | Brief Summary |
---|---|---|
Drought stress | Asparagus | Priming with PEG resulted in early seed germination and seedling emergence, as well as superior seedling vigor [32]. |
Barley | Priming with PEG improved seed germination rate, root and shoot length, and seedling biomass [31]. | |
Sorghum | Priming with PEG enhanced seed germination and seedling emergence. It also increased the antioxidant activities of APX, CAT, POD, and SOD, and improved the levels of several compatible solutes including free amino acid, proline, reducing sugar, soluble sugar, and soluble protein [5]. | |
Cumin | Priming with PEG accelerated seed germination and seedling stand uniformity [132]. | |
Rice | Priming with PEG improved seed germination and emergence rates, plumule height, and radicle length [89]. | |
Rice | PEG priming improved seed germination and seedling growth rate. In addition, PEG-primed plants had increased GPX activity and overexpressed MnSOD compared to unprimed plants under drought stress [58]. | |
Rice | PEG-primed plants exhibited improved seed vigor, seedling growth, and enhanced tolerance under drought stress [59]. | |
Mountain rye (Secale montanum L.) | PEG priming increased seed germination rate, seedling vigor, and seedling length [2]. | |
Wheat | PEG priming increased seed germination percentage, germination index, and seedling length. PEG priming also increased APX and CAT activities [60]. | |
Temperature stress | Asparagus | Priming with PEG enhanced seed germination, seedling emergence, as well as seedling vigor under temperature stress [32]. |
Alfalfa | Priming with PEG improved germination speed and germination rate [64]. | |
Soybean | PEG-primed plants exhibited early and synchronous germination at low temperature stress [81]. | |
Lettuce | Priming with PEG speeded seed germination and resulted in early emergence [61]. | |
Common carpetgrass (Axonopus affinis Chase); Centipedegrass [Eremochloa ophiuroides Munro. (Kunz)] | Priming with PEG increased seed germination percentage and resulted in early germination for common carpet grass and centipede grass [33]. | |
Dusty miller (Senecio cineraria DC.) | PEG priming increased the germination percentage and resulted in early seed germination [134]. | |
Leek | PEG-primed plants had improved germination rate and final percentage of germination at suboptimal temperatures [62]. | |
China aster (Callistephus chinensis L.) | Priming with PEG resulted in early germination and increased germination index [126]. | |
Carrot | Priming with PEG improved seed germination performance under high temperature stress by increasing ethylene production [78,79]. | |
Leek | Priming with PEG improved seed germination and seedling emergence at high temperature stress [80]. | |
Salinity stress | Pepper | PEG-primed plants had improved germination performance and seedling growth under saline soil [119]. |
Sunflower | Priming with PEG improved germination performance and seedling vigor under salinity stress [135]. | |
Amaranth | PEG priming increased seed germination and seedling growth [118]. | |
Sugarcane | PEG-primed plants had improved shoot growth, reduced leaf senescence, and exhibited better osmotic adjustment through accumulation of glycine betaine and dissolved ionic solutes [121]. | |
Sweet sorghum | The beneficial effects of PEG priming are evident under suboptimal temperatures rather than the optimal temperature [83]. | |
Tomato | PEG priming increased seed germination percentage, seedling vigor, and biomass [120]. | |
Wheat | PEG-primed wheat seeds showed improved germination and seedling emergence compared to non-primed seeds [123]. | |
Drought + low temperature stress | Asparagus | PEG priming resulted in early seed germination and seedling emergence under drought and low temperature stresses [32]. |
Drought + low temperature stress | Spinach | PEG-primed plants exhibited improved seed germination percentage and seedling uniformity under drought and low temperature stresses [129]. |
Drought + salt | Sunflower | PEG priming increased seed germination percentage, germination rate, root and shoot length, seedling weight and vigor [131]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, C.; Bagavathiannan, M.; Wang, H.; Sharpe, S.M.; Meng, W.; Yu, J. Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy 2021, 11, 2194. https://doi.org/10.3390/agronomy11112194
Lei C, Bagavathiannan M, Wang H, Sharpe SM, Meng W, Yu J. Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy. 2021; 11(11):2194. https://doi.org/10.3390/agronomy11112194
Chicago/Turabian StyleLei, Chu, Muthukumar Bagavathiannan, Huiyong Wang, Shaun M. Sharpe, Wenting Meng, and Jialin Yu. 2021. "Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review" Agronomy 11, no. 11: 2194. https://doi.org/10.3390/agronomy11112194
APA StyleLei, C., Bagavathiannan, M., Wang, H., Sharpe, S. M., Meng, W., & Yu, J. (2021). Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy, 11(11), 2194. https://doi.org/10.3390/agronomy11112194