Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale
Abstract
:1. Introduction
- Identification, standardization and description of phenophases for Agastache sp. based on the BBCH scale;
- Validation (application) of the BBCH scale comparatively for some Agastache species;
- Determination of the relationship between the main ecological factors and the phenology, for successful cultivation.
2. Materials and Methods
2.1. Study Site
2.2. Plant Material
2.3. Cultivation
2.4. Observations
- Identification and description of principal and secondary growth stages;
- Duration of each phenophase (in number of days and as percentage);
- Growing degree days (GDD) per phenophase and entire vegetation period;
- Sum of precipitations accumulated per phenophase and entire vegetation period.
2.5. Statistical Analysis
- The descriptive statistics (average, standard error, range of variability) using XLSTAT software [39].
- Scatterplot matrix with Pearson correlations for environmental and phenological variables using Origin software [40].
- Linear fitting for the duration of phenophase and its dependency on temperature and, respectively, precipitations using Origin software [40].
3. Results
3.1. Identification of Growth Stages
3.1.1. Principal Growth Stage 0: Germination/Emergence
3.1.2. Leaf Development
3.1.3. Formation of Side Shoots
3.1.4. Stem Elongation
3.1.5. Inflorescence Emergence
3.1.6. Flowering
3.1.7. Fruit Development
3.1.8. Fruit Maturity
3.1.9. Senescence/Beginning of Resting
3.2. Comparative Application of BBCH Scale for the Studied Species
3.3. Relationship with Climatic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lubbe, A.; Verpoorte, R. Cultivation of Medicinal and Aromatic Plants for Specialty Industrial Materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Argyropoulos, D. EIP-AGRI Focus Group Plant-Based Medicinal and Cosmetic Products 2019. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/fg35_starting_paper_2019_en.pdf (accessed on 9 September 2021).
- Lint, H.; Epling, C. A Revision of Agastache. Am. Midl. Nat. 1945, 33, 207–230. [Google Scholar] [CrossRef]
- Simpson, M.G. Plant Systematics; Elsevier Academic Press: London, UK, 2006; ISBN 0-12-644460-9. [Google Scholar]
- Muntean, L.S.; Cernea, S.; Morar, G.; Duda, M.M.; Vârban, D.I.; Muntean, S.; Moldovan, C. Fitotehnie; Editura Risoprint: Cluj-Napoca, Romania, 2014; ISBN 978-973-53-1273-2. [Google Scholar]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal Plants of the Family Lamiaceae as Functional Foods—A Review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- WFO. Agastache J. Clayton Ex Gronov. Available online: http://www.worldfloraonline.org/taxon/wfo-4000000903 (accessed on 12 September 2021).
- Lord, T. Flora: The Gardener’s Bible; Cassell—Weidenfeld & Nicolson: London, UK, 2003. [Google Scholar]
- Vogelmann, J.E. Crossing Relationships among North American and Eastern Asian Populations of Agastache Sect. Agastache (Labiatae). Syst. Bot. 1985, 10, 445–452. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and Bioactivity of Aromatic and Medicinal Plants from the Genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology (5 Volume Set); CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-5064-0. [Google Scholar]
- Fuentes-Granados, R.; Widrlechner, M.; Wilson, L. An Overview of Agastache Research. J. Herbs Spices Med. Plants 1998, 6, 69–97. [Google Scholar] [CrossRef]
- Najar, B.; Marchioni, I.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Volatilomic Analysis of Four Edible Flowers from Agastache Genus. Molecules 2019, 24, 4480. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache Rugosa and Its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache Honey Has Superior Antifungal Activity in Comparison with Important Commercial Honeys. Sci. Rep. 2019, 9, 18197. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.K.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison With Important Commercial Honeys. Front. Microbiol. 2019, 10, 263. [Google Scholar] [CrossRef]
- Bolesław, J.; Zbigniew, K. Nectar Secretion and Honey Potential of Honey-Plants Growing under Poland’s Conditions. Part XII. J. Apic. Sci. 2001, 45, 29–34. [Google Scholar]
- Lewis, A. Butterfly Gardens: Luring Nature’s Loveliest Pollinators to Your Yard; Brooklyn Botanic Garden: Brooklyn, NY, USA, 2007; ISBN 978-1-889538-32-7. [Google Scholar]
- Corrigan, E.E. Agastache Scrophulariifolia; New England Wild Flower Society: Framingham, MA, USA, 2002. [Google Scholar]
- USDA Plants Database. Available online: https://plants.sc.egov.usda.gov/home/plantProfile?symbol=AGFO (accessed on 24 October 2021).
- Sheahan, C.M. Fact Sheet for Purple Giant Hyssop (Agastache Scrophulariifolia); USDA-Natural Resources Conservation Service, Cape May Plant Material Center: Cape May, NJ, USA, 2012. Available online: https://plants.usda.gov/DocumentLibrary/factsheet/pdf/fs_agsc.pdf (accessed on 9 September 2021).
- Kang, M.J.; Sundan, S.; Lee, G.A.; Ko, H.C.; Chung, J.W.; Huh, Y.C.; Gwag, J.G.; Oh, S.J.; Kim, Y.G.; Cho, G.T. Genetic Diversity and Population Structure of Korean Mint Agastache Rugosa (Fisch & Meyer) Kuntze (Lamiaceae) Using ISSR Markers. Korean J. Plant Resour. 2013, 26, 362–369. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Regional Office for the Western Pacific. Medicinal Plants in the Republic of Korea: Information on 150 Commonly Used Medicinal Plants; WHO Regional Office for the Western Pacific: Manila, Philippines, 1998; ISBN 978-92-9061-120-2. [Google Scholar]
- Carrillo-Galván, G.; Bye, R.; Eguiarte, L.E.; Cristians, S.; Pérez-López, P.; Vergara-Silva, F.; Luna-Cavazos, M. Domestication of Aromatic Medicinal Plants in Mexico: Agastache (Lamiaceae)-an Ethnobotanical, Morpho-Physiological, and Phytochemical Analysis. J. Ethnobiol. Ethnomed. 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Palma-Tenango, M.; Sánchez-Fernández, R.E.; Soto-Hernández, M. A Systematic Approach to Agastache Mexicana Research: Biology, Agronomy, Phytochemistry, and Bioactivity. Molecules 2021, 26, 3751. [Google Scholar] [CrossRef] [PubMed]
- Duda, M.; Matei, C.I.; Vârban, D.I.; Muntean, S.; Moldovan, C. The Results of Cultivating the Species Agastache Foeniculum (Pursh) Kuntze at Jucu, CJ. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Agric. 2013, 70, 214–217. [Google Scholar] [CrossRef]
- Vânătoru, C.; Zamfir, B.; Bratu, C.; Peticila, A. Lophanthus Anisatus, a Multi-Purpose Plant, Acclimatized and Improved at VRDS Buzau. Sci. Pap. Ser. B Hortic. 2015, 59, 277–280. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 9 September 2021). [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; et al. The BBCH System to Coding the Phenological Growth Stages of Plants—History and Publications. J. Cultiv. Plants 2009, 61, 41–52. [Google Scholar] [CrossRef]
- Bleiholder, H.; van den Boom, T.; Stauss, R. A uniform code for the growth stages of crops and weeds. Gesunde Pflanz. Ger. FR 1989, 41, 381–384. [Google Scholar]
- Index Seminum—Hortus Agro-Botanicus Napocensis; Academic Pres: Cluj-Napoca, Romania, 2021; ISSN 1223-6055.
- Crișan, I.; Vidican, R.; Olar, L.; Stoian, V.; Morea, A.; Ștefan, R. Screening for Changes on Iris Germanica L. Rhizomes Following Inoculation with Arbuscular Mycorrhiza Using Fourier Transform Infrared Spectroscopy. Agronomy 2019, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Criveanu, H. Agrometeorology; Risoprint: Cluj-Napoca, Romania, 2021; ISBN 973-656-135-6. [Google Scholar]
- Climate Cluj: Temperature, Climate Graph, Climate Table for Cluj—Climate-Data.Org. Available online: https://en.climate-data.org/europe/romania/cluj-511/ (accessed on 23 October 2021).
- Kabbes, B. Agastache Plant Named ‘After Eight’. U.S. Patent USPP15921P2, 16 August 2005. Available online: https://patents.google.com/patent/USPP15921P2/en (accessed on 10 November 2021).
- Ion, V. Fitotehnie; USAMV: Bucharest, Romania, 2010. [Google Scholar]
- Bîlteanu, G.; Fazekaș, I.; Salontai, A.; Bîrnaure, V.; Ciobanu, F.; Vasilică, C. Fitotehnie; Didactică și Pedagogică: Bucharest, Romania, 1979. [Google Scholar]
- Bîlteanu, G.; Bîrnaure, V.; Miclea, E.; Bălașa, M.; Negrilă, A.; Oprea, D.D. Memorator Pentru Producția Vegetală; Ceres: Bucharest, Romania, 1974. [Google Scholar]
- XLSTAT|Statistical Software for Excel. Available online: https://www.xlstat.com/en/ (accessed on 1 September 2021).
- OriginLab—Origin and OriginPro—Data Analysis and Graphing Software. Available online: https://www.originlab.com/ (accessed on 9 September 2021).
- Svitlana, K.; Vladimir, V.; Inna, M. Perspectives Culture of the Lophanthus Anisatus Benth. and Peculiarities of Its Ontogenesis in the Conditions of the Lowland Zone of Transcarpathian. Ecol. Evol. Biol. 2020, 5, 29. [Google Scholar] [CrossRef]
- Gairola, S.; Shariff, N.M.; Bhatt, A.; Kala, C.P. Influence of Climate Change on Production of Secondary Chemicals in High Altitude Medicinal Plants: Issues Needs Immediate Attention. J. Med. Plants Res. 2010, 4, 1825–1829. [Google Scholar] [CrossRef]
- Sharma, M.; Thakur, R.; Sharma, M.; Sharma, A.K.; Sharma, A.K. Changing Scenario of Medicinal Plants Diversity in Relation to Climate Chnage. Plant Arch. 2020, 20, 4389–4400. [Google Scholar]
- Applequist, W.L.; Brinckmann, J.A.; Cunningham, A.B.; Hart, R.E.; Heinrich, M.; Katerere, D.R.; van Andel, T. Scientists’ Warning on Climate Change and Medicinal Plants. Planta Med. 2020, 86, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Jain, V.; Malhotra, S.K. Impact of Climate Change on Medicinal and Aromatic Plants: Review. Indian J. Agric. Sci. 2016, 86, 1375–1382. [Google Scholar]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate Change Fingerprints in Recent European Plant Phenology. Glob. Change Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Li, X.; Zhou, X.; Geng, X.; Guo, Y.; Zhang, Y. Progress in Plant Phenology Modeling under Global Climate Change. Sci. China Earth Sci. 2020, 63, 1237–1247. [Google Scholar] [CrossRef]
- Rosbakh, S.; Hartig, F.; Sandanov, D.V.; Bukharova, E.V.; Miller, T.K.; Primack, R.B. Siberian Plants Shift Their Phenology in Response to Climate Change. Glob. Change Biol. 2021, 27, 4435–4448. [Google Scholar] [CrossRef]
- Le Bihan, Z.; Cosson, P.; Rolin, D.; Schurdi-Levraud, V. Phenological Growth Stages of Stevia (Stevia Rebaudiana Bertoni) According to the Biologische Bundesanstalt Bundessortenamt and Chemical Industry (BBCH) Scale. Ann. Appl. Biol. 2020, 177, 404–416. [Google Scholar] [CrossRef]
- Pati, K.; Kaliyappan, R.; Chauhan, V.B.S.; Bansode, V.; Nedunchezhiyan, M.; Hegde, V.; Koundinya, A.V.V. Phenological Growth Stages of Underutilised Crop Yam Bean (Pachyrhizus Erosus L. Urban) According to the Extended BBCH Scale. Ann. Appl. Biol. 2020, 177, 417–423. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Park, C.-S.; Lee, D.-Y.; Lee, J.-S.; Lee, S.-H.; In, J.-G.; Hong, T.-K. Phenological Growth Stages of Korean Ginseng (Panax Ginseng) According to the Extended BBCH Scale. J. Ginseng Res. 2021, 45, 527–534. [Google Scholar] [CrossRef]
- Brandán, J.P.; Curti, R.N.; Acreche, M.M. Phenological Growth Stages in Chia (Salvia Hispanica L.) According to the BBCH Scale. Sci. Hortic. 2019, 255, 292–297. [Google Scholar] [CrossRef]
- Ramírez, F.; Davenport, T.L. The Development of Lulo Plants (Solanum Quitoense Lam. Var. Septentrionale) Characterized by BBCH and Landmark Phenological Scales. Int. J. Fruit Sci. 2020, 20, 562–585. [Google Scholar] [CrossRef]
- Cardoso, E.F.; Lopes, A.R.; Dotto, M.; Pirola, K.; Giarola, C.M. Phenological growth stages of Gaúcho tomato based on the BBCH scale. Comun. Sci. 2021, 12, e3490. [Google Scholar] [CrossRef]
- Feldmann, F.; Rutikanga, A. Phenological Growth Stages and BBCH-Identification Keys of Chilli (Capsicum Annuum L., Capsicum Chinense JACQ., Capsicum Baccatum L.). J. Plant Dis. Prot. 2021, 128, 549–555. [Google Scholar] [CrossRef]
- Kliszcz, A. Phenological Growth Stages and BBCH-Identification Keys of Jerusalem Artichoke (Helianthus Tuberosus L.). Ann. Univ. Paedagog. Crac. Stud. Nat. 2021, 6. Available online: https://aupcstudianaturae.up.krakow.pl/article/view/8420 (accessed on 10 November 2021).
- Ventura, F.; Vignudelli, M.; Poggi, G.M.; Negri, L.; Dinelli, G. Phenological Stages of Proso Millet (Panicum Miliaceum L.) Encoded in BBCH Scale. Int. J. Biometeorol. 2020, 64, 1167–1181. [Google Scholar] [CrossRef]
- Junqueira, N.E.G.; Bezerra, A.C.M.; Cattem, M.V.O.; Medici, L.O.; Alves-Ferreira, M.; Macrae, A.; Ortiz-Silva, B.; Reinert, F. Phenology of the Genetic Model Setaria Viridis (Poaceae) According to the BBCH-Scale of Development. Bot. J. Linn. Soc. 2020, 192, 224–241. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Cruz, T.; Teixeira, D.L.; Steinfort, U. Phenological Stages of Mediterranean Forage Legumes, Based on the BBCH Scale. Ann. Appl. Biol. 2020, 176, 357–368. [Google Scholar] [CrossRef]
- Vasfilova, E.; Vorob’eva, T. Little-Known Medicinal Plants with a Widespectrum of Pharmacological Action under the Conditions of Introduction in the Middle Urals. BIO Web Conf. 2020, 24, 00090. [Google Scholar] [CrossRef]
- Rudik, G. Ontomorphogenesis of Agastache Rugosa (Fisch. et C.A. Mey.) O. Kuntze Ex Situ. Mod. Phytomorphol. 2013, 4, 257–260. [Google Scholar] [CrossRef]
- Lundgren, M.R.; Des Marais, D.L. Life History Variation as a Model for Understanding Trade-Offs in Plant–Environment Interactions. Curr. Biol. 2020, 30, R180–R189. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.; Arriagada, C.; Campos-Saez, S.; Baginsky, C.; Castellaro-Galdames, G.; Morales-Salinas, L. Effect of Sowing Date and Water Availability on Growth of Plants of Chia (Salvia Hispanica L.) Established in Chile. PLoS ONE 2018, 13, e0203116. [Google Scholar] [CrossRef] [PubMed]
- Bolmgren, K.; Cowan, P.D. Time—Size Tradeoffs: A Phylogenetic Comparative Study of Flowering Time, Plant Height and Seed Mass in a North-Temperate Flora. Oikos 2008, 117, 424–429. [Google Scholar] [CrossRef]
- Du, G.; Qi, W. Trade-Offs between Flowering Time, Plant Height, and Seed Size within and across 11 Communities of a QingHai-Tibetan Flora. Plant Ecol. 2010, 209, 321–333. [Google Scholar] [CrossRef]
- Forrest, J.; Inouye, D.W.; Thomson, J.D. Flowering Phenology in Subalpine Meadows: Does Climate Variation Influence Community Co-Flowering Patterns? Ecology 2010, 91, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Diekmann, M. Relationship between Flowering Phenology of Perennial Herbs and Meteorological Data in Deciduous Forests of Sweden. Can. J. Bot. 1996, 74, 528–537. [Google Scholar] [CrossRef]
- Blum, A. Crop Responses to Drought and the Interpretation of Adaptation. Plant Growth Regul. 1996, 20, 135–148. [Google Scholar] [CrossRef]
- Körner, C. Plant CO2 Responses: An Issue of Definition, Time and Resource Supply. New Phytol. 2006, 172, 393–411. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A Summary of the PRUDENCE Model Projections of Changes in European Climate by the End of This Century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Forbes, J.C.; Watson, R.D. Plants in Agriculture; Cambridge University Press: Cambridge, UK, 1999; ISBN 0-521-42791-6. [Google Scholar]
- Aerts, R. Nutrient Resorption from Senescing Leaves of Perennials: Are There General Patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Brant, A.N.; Chen, H.Y.H. Patterns and Mechanisms of Nutrient Resorption in Plants. Crit. Rev. Plant Sci. 2015, 34, 471–486. [Google Scholar] [CrossRef]
- Estiarte, M.; Peñuelas, J. Alteration of the Phenology of Leaf Senescence and Fall in Winter Deciduous Species by Climate Change: Effects on Nutrient Proficiency. Glob. Chang. Biol. 2015, 21, 1005–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crişan, I.; Stoie, A.; Cantor, M. Overwintering of Some Hardy Iris Species in Agro-Botanical Garden UASVM Cluj-Napoca. Agricultura 2016, 99, 6–14. [Google Scholar] [CrossRef]
Species | Origin | Native Range and Spread | Habitats and Requirements |
---|---|---|---|
A. scrophulariifolia | North America [11,19] | Native and abundant from New York-New Jersey southward to North Carolina and westward to Illinois, Iowa and Wisconsin. Less frequent in Connecticut, New Hampshire, Vermont, Nebraska, South Dakota and Minnesota [3,20]. Reported as disappeared from Kansas, Massachusetts, Georgia and Ontario [19]. | Easily out-competed by other plants. In native regions, grows in upland woods, rich woodland borders, meadows or upper limits of floodplains. Threatened by habitat loss [21]. |
A. rugosa | Eastern Asia [3] | Native to China and Japan [8], Korea [22], East Siberia [23]. | In native regions, grows in grassy mountain valleys and by the streams [23]. Prefers full sun and is frost hardy. Grows in hardiness zones 7–11 [8]. |
A. mexicana | Mexico [8] | Native to the region extending from Zacatecas southwards to Puebla [3]. Spontaneous throughout the Neovolcanense Province of central Mexico, particularly in region of the volcano Popocatepetl, in the Ozumba Municipality, State of Mexico (Edomex), and in the Milpa Alta County, Mexico City [24]. | Prefers full sun and is half-hardy, but it can be grown as annual. Grows in hardiness zones 9–11 [8]. |
A. foeniculum | North America [8] | Native range spreads throughout the states Wisconsin, Minnesota, Iowa, North Dakota to Wyoming and Colorado. In Canada is found from Ontario to Alberta. Naturalized in other regions of North America as well [3,20]. | Prefers full sun and is frost hardy. Grows in hardiness zones 8–10 [8]. |
Accession | IPEN 1 Number |
---|---|
Agastache scrophulariifolia (Willd.) Kuntze | XX-0-CLA-4155 |
Agastache rugosa (Fisch. et C.A.Mey.) Kuntze | XX-0-CLA-4154 |
Agastacherugosa ‘After Eight’ | XX-0-CLA-1950 |
Agastache mexicana (Kunth) Lint et Epling | XX-0-CLA-4153 |
Agastache foeniculum (Pursh) Kuntze | XX-0-CLA-4152 |
Principal Growth Stage | Description | Secondary Growth Stage |
---|---|---|
0 Germination/emergence | Dry seed Seed imbibition complete Radicle emerged from seed/Perennating organs forming roots Hypocotyl with cotyledons breaking through seed coat/new shoot growing towards soil surface Emergence: cotyledons break through soil surface/new shoots emerge | 00 03 05 08 09 |
1 Leaf development | First leaves separated First leaf pair (two leaves) unfolded 2 leaf pairs (four leaves) unfolded 3 leaf pairs (six leaf) unfolded Stage continuous till… 9 leaf pairs unfolded | 10 11 12 13 1n 19 |
2 Formation of side shoots | First side shoot visible 2 side shoots visible 3 side shoots visible Stage continuous till End of side shoot appearance: 9 or more shoots visible | 21 22 23 2n 29 |
3 Stem elongation | Shoot development Stem has two internodes Stem has three internodes Stages continuous till 9 or more internodes detectable | 31 32 33 3n 39 |
4 Development of harvestable vegetative plant parts or vegetatively propagated organs/booting (main shoot)—omitted | ||
5 Inflorescence emergence | Beginning of verticillaster emergence Verticillaster clearly separated (final total size) Flowers visible in the inflorescence | 50 55 59 |
6 Flowering | Beginning of flowering: 10% of flowers open Full flowering: 50% of flowers open, first petals may have fallen Flowering ending: majority of petals fallen or dry; fruit set visible | 61 65 69 |
7 Fruit development | The fruits set at the base of the flowers in the inflorescence 50% of fruits have the characteristic size and color The fruits have a normal consistency and size | 71 75 79 |
8 Fruit maturity | Beginning of ripening or fruit coloration Advanced stage of fruit coloration and ripening Physiological maturity; dispersal begins | 81 85 89 |
9 Senescence, beginning of resting | Foliage starts changing color 50% of leaves fallen Leaves fallen Fruits dispersal continues, onset of winter resting | 91 95 97 99 |
Parameters 1 | Phenophase (Number of Days) | Vegetation Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BBCH Stage | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | ||
2019 | Mean | 10 | 22.6 | 12.4 | 7.6 | 5.4 | 77 | 4.6 | 13 | 16.2 | 168.8 |
±SE | 0 | 1.6 | 3.03 | 1.75 | 0.68 | 4.57 | 0.87 | 1.52 | 2.44 | 3.51 | |
Range | 0 | 7 | 15 | 10 | 4 | 25 | 5 | 9 | 15 | 20 | |
2020 | Mean | 11.6 | 23 | 27 | 11.6 | 5.6 | 52.6 | 15.8 | 35.6 | 16.2 | 199 |
±SE | 0.51 | 1.79 | 1.3 | 0.4 | 0.81 | 2.04 | 1.5 | 3.19 | 1.85 | 1.82 | |
Range | 3 | 10 | 7 | 2 | 4 | 10 | 9 | 18 | 10 | 10 |
Phenophase | A. scrophulariifolia | A. rugosa | A. rugosa ‘After Eight’ | A. mexicana | A. foeniculum | |||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
0 Germination/emergence | 10 | 10 | 10 | 12 | 10 | 11 | 10 | 12 | 10 | 13 |
1 Leaf development | 20 | 16 | 20 | 24 | 20 | 24 | 27 | 26 | 26 | 25 |
2 Formation of side shoots | 7 | 28 | 9 | 27 | 7 | 22 | 17 | 29 | 22 | 29 |
3 Stem elongation | 6 | 13 | 3 | 12 | 10 | 11 | 6 | 11 | 13 | 11 |
5 Inflorescence emergence | 5 | 8 | 6 | 7 | 3 | 5 | 6 | 4 | 7 | 4 |
6 Flowering | 79 | 57 | 85 | 49 | 87 | 53 | 72 | 47 | 62 | 57 |
7 Fruit development | 6 | 16 | 2 | 12 | 4 | 14 | 4 | 21 | 7 | 16 |
8 Fruit maturity | 12 | 39 | 13 | 43 | 8 | 39 | 15 | 32 | 17 | 25 |
9 Senescence/ beginning of resting | 15 | 10 | 25 | 20 | 15 | 18 | 10 | 14 | 16 | 19 |
Number vegetation days | 160 | 197 | 173 | 206 | 164 | 197 | 167 | 196 | 180 | 199 |
GDD (°C) | 2610.5 | 3117.4 | 2674.4 | 3151.4 | 2589.2 | 2997.2 | 2668.8 | 2978.5 | 2675.6 | 2997.6 |
Rainfall sum (mm) | 130.14 | 473.24 | 143.35 | 455.75 | 159.84 | 413.57 | 180.43 | 351.32 | 183.74 | 393.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vârban, R.; Ona, A.; Stoie, A.; Vârban, D.; Crișan, I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy 2021, 11, 2280. https://doi.org/10.3390/agronomy11112280
Vârban R, Ona A, Stoie A, Vârban D, Crișan I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy. 2021; 11(11):2280. https://doi.org/10.3390/agronomy11112280
Chicago/Turabian StyleVârban, Rodica, Andreea Ona, Andrei Stoie, Dan Vârban, and Ioana Crișan. 2021. "Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale" Agronomy 11, no. 11: 2280. https://doi.org/10.3390/agronomy11112280