Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details of the Vegetation Experiment
2.2. Weather Conditions and Soil Properties
2.3. Qualitative Characteristics of Biochar
2.4. System Boundy
- Defining the strategic goal;
- Selection of the experiment factors (a two-way experiment was selected);
- Selection of the experiment plant (soybean as a plant with high GHG emissions);
- Selection of the experiment site (a geographic system boundary); the experiment was carried out in the vicinity of large-area vegetable cultivation;
- The applied treatments (excluding the experimental factor) were selected based on the recommendations of the Integrated Plant Production methodology and were based on production practices in the research area;
- Determining the levels of experimental factors; 40, 60 and 80 Mg/ha of biochar additives were used;
- The boundary of the system was selected based on a literature study and a risk analysis in the context of the adopted goal, according to the ISO 31000: 2018 standard.
- Production of fertilizers used in plant cultivation;
- Energy consumption for field work on the farm;
- Soil emissions (direct and indirect, related to fertilizer use);
- Emissions from the management of crop residues and from the mineralization of soil organic matter;
- Emissions related to biochar production;
- Emissions related to seed production;
2.5. Life Cycle Calculation Methodology
3. Results and Discussion
3.1. Soybean Yield and Total CO2 Emissions Depending on the Doses of Biochar Applied to the Soil
3.2. Emission Sources in the Total GHG Emission Related to Soybean Production
4. Conclusions
- The introduction of biochar to the soil had a statistically significant effect on the level of soybean yield.
- The use of biochar in soybean cultivation resulted in a 25% reduction in GHG emissions compared to the object without the biochar addition. The amount of GHG emissions for soybeans ranged from 846.9 to 1260.1 kg of CO2/Mg.
- The impact of the type of biochar raw material on the yield and the level of GHG emissions per functional unit of the product was identified.
- From the environmental and production perspective, the addition of biochar at 60 Mg/ha is the most advantageous. A further increase in the addition of biochar was related to a decrease in the plant yield and an increase in GHG emissions.
- Introducing biochar to soil can be an effective improvement of the economic and environmental efficiency of plant production, as it increases the plant’s use of nutrients and intensifies carbon sequestration in soils.
Author Contributions
Funding
Conflicts of Interest
References
- Chowaniak, M.; Głąb, T.; Klima, K.; Niemiec, M.; Zaleski, T.; Zuzek, D. Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Manag. 2020, 36, 581–593. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M.; Mudryk, K.; Jewiarz, M.; Sikora, J.; Szeląg-Sikora, A.; Rozkosz, A. Evaluation of the Fertilizing Potential of Products Based on Torrefied Biomass and Valorized with Mineral Additives. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Mona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 2021, 275, 129856. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.; Michael, A.K.; Bird, I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Bacior, M.; Zając, T. Biodiversity as a creator of productivity and interspecific competitiveness of winter cereal species in mixed cropping. Ecol. Model. 2017, 343, 123–130. [Google Scholar] [CrossRef]
- Malaga-Tobola, U.; Tabor, S.; Kocira, S. Productivity of resources and investments at selected ecological farms. Farm Machinery And Processes Management in Sustainable Agriculture. Book Ser. Agric. Sci. Procedia 2015, 7, 158–164. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Gródek-Szostak, Z.; Kapusta-Duch, J. Risk Assessment for Social Practices in Small Vegetable farms in Poland as a Tool for the Optimization of Quality Management Systems. Sustainability 2019, 11, 1913. [Google Scholar] [CrossRef] [Green Version]
- He, Y.T.; Zhang, W.J.; Xu, M.G.; Tong, X.G.; Sun, F.X.; Wang, J.Z.; Huang, S.M.; Zhu, P.; He, X.H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci. Total Environ. 2015, 532, 635–644. [Google Scholar] [CrossRef]
- Kubon, M.; Kocira, S.; Kocira, A.; Leszczynska, D. Use of Straw as Energy Source in View of Organic Matter Balance in Family Farms. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Switzerland, 2018; pp. 541–547. [Google Scholar] [CrossRef]
- Eldor, I.; Paul, A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar]
- Sousa Lima, J.R.; de Moraes Silva, W.; de Medeiros, E.V.; Duda, G.P.; Metri Corrêa, M.; Martins Filho, A.P.; Clermont-Dauphin, C.; Dantas Antonino, A.C.; Hammecker, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 2018, 319, 14–23. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Li, Z.-P.; Jiang, C.-Y.; Wu, M. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. J. Int. Agric. 2016, 15, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.; Kopittke, P.M.; Dennis, P.G.; Dalal, R.C. Microbial energy and matter transformation in agricultural soils. Soil Biol. Biochem. 2017, 111, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Thi Ngo, P.; Rumpel, C.; Janeau, J.-L.; Dang, D.-K.; Thuy Doan, T.; Jouquet, P. Mixing of biochar with organic amendments reduces carbon removal after field exposure under tropical conditions. Ecol. Eng. 2016, 91, 378–380. [Google Scholar]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Hui Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2018, 246, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Wang, M.; Chen, H.; Wang, Q.; Zhao, J.; Ren, X.; Li, D.-S.; Awasthi, S.K.; Shen, F.; Li, R.; et al. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresour. Technol. 2017, 224, 428–438. [Google Scholar] [CrossRef]
- Li, G.; Khan, S.; Ibrahim, M.; Sun, T.-R.; Tang, J.-F.; Cotner, J.B.; Xu, Y.Y. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J. Hazard. Mater. 2018, 348, 100–108. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Koryś, A.; Koryś, K.A.; Kuboń, M.; Sadowska, U.; Gliniak, M.; Sikora, J.; Drosik, A.; Niemiec, M.; Klimek-Kopyra, A.; et al. Analysis of the economic potential through biochar use for soybean production in Poland. Agronomy 2021, 11, 2108. [Google Scholar] [CrossRef]
- Yuan, S.; Tan, Z.; Huang, Q. Migration and transformation mechanism of nitrogen in the biomass–biochar–plant transport proces. Renew. Sustain. Energy Rev. 2018, 85, 1–13. [Google Scholar] [CrossRef]
- Raya-Moreno, I.; Cañizares, R.; Domene, X.; Carabassa, V.; Alcañiz, J.M. Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochars. Sci. Total Environ. 2017, 598, 604–618. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Sima, J.; Zhao, L.; Mašek, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 241, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Melas, G.B.; Ortiz, O.; Alacaniz, J.M. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil? Pedosphere 2017, 27, 822–883. [Google Scholar] [CrossRef]
- Plaza, C.; Giannetta, B.; Fernández, J.M.; López-de-Sá, E.G.; Polo, A.; Gascó, G.; Méndez, A.; Zaccone, C. Response of different soil organic matter pools to biochar and organic fertilizers. Agric. Ecosyst. Environ. 2016, 225, 150–159. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.S.; Kim, K.-H.; OK, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40–48. [Google Scholar] [CrossRef]
- Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ. Pollut. 2016, 213, 533–540. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawwole, O. Significance of biochor application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Wos, B.; Tylek, P.; Kwasniewski, D.; Juliszewski, T.; Walczyk, J.; Likus-Cieslik, J.; Ochal, W.; Tabor, S. Carbon sink potential and allocation in above- and below-ground biomass in willow coppice. J. For. Res. 2021, 32, 349–354. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Kwaśniewski, D. Environmental impact of the cultivation of energy willow in Poland. Sci. Rep. 2021, 11, 1. [Google Scholar] [CrossRef]
- Maucieri, C.; Zhang, Y.; McDaniel, M.D.; Borin, M.; Adams, M.A. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 2017, 307, 267–276. [Google Scholar] [CrossRef]
- Smebye, A.B.; Sparrevik, M.; Schmidt, H.P.; Cornelissen, G. Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass Bioenergy 2017, 101, 35–43. [Google Scholar] [CrossRef]
- Kubon, M.; Latawiec, A.E.; Scarano, F.R.; Drosik, A.; Strassburg, B.B.N.; Grzebieniowski, W.; Bastos, J.G. Searching for solutions to the conflict over Europe’s oldest forest. Conserv. Biol. 2019, 33, 476–479. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Sadowska, U.; Kubon, M.; Gliniak, M.; Sikora, J. Sunflower Husk Biochar as a Key Agrotechnical Factor Enhancing Sustainable Soybean Production. Agriculture 2021, 11, 305. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Mouron, P.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 2.0, July World Food LCA Database (WFLDB); Quantis and Agroscope: Lausanne, Switzerland; Zurich, Switzerland, 2014. [Google Scholar]
- Devapriya, P.; Ferrell, W.; Geismar, N. Integrated production and distribution scheduling with a perishable product. Eur. J. Oper. Res. 2017, 259, 906–916. [Google Scholar] [CrossRef]
- Publications Office of the European Union. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Provisions and Action Steps; Publications Office of the European Union: Luxemboug, 2010. [Google Scholar]
- Kool, A.; Marinussen, M.; Blonk, H. LCI Data for the Calculation Tool Feed Print for Greenhouse Gas Emissions of Feed Production and Utilization: GHG Emissions of N, P, and K Fertilizer Production. Research Station ART. 2012. Available online: Blonkconsultants.nl (accessed on 1 January 2021).
- Nemecek, I.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems Data v3.0; Agroscope Reckenholz-Tänikon Research Station ART: Zurich, Switserland, 2012. [Google Scholar]
- Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4: Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Novoa, R.S.A.; Tejeda, H.R. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutr. Cycl. Agroecosyst. 2006, 75, 29–46. [Google Scholar] [CrossRef]
- Forster, P. Changes in Atmospheric Constituents and Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; p. 212. [Google Scholar]
- Wójcicki, Z. Methodology of examining energy consumption of agricultural production. Probl. Inż. Rol. 2015, 23, 17–29. [Google Scholar]
- EPA United States Environmental Protection Agency. Greenhouse Gas Inventory Guidance Direct Emissions from Mobile Combustion Sources; EPA United States Environmental Protection Agency: Washington, DC, USA, 2016; p. 27.
- Torrez Irigoyen, R.M.; Giner, S.A. Drying-toasting of presoaked soybean in fluidised bed. Modeling, validation and simulation of operational variants for reducing energy consumption. J. Food Eng. 2016, 171, 78–86. [Google Scholar] [CrossRef]
- FAO. Global Database of GHG Emissionsrelated to Feedcrops: Methodology. Version 1. Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2017. [Google Scholar]
- Llorach-Massana, P.; Lopez-Capel, E.; Peña, J.; Rieradevalla, J.; Montero, J.I.; Puy, N. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Manag. 2017, 67, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, L.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S.; Zimmerman, A. Persistence of biochar in soil. In Biochar for Environmental Management—Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 235–283. [Google Scholar]
- FAO. Status of the World’s Soil Resources Main Report Prepared by Intergovernmental Technical Panel on Soils (ITPS); FAO: Rome, Italy, 2015. [Google Scholar]
- Niemiec, M.; Chowaniak, M.; Sikora, J.; Szeląg-Sikora, A.; Grodek-Szostak, Z.; Komorowska, M. Selected properties of soils for long-term use in organic farming. Sustainability 2020, 12, 2509. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Lia, Y.; Li, S. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: A review. Glob. Ecol. Conserv. 2021, 26, 01449. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Moura Chagas, J.K.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Odinga, E.S.; Gudda, F.O.; Waigi, M.G.; Wang, Y.; Gao, Y. Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. Fundam. Res. 2021, 1, 296–305. [Google Scholar] [CrossRef]
- Floe, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Ndor, E.; Dauda, S.N.; Azagaku, E.D. Response of Maize Varieties (Zea mays) to Biochar. Amended Soil in Lafia, Nigeria. Am. J. Exp. Agric. 2015, 5, 525–531. [Google Scholar] [CrossRef]
- Krause, H.-M.; Hüppi, R.; Leifeld, J.; El-Hadidi, M.; Harter, J.; Kappler, A.; Hartmann, M.; Behrens, S.; Mäder, P.; Gattinger, A. Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biol. Biochem. 2018, 119, 143–151. [Google Scholar] [CrossRef]
- Wang, X.; Song, D.; Liang, G.; Zhang, Q.; Ali, C.; Zhou, W. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl. Soil Ecol. 2015, 96, 265–272. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Sánchez-Monedero, M.A.; Cayuela, M.L. N2O emissions during Brassica oleracea cultivation: Interaction of biochar with mineral and organic fertilization. Eur. J. Agric. 2020, 115, 126021. [Google Scholar] [CrossRef]
- Zortea, R.B.; Maciel, V.G.; Passuello, A. Sustainability assessment of soybean production in Southern Brazil: A life cycle approach. Sustain. Prod. Consum. 2018, 13, 102–112. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Ghobadian, B.; Safa, M.; Heidari, M.D. Energy life-cycle assessment and CO2 emissions analysis of soybean-based biodiesel: A case study. J. Clean. Prod. 2014, 66, 233–241. [Google Scholar] [CrossRef]
- Wang, L.; Yang, K.; Gao, C.; Zhu, L. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Sci. Total Environ. 2020, 747, 141265. [Google Scholar] [CrossRef]
- Niemiec, M.; Cupiał, M.; Szeląg-Sikora, A. Evaluation of the Efficiency of Celeriac Fertilization with the Use of Slow-acting Fertilizers. Agric. Agric. Sci. Procedia. 2015, 7, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Chowaniak, M.; Rashidov, N.; Niemiec, M.; Gambuś, F.; Lepiarczyk, A. The Impact of Training Systems on Productivity and GHG Emissions from Grapevines in the Sughd Region in Northern Tajikistan. Agronomy 2020, 10, 818. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies 2020, 13, 2063. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Bacenetti, J. Soybean and maize cultivation in South America: Environmental comparison of different cropping systems. Clean. Environ. Syst. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Liang, L.; Lal, R.; Ridoutt, B.G.; Du, Z.L.; Wang, D.P.; Wang, L.Y.; Wu, W.L.; Zhao, G.S. Life cycle assessment of China’s agroecosystems. Ecol. Indic. 2018, 88, 341–350. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Tabak, M.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Kuboń, M.; Komorowska, M. Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability 2020, 12, 1982. [Google Scholar] [CrossRef] [Green Version]
- Gródek-Szostak, Z.; Luc, M.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Ochoa Siguencia, L.; Velinov, E. Promotion of RES in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 3445. [Google Scholar] [CrossRef]
- Majumder, S.; Neogi, S.; Dutta, T.; Powel, M.A.; Banik, P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. J. Environ. Manag. 2019, 250, 109466. [Google Scholar] [CrossRef]
- Owsianiak, M.; Lindhjem, H.; Cornelissen, G.; Hale, S.E.; Sørmo, E.; Sparrevik, M. Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Sci. Total Environ. 2021, 755, 142455. [Google Scholar] [CrossRef]
Treatments | Type of Biochar | Dose (Mg/ha) |
---|---|---|
1 | n/a | 0 (control) |
2 | from sunflower husk | 40 |
3 | from sunflower husk | 60 |
4 | from sunflower husk | 80 |
5 | from forest biomass | 40 |
6 | from forest biomass | 60 |
7 | from forest biomass | 80 |
pH in H2O | pH in KCl | N Total | C org | N min | P | K | Mg | Ca |
---|---|---|---|---|---|---|---|---|
(g/kg) | (mg/kg) | |||||||
6.73 | 6.28 | 0.116 | 1.33 | 32.1 | 99.4 | 81.9 | 42.01 | 836.9 |
Type of Agrotechnical Treatment | Fuel Use (dm3) | Energy Use (MJ) | CO2 Emissions (kg) |
---|---|---|---|
Tillage | 57 | 2308.5 | 221.1 |
Mineral fertilization (×2) | 15.3 | 619.7 | 59.4 |
Cultivation with an aggregate | 28.2 | 1142.1 | 109.4 |
Sowing soybeans | 25.2 | 1020.6 | 97.8 |
Mechanical weed control (×3) | 43.8 | 1773.9 | 169.9 |
Mechanical harvesting | 16.5 | 668.3 | 64.0 |
Biochar application and mixing it with the soil (MJ/Mg) | 3.2 | 129.4 | 12.04 |
Transport to the farm (t/km) | 0.59 | 23.9 | 2.3 |
Drying soybeans (MJ/t) | 482 | 45.46 |
Following Parameters | Unit | Sunflower Husk Biomass | Wood Biomass |
---|---|---|---|
Efficiency of the torrefaction process | % by weight of the raw material | 35.42 | 38.83 |
CO2 emissions related to the preparation of the raw material | kg CO2 eq/Mg of biochar | 117 | 156 |
Organic carbon content | % | 85.32 | 83.89 |
Stable carbon content in biochar | % of total carbon | 79.87 | 77.41 |
Treatments | A | B | C | D |
---|---|---|---|---|
1 | 628.6 | 810.5 | 685.3 | 0.0 |
2 | 628.6 | 814.6 | 923.3 | 103.2 |
3 | 628.6 | 900.8 | 1550.9 | 154.8 |
4 | 628.6 | 846.2 | 1346.1 | 206.5 |
5 | 628.6 | 840.6 | 1068.1 | 134.4 |
6 | 628.6 | 897.1 | 1564.6 | 201.6 |
7 | 628.6 | 873.5 | 1479.2 | 268.9 |
Sum of Squares | Mean of Squares | Test F | p |
---|---|---|---|
Soybean yield | |||
15.1151 | 2.5192 | 22.184 | 0.000 * |
Total CO2 emissions | |||
531,865 | 88,644 | 13.168 | 0.0001 * |
Treatments | Marketable Yield (Mg) | 1 | 2 | 3 |
---|---|---|---|---|
1 | 1.870 | **** | ||
2 | 1.960 | **** | ||
5 | 2.520 | **** | **** | |
4 | 2.640 | **** | **** | |
7 | 3.230 | **** | **** | |
6 | 3.740 | **** | ||
3 | 3.820 | **** |
Treatments | Total Emission (kg/CO2) | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
3 | 846.9 | **** | |||
6 | 880.2 | **** | **** | ||
7 | 1006.2 | **** | **** | **** | |
5 | 1060.2 | **** | **** | ||
1 | 1136.0 | **** | **** | ||
4 | 1146.7 | **** | **** | ||
2 | 1260.1 | **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuboń, M.; Niemiec, M.; Klimek-Kopyra, A.; Gliniak, M.; Sikora, J.; Sadowska, U.; Latawiec, A.E.; Kobyłecki, R.; Zarzycki, R.; Kacprzak, A.; et al. Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy 2021, 11, 2224. https://doi.org/10.3390/agronomy11112224
Kuboń M, Niemiec M, Klimek-Kopyra A, Gliniak M, Sikora J, Sadowska U, Latawiec AE, Kobyłecki R, Zarzycki R, Kacprzak A, et al. Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy. 2021; 11(11):2224. https://doi.org/10.3390/agronomy11112224
Chicago/Turabian StyleKuboń, Maciej, Marcin Niemiec, Agnieszka Klimek-Kopyra, Maciej Gliniak, Jakub Sikora, Urszula Sadowska, Agnieszka Ewa Latawiec, Rafał Kobyłecki, Robert Zarzycki, Andrzej Kacprzak, and et al. 2021. "Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants" Agronomy 11, no. 11: 2224. https://doi.org/10.3390/agronomy11112224
APA StyleKuboń, M., Niemiec, M., Klimek-Kopyra, A., Gliniak, M., Sikora, J., Sadowska, U., Latawiec, A. E., Kobyłecki, R., Zarzycki, R., Kacprzak, A., & Wichliński, M. (2021). Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy, 11(11), 2224. https://doi.org/10.3390/agronomy11112224