Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Plant Morphological and Physiological Parameters
3.1. Height, Stem Diameter, and Leaf Number
3.2. Leaf Area
3.3. Fresh Weight
3.4. Dry Weight
3.5. Root System Quality Parameters
3.5.1. Root Length
3.5.2. Root Volume
3.5.3. Specific Surface Area of Roots
3.5.4. Number of First Order Lateral Roots
3.5.5. Root Dry Matter
3.5.6. Root Growth Potential
3.5.7. Aggregation of Roots to the Substrate
3.5.8. Seedling Extraction Ease
3.5.9. Primary and Secondary Metabolite Content (Soluble Sugar, Starch, Total Phenols, and Flavonoids)
4. Plant Biometric Ratios or Indices
4.1. Height/Diameter Ratio
4.2. Shoot/Root Ratio
4.3. Dickson Quality Index
4.4. Root/Shoot Ratio
4.5. Plant Height/Shoot Dry Matter Ratio
4.6. Shoot Dry Matter/Plant Height Ratio
4.7. Root Dry Matter/Root Length Ratio
4.8. Root Quality Index
4.9. Leaf Area/Root Dry Matter Ratio
4.10. Root Length/Leaf Area
5. Crop Growth and Development Analysis
5.1. Leaf Area Ratio
5.2. Specific Leaf Area
5.3. Leaf Weight Ratio
5.4. Leaf Area Index
6. Dickson Quality Index Evolution, Distribution, and Application
6.1. Clustering
6.2. Main Plant Species
6.3. Study Variables and Conditions
6.4. Dickson Quality Index Values
6.5. Plant Quality Morphometric Parameters
6.6. Plant Quality Indicators and Their Biometric Ratios
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Database. Available online: http://www.fao.org/faostat/es/#data/RL/visualize (accessed on 1 April 2021).
- Luis, V.C.; Peters, J.; González–Rodríguez, A.M.; Jiménez, M.S.; Morales, D. Testing nursery plant quality of Canary Island pine seedlings grown under different cultivation methods. Phyton 2004, 44, 231–244. [Google Scholar]
- Haase, D.L.; Davis, A.S. Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs. Reforesta 2017, 4, 69–93. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Pérez–Alfocea, F.; Schwarz, D. Vegetable Grafting: Principles and Practices; CABI: Wallingford, UK, 2017; pp. 1–278. [Google Scholar]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Radoglou, K.; Dangitsis, C. Optimal LED wavelength composition for the production of high–quality watermelon and interspecific squash seedlings used for grafting. Agronomy 2019, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Hoyos Echeverria, P.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Asehor Database. Available online: https://pitalmeria.es/empresas/asehor/ (accessed on 30 October 2020).
- Duryea, M.L. Evaluating seedling quality: Importance to reforestation. In Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests; Duryea, M.L., Ed.; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1985; pp. 1–4. [Google Scholar]
- Puttonen, P. Criteria for using seedling performance potential tests. New For. 1989, 3, 67–87. [Google Scholar] [CrossRef]
- Davis, A.S.; Jacobs, D.F. Quantifying root system quality of nursery seedlings and relationship to outplanting performance. New For. 2005, 30, 295–311. [Google Scholar] [CrossRef]
- Wu, C.W.; Lin, K.H.; Lee, M.C.; Peng, Y.L.; Chou, T.Y.; Chang, Y.S. Using chlorophyll fluorescence and vegetation indices to predict the timing of nitrogen demand in Pentas lanceolata. Korean J. Hortic. Sci. Technol. 2015, 33, 845–853. [Google Scholar] [CrossRef] [Green Version]
- De Marco, R.; da Silva, R.F.; Andreazza, R.; Da Ros, C.O.; Scheid, D.L.; Bertollo, G.M. Copper phytoaccumulation and tolerance by seedlings of native Brazilian trees. Environ. Eng. Sci. 2016, 33, 176–184. [Google Scholar] [CrossRef]
- Haase, D.L. Understanding Forest Seedling Quality: Measurements and Interpretation. Tree Plant. Notes 2008, 52, 24–30. [Google Scholar]
- Grossnickle, S.C.; MacDonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; MacDonald, J.E. Seedling Quality: History, Application, and Plant Attributes. Forests 2018, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Don, R.; ISTA Germination Committee. ISTA Handbook on Seedling Evaluation, 3rd ed.; The International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2006; pp. 1–23. [Google Scholar]
- Mañas, P.; Castro, E.; de las Heras, J. Quality of maritime pine Pinus pinaster Ait. seedlings using waste materials as nursery growing media. New For. 2009, 37, 295–311. [Google Scholar] [CrossRef]
- Ellison, D.S.; Schutzki, R.; Nzokou, P.; Cregg, B. Root growth potential, water relations and carbohydrate status of ash alternative species following pre-plant storage. Urban For. Urban Gree. 2016, 18, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Hwang, S.J. The growth and development of ‘Mini Chal’ tomato plug seedlings grown under various wavelengths using light emitting diodes. Agronomy 2019, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories for grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Takoutsing, B.; Tchoundjeu, Z.; Degrande, A.; Asaah, E.; Gyau, A.; Nkeumoe, F.; Tsobeng, A. Assessing the quality of seedlings in small–scale nurseries in the highlands of Cameroon: The use of growth characteristics and quality thresholds as indicators. Small Scale For. 2014, 13, 65–77. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Sharma, R. Growth and quality indices of different nitrogen fixing tree nursery plants. Indian J. Ecol. 2017, 44, 344–347. [Google Scholar]
- Touhami, I.; Khorchani, A.; Bougarradh, M.; Elaieb, M.T.; Khaldi, A. Assesing the quality of seedlings in smallscale nurseries using morphological parameters and quality indicators to improve outplanting success. Plant Sociol. 2017, 54, 29–32. [Google Scholar]
- Kuan–Hung, L.I.N.; Chun–Wei, W.U.; Chang, Y.S. Applying Dickson quality index, chlorophyll fluorescence, and leaf area index for assessing plant quality of Pentas lanceolata. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 169–176. [Google Scholar]
- Lima, J.V.; Tinôco, R.S.; Olivares, F.L.; Moraes, A.J.G.D.; Chia, G.S.; Silva, G.B.D. Hormonal imbalance triggered by rhizobacteria enhance nutrient use efficiency and biomass in oil palm. Sci. Hortic. 2020, 264, 109161. [Google Scholar] [CrossRef]
- Hunt, G.A. Effect of styroblock design and copper treatment on morphology of conifer seedlings. In Proceedings of the Target Seedling Symposium: Proceedings, Combined Meeting of the Western Forest Nursery Association, Roseburg, Oregon, 13–17 August 1990; General Technical Report RM–200; Rose, R., Campbell, S.J., Landis, T.D., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1990; pp. 218–222. [Google Scholar]
- Park, B.B.; Park, G.E.; Bae, K. Diagnosis of plant nutrient and growth responses on fertilization with vector analysis and morphological index. For. Sci. Technol. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Ivetić, V.; Grossnickle, S.; Škorić, M. Forecasting the field performance of Austrian pine seedlings using morphological attributes. iForest-Biogeosciences For. 2016, 10, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Nyoka, B.I.; Kamanga, R.; Njoloma, J.; Jamnadass, R.; Mng’omba, S.; Muwanje, S. Quality of tree seedlings produced in nurseries in Malawi: An assessment of morphological attributes. For. Trees Livelihoods 2018, 27, 103–117. [Google Scholar] [CrossRef]
- Toprak, B. Early growth performance of mycorrhizae inoculated Taurus Cedar (Cedrus libani A. Rich.) seedlings in a nursery experiment conducted in inland part of Turkey. J. Plant Nutr. 2020, 43, 165–175. [Google Scholar] [CrossRef]
- Ritchie, G.A.; Landis, T.D.; Dumroese, R.K.; Haase, D.L. Assessing plant quality. In The Container Tree Nursery Manual, Seedling Processing, Storage, and Outplanting; Agricultural Handbook No., 674; Landis, T.D., Dumroese, R.K., Haase, D.L., Eds.; United States Department of Agriculture, Forest Service: Washington, DC, USA, 2010; Volume 7, pp. 17–82. [Google Scholar]
- Bayala, J.; Dianda, M.; Wilson, J.; Ouedraogo, S.J.; Sanon, K. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New For. 2009, 38, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Saha, R.; Ginwal, H.S.; Chandra, G.; Barthwal, S. Integrated assessment of adventitious rhizogenesis in Eucalyptus: Root quality index and rooting dynamics. J. For. Res. 2020, 31, 2145–2161. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Ganatsas, P.; Jacobs, D.F. Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New For. 2013, 44, 327–339. [Google Scholar] [CrossRef]
- Thompson, B.E. Seedling morphological evaluation: What you can tell by looking. In Evaluating Seedling Quality: Principles, Procedures, and Predictive Ability of Major Tests; Duryea, M.L., Ed.; Oregon State University: Corvallis, OR, USA, 1985; pp. 59–71. [Google Scholar]
- Bernier, P.Y.; Lamhamedi, M.S.; Simpson, D.G. Shoot: Root ratio is of limited use in evaluating the quality of container conifer stock. Tree Plant. Notes 1995, 46, 102–106. [Google Scholar]
- De Sousa Leite, M.; de Freitas, R.M.; de Sousa Leite, T.; Dombroski, J.L.D. Growth and morphological responses of Handroanthus impetiginosus (Mart. ex DC.) Mattos seedlings to nitrogen fertilization. Biosci. J. 2017, 33, 88–94. [Google Scholar] [CrossRef]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Binotto, A.F.; Lúcio, A.D.C.; Lopes, S.J. Correlations between growth variables and the Dickson quality index in forest seedlings. Cerne 2010, 16, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Mota, C.S.; Silva, F.G.; Dornelles, P.; Costa, A.C.; Souza Araujo, E.L.; Mendes, G.C. Use of physiological parameters to assess seedlings quality of Eugenia dysenterica DC. grown in different substrates. Aust. J. Crop Sci. 2016, 10, 842–851. [Google Scholar] [CrossRef]
- Oliveira, F.Í.F.D.; Souto, A.G.D.L.; Cavalcante, L.F.; Medeiros, W.J.F.D.; Bezerra, F.T.C.; Bezerra, M.A.F. Quality of jackfruit seedlings under saline water stress and nitrogen fertilisation. Semin. Ciências Agrárias 2017, 38, 2337–2350. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.G.; Smiderle, O.J.; Muraro, R.E.; Bianchi, V.J. Patents for the morphophysiological quality of seedlings and grafted peach trees: Effects of nutrient solution and substrates. Recent Pat. Food Nutr. Agric. 2018, 9, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Matias, S.S.R.; Dias, I.D.L.; Camelo, Y.M.; Souza, I.S.; de Castelo, F.R.; de Aguiar, W.R.; de Souza Ferreira, M.D. Quality of Carica papaya seedlings grown in an alternative substrate based on buriti wood (Mauritia flexuosa Lf). Científica 2019, 47, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Durante, L.G.Y.; Nagel, P.L.; Ferreira, C.R.; Santos, A.D. The quality of eggplant seedlings under different production methods. Rev. Ciência Agronômica 2011, 42, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the research trends by co–word analysis based on keywords from funded project. Proced. Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Dixon, G.R. Horticultural science—A century of discovery and application. J. Hortic. Sci. Biotech. 2019, 94, 550–572. [Google Scholar] [CrossRef]
- Thornley, J.H. Modelling stem height and diameter growth in plants. Ann. Bot. 1999, 84, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Grossnickle, S.C. Why seedlings survive: Influence of plant attributes. New For. 2012, 43, 711–738. [Google Scholar] [CrossRef]
- Dardengo, M.C.J.; Sousa, E.F.D.; Reis, E.F.D.; Gravina, G.D.A. Growth and quality of conilon coffee seedlings produced at different containers and shading levels. Coffee Sci. 2013, 8, 500–509. [Google Scholar]
- Gallardo, M.; Thompson, R.B.; Valdez, L.C.; Fernández, M.D. Use of stem diameter variations to detect plant water stress in tomato. Irrig. Sci. 2006, 24, 241–255. [Google Scholar] [CrossRef]
- De Castro Paes, É.; Fernandes, I.O.; da Mata Camilo, G.B.; Pereira, E.G.; Dias, F.P.M.; Rocabado, J.M.A.; Nobrega, J.C.A. Quality of Myracrodruon urundeuva seedlings in different container sizes and organic compost proportion. Aust. J. Crop Sci. 2019, 13, 1309–1317. [Google Scholar] [CrossRef]
- Lima, S.L.; Marimon–Junior, B.H.; Petter, F.A.; Tamiozzo, S.; Buck, G.B.; Marimon, B.S. Biochar as substitute for organic matter in the composition of substrates for seedlings. Acta Sci. Agron. 2013, 35, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Araújo, E.F.; Arauco, A.M.S.; Dias, B.A.S.; De Jesus, L.J.; Boechat, C.L.; Porto, D.L.; Arauco, L.R.R. Wastewater from swine farming in the growth and nutrition of Khaya senegalensis (DESR.) A Juss seedlings. Biosci. J. 2019, 35, 1378–1389. [Google Scholar] [CrossRef]
- Heuvelink, E. Growth, development and yield of a tomato crop: Periodic destructive measurements in a greenhouse. Sci. Hortic. 1995, 61, 77–99. [Google Scholar] [CrossRef]
- Rodríguez, F.; Berenguel, M.; Guzmán, J.L.; Ramírez–Arias, A. Modeling and Control of Greenhouse Crop Growth; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–250. [Google Scholar]
- Marcelis, L.F.M.; Kaiser, E.; van Westreenen, A.; Heuvelink, E. Sustainable crop production in greenhouses based on understanding crop physiology. Acta Hortic. 2018, 1227, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.D.; Reis, S.M.; Morandi, P.S.; Valadão, M.B.X.; de Oliveira, E.A.; Marimon, B.S.; Marimon, J. Germination and seedling development of Magonia pubescens A. St. Hil (Sapindaceae) under different shade levels. Sci. For. 2016, 44, 905–916. [Google Scholar]
- Silva, L.D.D.; Lima, A.P.L.; Lima, S.F.D.; Silva, R.C.; Paniago, G.F. Controlled–release fertilizer in the production and quality of Acacia mangium seedlings. Floram 2019, 26, e02092017. [Google Scholar] [CrossRef]
- Bezerra, M.A.F.; Pereira, W.E.; Bezerra, F.T.C.; Cavalcante, L.F.; da Silva Medeiros, S.A. Nitrogen as a mitigator of salt stress in yellow passion fruit seedlingss. Semin. Ciências Agrárias 2019, 40, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, F.D.O.; Cavalcante, L.F.; de Fátima, R.T.; Souto, A.D.L.; Batista, R.O.; Bezerra, F.S. Bovine biofertilizer and saline water on jackfruit seedling production. Irriga 2019, 24, 392–404. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Jeong, B.R. Carbon dioxide enrichment combined with supplemental light improve growth and quality of plug seedlings of Astragalus membranaceus Bunge and Codonopsis lanceolata Benth. et Hook. f. Agronomy 2019, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Paulus, D.; Zorzzi, I.C.; Rankrape, F.; Nava, G.A. Wastewater from fish farms for producing Eucalyptus grandis seedlings. Floram 2019, 26, e2017580. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.S.; Calzavara, A.K.; Bianchini, E.; Pimenta, J.A.; Stolf–Moreira, R.; Oliveira, H.C. Nitrogen supplementation improves the high–light acclimation of Guazuma ulmifolia Lam. seedlings. Trees 2019, 33, 421–431. [Google Scholar] [CrossRef]
- Aimi, S.C.; Araujo, M.M.; Fermino, M.H.; Tabaldi, L.A.; Zavistanovicz, T.C.; Mieth, P. Substrate and fertilization in the quality of Myrocarpus frondosus seedlings. Floresta 2019, 49, 831–840. [Google Scholar] [CrossRef]
- Gallegos, J.; Álvaro, J.E.; Urrestarazu, M. Container design affects shoot and root growth of vegetable plant. HortScience 2020, 55, 787–794. [Google Scholar] [CrossRef]
- De Castro e Melo, R.A.; dos Santos Butruille, N.M.; Jorge, M.H.A.; Cajamarca, S.M.N. Using nanocomposite hydrogel with N–urea in substrates for production of pepper seedlings. Bioagro 2019, 31, 167–176. [Google Scholar]
- Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Stanghellini, C.; Oosfer, B.; Heuvelink, E. Greenhouse Horticulture: Technology for Optimal Crop Production; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 1–311. [Google Scholar]
- Cruz, C.A.F.; Paiva, H.N.; Gomes, K.C.O.; Guerrero, C.R.A. Effect of different rates of base saturation on the growth and quality of ipê–roxo seedlings (Tabebuia impetiginosa (Mart.) Standley). For. Sci. 2004, 66, 100–107. [Google Scholar]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chirino, E.; Vilagrosa, A.; Hernández, E.I.; Matos, A.; Vallejo, V.R. Effects of a deep container on morpho–functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For. Ecol. Manag. 2008, 256, 779–785. [Google Scholar] [CrossRef]
- Silva, R.F.D.; Saidelles, F.L.F.; Silva, A.S.D.; Bolzan, J.S. Influence of copper soil contamination on growth and quality of Acoita–Cavalo (Luehea divaricata Mart. & Zucc.) and Aroeira–Vermelha (Schinus therebinthifolius Raddi) seedlings. Ciência Florest. 2011, 21, 111–118. [Google Scholar]
- Sánchez–Aguilar, H.; Aldrete, A.; Vargas–Hernández, J.; Ordaz–Chaparro, V. Influence of container type and color on seedling growth of pine in nursery. Agrociencia 2016, 50, 481–492. [Google Scholar]
- Vieira, L.M.; Gomes, E.N.; Brown, T.A.; Constantino, V.; Zanette, F. Growth and quality of Brazilian pine tree seedlings as affected by container type and volume. Ornam. Hortic. 2019, 25, 276–286. [Google Scholar] [CrossRef]
- Tennant, D. A test of a modified line intersect method of estimating root length. J. Ecol. 1975, 63, 995–1001. [Google Scholar] [CrossRef]
- Galkovskyi, T.; Mileyko, Y.; Bucksch, A.; Moore, B.; Symonova, O.; Price, C.A.; Topp, C.N.; Iyer–Pascuzzi, A.S.; Zurek, P.R.; Fang, S.; et al. GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 2012, 12, 116. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Seethepalli, A.; Dhakal, K.; Griffiths, M.; Guo, H.; Freschet, G.T.; York, L.M. RhizoVision Explorer: Open–source software for root image analysis and measurement standardization. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pimentel, N.; Lencina, K.H.; Pedroso, M.F.; Somavilla, T.M.; Bisognin, D.A. Morphophysiological quality of yerba mate plantlets produced by mini–cuttings. Semin. Ciências Agrárias 2017, 38, 3515–3528. [Google Scholar] [CrossRef] [Green Version]
- Marco, R.D.; Silva, R.F.D.; Ros, C.O.D.; Vanzam, M.; Boeno, D. Senna multijuga and peat in phytostabilization of copper in contaminated soil. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.F.; Missio, E.L.; Steffen, R.B.; Weirich, S.W.; Kuss, C.C.; Scheid, D.L. Effects of copper on growth and quality of Stryphnodendron polyphyllum Mar. and Cassia multijuga Rich. Ciência Florest. 2014, 24, 717–726. [Google Scholar]
- Kormanik, P.P. Lateral root morphology as an expression of sweetgum seedling quality. For. Sci. 1986, 32, 595–604. [Google Scholar]
- Smirnakou, S.; Ouzounis, T.; Radoglou, K.M. Continuous spectrum LEDs promote seedling quality traits and performance of Quercus ithaburensis var. macrolepis. Front. Plant Sci. 2017, 8, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalizi, M.N.; Goldfarb, B.; Burney, O.T.; Shear, T.H. Effects of five growing media and two fertilizer levels on polybag—Raised Camden whitegum (Eucalyptus benthamii Maiden & Cambage) seedling morphology and drought hardiness. Forests 2019, 10, 543. [Google Scholar]
- Deans, J.D.; Mason, W.L.; Harvey, F.J. Clonal differences in planting stock quality of Sitka spruce. For. Ecol. Manag. 1992, 49, 101–107. [Google Scholar] [CrossRef]
- Simpson, D.G.; Ritchie, G.A. Does RGP predict field performance? A debate. New For. 1997, 13, 253–277. [Google Scholar] [CrossRef]
- Gallardo–Salazar, J.L.; Rodríguez–Trejo, D.A.; Castro–Zavala, S. Seedling quality and survival of a true fir [Abies religiosa (Kunth) Schltdl. et Cham.] forest plantation from two provenances in central Mexico. Agrociencia 2019, 53, 631–643. [Google Scholar]
- Oliveira Júnior, O.A.D.; Cairo, P.A.R.; Novaes, A.B.D. Morphophysiological characteristics associated to quality of Eucalyptus urophylla seedlings produced on different substrates. Rev. Árvore 2011, 35, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Wendling, I.; Guastala, D.; Dedecek, R. Physical and chemical characteristics of substrates for the production of Ilex paraguariensis St. Hil. seedlings. Rev. Árvore 2007, 31, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Boene, H.C.A.M.; Nogueira, A.C.; Sousa, N.J.; Kratz, D.; de Souza, P.V.D. Effects of different substrates in production of Sebastiania commersoniana seedling. Floresta 2013, 43, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Dalanhol, S.J.; Nogueira, A.C.; Gaiad, S.; Kratz, D. Effect of mycorrhizae and fertilization on growth seedlings of Campomanesia xanthocarpa (Mart.) O. Berg., produced in different substrates. Ciência Florest. 2017, 27, 931–945. [Google Scholar] [CrossRef] [Green Version]
- Dalanhol, S.J.; Nogueira, A.C.; Gaiad, S.; Kratz, D. Effect of arbuscular mycorrhizal fungi and fertilization on seedlings growth of Eugenia uniflora L., produced in different substrates. Rev. Bras. Frutic. 2016, 38, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Gomes, G.A., Jr.; Pereira, R.A.; Sodré, G.A.; Gross, E. Growth and quality of mangosteen seedlings (Garcinia mangostana L.) in response to the application of humic acids. Rev. Bras. Frutic. 2019, 41, e-104. [Google Scholar]
- Liu, W.; Su, J.; Li, S.; Lang, X.; Huang, X. Non–structural carbohydrates regulated by season and species in the subtropical monsoon broad–leaved evergreen forest of Yunnan Province, China. Sci. Rep. 2018, 8, 1083. [Google Scholar] [CrossRef]
- Kobe, R.K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 1997, 80, 226–233. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Jeong, B.R. Manipulating the difference between the day and night temperatures can enhance the quality of Astragalus membranaceus and Codonopsis lanceolata Plug Seedlings. Agronomy 2019, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, X.; Jeong, B.R. Night temperature affects the growth, metabolism, and photosynthetic gene expression in Astragalus membranaceus and Codonopsis lanceolata plug seedlings. Plants 2019, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Opio, C.; Jacob, N.; Coopersmith, D. Height to diameter ratio as a competition index for young conifer plantations in northern British Columbia, Canada. For. Ecol. Manag. 2000, 137, 245–252. [Google Scholar] [CrossRef]
- Mandre, M. Ecophysiological study of suitability of Picea mariana L. for afforestation in alkalized territories in Northeast Estonia. Oil Shale 2003, 20, 143–160. [Google Scholar]
- Luqui, L.L.; Salles, J.S.; Costa, E.; Alves, V.C.D.; Souza, L.G.P.; Vieira, M.T.; Salles, J.S.; Souza, V.C.M. Seedlings production and fruit yield of cucumber on different organic substrates. Rev. Agric. Neotrop. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Prates, F.B.D.S.; Lucas, C.D.S.G.; Sampaio, R.A.; Júnior, B.; da Silva, D.; Fernandes, L.A.; Junio, G.R.Z. Growth of Jatropha seedlings in response to single superphosphate and rock–flour fertilization. Rev. Ciência Agronômica 2012, 43, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Landis, T.D.; Dumroese, R.K.; Haase, D.L. The Container Tree Nursery Manual: Seedling Processing, Storage, and Outplanting; Agricultural Handbook Nº 674; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2010; Volume 7, pp. 1–199.
- Mandre, M.; Ots, K. Influence of industrial air pollutants on growth and physiological state of Douglas fir (Pseudotsuga menziesii) in Estonia. Indian J. Agr. Sci. 2002, 75, 263–266. [Google Scholar]
- Yücedağ, C.; Bilir, N.; Özel, H.B. Phytohormone effect on seedling quality in Hungarian oak. For. Syst. 2019, 28, e005. [Google Scholar] [CrossRef]
- Dias, M.J.T.; de Souza, H.A.; Natale, W.; Modesto, V.C.; Rozane, D.E. Fertilization with nitrogen and potassium in guava seedlings in a commercial nursery. Semin. Ciências Agrárias 2012, 33, 2837–2848. [Google Scholar]
- Cavalcante, A.G.; Cavalcante, A.C.P.; de Luna Souto, A.G.; Zuza, J.F.C.; Dantas, M.M.M.; Araújo, R.C. Growth and nutrition of Pitombeira (Tasilia esculenta Radlk) seedlings in different substrates and biofertilizer application. Aust. J. Crop Sci. 2019, 13, 105–114. [Google Scholar] [CrossRef]
- Martínez-Hernández, R.; Villa-Castorena, M.M.; Catalán-Valencia, E.A.; Inzunza-Ibarra, M.A. Production of oregano (Lippia graveolens Kunth) seedling from seeds in nursery for transplanting. Rev. Chapingo Ser. Cienc. For. Ambient. 2017, 23, 61–73. [Google Scholar]
- Costa, E.; Leal, P.A.; Benett, C.G.; Benett, K.S.; Salamene, L.C. Production of tomato seedlings using different substrates and trays in three protected environments. Eng. Agríc. 2012, 32, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Guisolfi, L.P.; Monaco, P.A.V.L.; Haddade, I.R.; Krause, M.R.; Meneghelli, L.A.M.; Almeida, K. Production of cucumber seedlings in alternative substrates with different compositions of agricultural residues. Rev. Caatinga 2018, 31, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, M.; Jeong, B.R. Effect of supplementary lighting duration on growth and activity of antioxidant enzymes in grafted watermelon seedlings. Agronomy 2020, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Braga, M.D.M.; Furtini Neto, A.E.; Oliveira, A.H. Influence of base saturation in quality and growth of australian cedar seedlings (Toona ciliata M. Roem var. australis). Ciência Florest. 2015, 25, 49–58. [Google Scholar]
- Balota, E.L.; Machineski, O.; Viviane Truber, P.; Scherer, A.; Souza, F.S.D. Physic nut plants present high mycorrhizal dependency under conditions of low phosphate availability. Braz. J. Plant Physiol. 2011, 23, 33–44. [Google Scholar] [CrossRef]
- Thomas, D.S. Survival and growth of drought hardened Eucalyptus pilularis Sm. seedlings and vegetative cuttings. New For. 2009, 38, 245–259. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 1–651. [Google Scholar]
- Faria, J.C.T.; Caldeira, M.V.W.; Delarmelina, W.M.; Lacerda, L.C.; Gonçalves, E.D.O. Substrates of sewage sludge in the production of seedlings of Senna alata. Comun. Sci. 2013, 4, 342–351. [Google Scholar]
- Da Silva, D.S.; Venturin, N.; Rodas, C.L.; Macedo, R.L.; Venturin, R.P.; Melo, L.A.D. Growth and mineral nutrition of baru (Dipteryx alata Vogel) in nutrient solution. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Delarmelina, W.M.; Caldeira, M.V.W.; Faria, J.C.T.; Lacerda, L.C. Use of organic waste in formulation of substrate for Chamaecrista desvauxii (Collad.) Killip var Latistipula (Benth.) production. Cerne 2016, 21, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.D.P.; Nobre, R.G.; Silva, E.M.; Gheyi, H.R.; Soares, L.A.D.A. Production of guava rootstock grown with water of different salinities and doses of nitrogen. Rev. Ciência Agronômica 2017, 48, 596–604. [Google Scholar] [CrossRef]
- Jala, I.M.; da Silva, C.C.; Sampaio Filho, J.S.; de Oliveira, E.J.; Nóbrega, R.S.A. Seedlings of cassava varieties are responsive to organic fertilization. Semin. Ciências Agrárias 2019, 40, 2051–2164. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, D.C.D.S.; Paiva, H.N.D.; Neves, J.C.D.L.; Gomes, J.M.; Marques, V.B. Growth and seedling quality of Dalbergia nigra (Vell.) Fr. All. ex Benth.) in response to base saturation in the substrate. Rev. Árvore 2007, 31, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, R.S.A.; Ferreira, P.A.A.; dos Santos, J.G.D.; Boas, R.C.V.; Nóbrega, J.C.A.; de Souza Moreira, F.M. Effect of urban waste compost and liming on initial growth of Enterolobium contortisiliquum (Vell.) Morong seedlings. Sci. For. 2008, 36, 181–189. [Google Scholar]
- Nóbrega, R.S.A.; Paula, A.M.D.; Vilas Boas, R.C.; Nóbrega, J.C.A.; Moreira, F.M.D.S. Morphological parameters of Sesbania virgata (CAZ.) Pers and Anadenanthera peregrina (L.) seedlings cultivated in substrate fertilized with urban waste compost. Rev. Árvore 2008, 32, 597–607. [Google Scholar] [CrossRef]
- Sabonaro, D.Z.; Galbiatti, J.A.; de Paula, R.C.; Gonzales, J.L.S. Seedlings production of Tabebuia heptaphylla in different substrates and levels of irrigation, in greenhouse conditions. Bosque 2009, 30, 27–35. [Google Scholar]
- Marqués, V.B.; de Paiva, H.N.; Gomes, J.M.; Neves, J.C.L. Effects of nitrogen sources and levels on the growth of sabia (Mimosa caesalpiniaefolia Benth.) seedlings. Sci. For. 2006, 71, 77–85. [Google Scholar]
- Dutra, T.R.; Massad, M.D.; Sarmento, M.F.Q.; Oliveira, J.C.D. Alternative substrates and methods of breaking dormancy for the production of canafístula seedlings. Rev. Ceres 2013, 60, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Souza, P.H.D.; Paiva, H.N.D.; Neves, J.C.L.; Gomes, J.M.; Marques, L.S. Influence of substratum base saturation on seedling growth and quality of Machaerium nictitans (Vell.) Benth. Rev. Árvore 2008, 32, 193–201. [Google Scholar] [CrossRef]
- Marques, L.S.; Paiva, H.N.D.; Neves, J.C.L.; Gomes, J.M.; Souza, P.H.D. Jacaré (Piptadenia gonoacantha JF Macbr.) seedling growth in different soil types and nitrogen sources and doses. Rev. Árvore 2009, 33, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Valadão, M.B.X.; Marimon Junior, B.H.; Morandi, P.S.; Reis, S.M.; Oliveira, B.D.; Oliveira, E.A.; Marimon, B.S. Initial development and biomass partitioning of Physocalymma scaberrimum Pohl (Lythraceae) under different shading levels. Sci. For. 2014, 42, 129–139. [Google Scholar]
- Prior, S.A.; Rogers, H.H.; Runion, G.B.; Mauney, J.R. Effects of free–air CO2 enrichment on cotton root growth. Agr. For. Meteorol. 1994, 70, 69–86. [Google Scholar] [CrossRef]
- Körner, C.H.; Renhardt, U. Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 1987, 74, 411–418. [Google Scholar] [CrossRef]
- Mortimer, S.R. Root length/leaf area ratios of chalk grassland perennials and their importance for competitive interactions. J. Veg. Sci. 1992, 3, 665–673. [Google Scholar] [CrossRef]
- Tani, T.; Kudoh, H.; Kachi, N. Responses of root length/leaf area ratio and specific root length of an understory herb, Pteridophyllum racemosum, to increases in irradiance. Plant Soil 2003, 255, 227–237. [Google Scholar] [CrossRef]
- Briggs, G.E.; Kidd, F.; West, C. A quantitative analysis of plant growth: Part I. Ann. Appl. Biol. 1920, 7, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. Some remarks on the methods formulated in a recent article on “The quantitative analysis of plant growth”. Ann. Appl. Biol. 1921, 7, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.; Cornelissen, J.H.C. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol. 1997, 135, 395–417. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Andrade, F.R.; Petter, F.A.; de Souza, T.R.S.; Piauilino, A.C. Position and depth of sowing on the emergence and early development of seedlings of Anacardium microcarpum Ducke. Rev. Bras. Ciên. Agrár. 2014, 9, 556–561. [Google Scholar]
- Gibert, A.; Gray, E.F.; Westoby, M.; Wright, I.J.; Falster, D.S. On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted. J. Ecol. 2016, 104, 1488–1503. [Google Scholar] [CrossRef] [Green Version]
- Elfeel, A.A.; Abohassan, R.A. Response of Balanites aegyptiaca (L.) Del. var. aegyptiaca seedlings from three different sources to water and salinity stresses. Pak. J. Bot. 2015, 47, 1199–1206. [Google Scholar]
- Diánez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett. Appl. Microbiol. 2018, 67, 400–410. [Google Scholar] [CrossRef]
- United Nations Development Programme. The Future We Want Biodiversity and Ecosystems—Driving Sustainable Development; United Nations Development Programme Biodiversity and Ecosystems Global Framework 2012–2020; United Nations: New York, NY, USA, 2012; pp. 1–80.
- Carvalho, S.M.; Heuvelink, E.; Eveleens–Clark, B. Plant height formation in different cultivars of kalanchoe. Acta Hortic. 2005, 691, 83. [Google Scholar] [CrossRef] [Green Version]
- Gallegos–Cedillo, V.M. Effect of Fertigation on Productivity Parameters through Mineral Nutrition in Soilless Culture. Ph.D. Thesis, Almeria University, Almeria, Spain, 2019. [Google Scholar]
- Nájera, C.; Guil–Guerrero, J.L.; Álvaro, J.E.; Urrestarazu, M. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit. Postharvest Biol. Technol. 2018, 145, 151–156. [Google Scholar] [CrossRef]
- Blanca, G.; Cabezudo, B.; Cueto, M.; Salazar, C.; Morales Torres, C. Flora Vascular de Andalucía Oriental, 2nd ed.; Universidades de Almería, Granada, Jaén y Málaga: Granada, Spain, 2011; pp. 1–1750. [Google Scholar]
- Castroviejo, S. Flora Ibérica 1–8, 10–15, 17–18, 21; Real Jardín Botánico, CSIC: Madrid, Spain, 1986–2012; pp. 1–784. [Google Scholar]
- Gonçalves, F.G.; Alexandre, R.S.; Silva, A.G.D.; Lemes, E.D.Q.; Rocha, A.P.D.; Ribeiro, M.P.D.A. Emergency and quality of Enterolobium contortisiliquum (Vell.) Morong (Fabaceae) seedlings in different substrates. Rev. Árvore 2013, 37, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Villacís, J.; Armas, C.; Hang, S.; Casanoves, F. Selection of adequate species for degraded areas by oil-exploitation industry as a key factor for recovery forest in the Ecuadorian Amazon. Land Degrad. Dev. 2016, 27, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Rosa, T.L.M.; Jordaim, R.B.; Alexandre, R.S.; de Araujo, C.P.; Gonçalves, F.G.; Lopes, J.C. Controlled release fertilizer in the growth of Moringa oleifera LAM. seedlings. Floresta 2018, 48, 303–310. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhao, S.; Beazley, R.; Cheng, F.; Wu, X.; Xu, J.; Dong, S. Selection of suitable species as a key factor for vegetation restoration of degraded areas in an open-pit manganese-ore mine in Southern China using multivariate-analysis methods. Land Degrad. Dev. 2019, 30, 942–950. [Google Scholar] [CrossRef]
- Dantas, R.D.P.; Oliveira, F.D.A.D.; Cavalcante, A.L.G.; Pereira, K.T.O.; Oliveira, M.K.T.D.; Medeiros, J.F.D. Quality of Tabebuia aurea (Manso) Benth. & Hook. seedlings in two environments and levels of fertigation. Ciência Florest. 2018, 28, 1253–1262. [Google Scholar]
- Oliveira, J.R.D.; Costa, C.A.S.D.; Bezerra, A.M.E.; Abud, H.F.; Lucena, E.M.P.D. Characterization of seeds, seedlings and initial growth of Jacaranda mimosifolia D. Don. (Bignoniaceae). Rev. Árvore 2018, 42, e420403. [Google Scholar] [CrossRef]
- Pinto Junior, A.S.; Guimarães, V.F.; Dranski, J.A.L.; Steiner, F.; Malavasi, M.D.M.; Malavasi, U.C. Storage of physic nut seeds in different environments and packaging. Rev. Bras. Sementes 2012, 34, 636–643. [Google Scholar] [CrossRef]
- Barbeiro, C.; Firmino, T.P.; de Novaes, A.H.O.; Romagnolo, M.B.; Pastorini, L.H. Germination and growth of Albizia niopoides (Bentham) Burkart (Fabaceae). Acta Sci. Biol. Sci. 2018, 40, e39073. [Google Scholar] [CrossRef]
- Nourmohammadi, K.; Rahimi, D.; Naghdi, R.; Kartoolinejad, D. Effects of physical and chemical treatments of seed dormancy breaking on seedling quality index (QI) of Caspian locust (Gleditsia caspica Desf.). Austrian J. For. Sci. 2016, 133, 157–171. [Google Scholar]
- Sanches, C.F.; Costa, E.; Costa, G.G.; Binotti, F.F.D.S.; Cardoso, E.D. Hymenaea courbaril seedlings in protected environments and substrates. Eng. Agríc. 2017, 37, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.D.S.; Sousa, J.E.S.; Pereira, M.D.S.; Gonçalves, N.R.; Bezerra, A.M.E. Emergence and initial growth of Copernicia prunifera (Arecaceae) as a function of fruit maturation. J. Seed Sci. 2014, 36, 9–14. [Google Scholar] [CrossRef]
- Dranski, J.A.L.; Malavasi, U.C.; Malavasi, M.D.M.; Jacobs, D.F. Effect of ethephon on hardening of Pachystroma longifolium seedlings. Rev. Árvore 2013, 37, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Dellai, A.; da Silva, R.F.; Perrando, E.R.; Jacques, R.J.; Grolli, A.L.; Marco, R.D. Eucalyptus oil and Pisolithus microcarpus in the growth of bracatinga in soil contaminated by copper. Rev. Bras. Eng. Agric. Ambient. 2014, 18, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Pierezan, L.; Scalon, S.D.P.Q.; Pereira, Z.V. Jatobá seedlings emergence and growth with the use of biostimulant and shading. Cerne 2012, 18, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.D.; Stuepp, C.A.; Wendling, I.; Helm, C.; Angelo, A.C. Influence of seed storage conditions on quality of Torresea acreana seedlings. Cerne 2019, 25, 60–67. [Google Scholar] [CrossRef]
- Da Silva, M.P.S.; Barroso, D.G.; de Souza, J.S.; de Alvarenga Ferreira, D.; de Oliveira, T.P.D.F.; Lamônica, K.R.; Marinho, C.S. Growth and quality of australian cedar saplings originated from different multiclonal minigarden systems. Semin. Ciências Agrárias 2016, 37, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto Filho, A.D.A.; Carvalho, J.L.O.; Costa, R.B.D.; Dalmolin, A.C.; Brondani, G.E. Irrigation methods and substrate coverage affects the initial growth of Myracrodruon urundeuva seedlings. Floram 2013, 20, 521–529. [Google Scholar]
- Menegatti, R.D.; Navroski, M.C.; Guollo, K.; Fior, C.S.; de Souza, A.; das Graças Souza, A.; Possenti, J.C. Formation of seedlings of guatambu on substrate with hidrogel and controlled release fertilizer. Espacios 2017, 38, 35–47. [Google Scholar]
- Mews, C.L.; de Sousa, J.R.L.; Azevedo, G.D.O.; Souza, A.M. Effect of hydrogel and urea on the seedling production of Handroanthus ochraceus (Cham.) Mattos. Floram 2015, 22, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Konzen, E.R.; Navroski, M.C.; Friederichs, G.; Ferrari, L.H.; Pereira, M.D.O.; Felippe, D. The use of hydrogel combined with appropriate substrate and fertilizer improve quality and growth performance of Mimosa scabrella Benth. seedlings. Cerne 2017, 23, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hui, D.; Lu, H.; Wang, F.; Liu, N.; Sun, Z.; Ren, H. Main and interactive effects of increased precipitation and nitrogen addition on growth, morphology, and nutrition of Cinnamomum burmanni seedlings in a tropical forest. Global Ecol. Conserv. 2019, 20, e00734. [Google Scholar] [CrossRef]
- Navroski, M.C.; Araújo, M.M.; Reininger, L.R.S.; Muniz, M.F.B.; Pereira, M.D.O. Doses of hydrogel influencing growth and nutritional content in seedlings Eucalyptus dunnii. Floresta 2015, 45, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Navroski, M.C.; Araujo, M.M.; Reiniger, L.R.S.; Fior, C.S.; Schafer, G.; Pereira, M.D.O. Initial growth of seedlings of Eucalyptus dunnii Maiden as influenced by the addition of natural polymer and farming substrates. Rev. Árvore 2016, 40, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, T.B.; Rocha, S.M.G.; da Fonseca, F.S.A.; Alvarenga, I.C.A.; Martins, E.R. Effects of water stress on production of eucalypt seedlings. Irriga 2017, 22, 659–674. [Google Scholar] [CrossRef]
- Ávila–Flores, I.J.; Prieto–Ruíz, J.A.; Hernández–Díaz, J.C.; Wehenkel, C.A.; Corral–Rivas, J.J. Preconditioning Pinus engelmannii Carr. seedlings by irrigation deficit in nursery. Rev. Chapingo Ser. Cienc. For. Ambient. 2014, 20, 237–245. [Google Scholar]
- Rossa, Ü.B.; Angelo, A.C.; Westphalen, D.J.; Oliveira, F.E.M.D.; Silva, F.F.D.; Araujo, J.C.D. Slow release fertilizer on the growth of seedlings Anadenanthera peregrina (L.) Speg. and Schinus terebinthifolius Raddi. Ciência Florest. 2015, 25, 841–852. [Google Scholar]
- De Sousa Leite, T.; de Freitas, R.M.; Nogueira, N.W.; Ferreira, H.; de Sousa Leite, M. Growth and quality of Handroanthus impetiginosus (Mart. ex DC.) Mattos seedlings irrigated with saline fish effluent. Aust. J. Crop Sci. 2017, 11, 1457–1461. [Google Scholar] [CrossRef]
- Oliveira, A.R.D.; Boechat, C.L.; Amorim, S.P.D.N.; Souza, M.E.L.D.; Duarte, L.D.S.L.; Silva, H.F. Growth and quality of Handroanthus serratifolius seedlings in soils incorporating amendments and inorganic residues. Rev. Ceres 2019, 66, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.R.D.S.; de Freitas, R.M.; Leite, T.D.S.; Oliveira, F.D.A.D.; Ferreira, H.; Leite, M.D.S. Growth of young Tabebuia aurea seedlings under irrigation with wastewater from fish farming. Rev. Bras. Eng. Agri. Ambient. 2016, 20, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.; Weber, O. Base saturation on growth and on nutrition of Yellow Ipê seedlings. Floresta E Ambient. 2017, 24, e20160019. [Google Scholar]
- Freitas, E.C.S.D.; Paiva, H.N.D.; Leite, H.G.; Oliveira Neto, S.N.D. Growth and quality of Cassia grandis Linnaeus f. seedlings in response to phosphate fertilization and liming. Ciência Florest. 2017, 27, 509–519. [Google Scholar]
- Da Silva, R.F.D.; Saidelles, F.L.; Kemerich, P.D.; Steffen, R.B.; Swarowsky, A.; Silva, A.S.D. Growth and quality of Ateleia glazioviana and Lafoensia pacari seedlings cultivated in copper contaminated soil. Rev. Bras. Eng. Agríc. Ambient. 2012, 16, 881–886. [Google Scholar]
- Da Silva, R.F.; da Ros, C.O.; Dellai, A.; Grolli, A.L.; Scheid, D.L.; Viel, P. Interference of doses of copper on growth and quality of Bauhinia forficata Link, Pterogyne nitens Tul and Enterolobium contortisiliquum Vell. seedlings. Ciência Florest. 2016, 26, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Cuzzuol, G.R.F.; Milanez, C.R.D.; Gomes, J.M.L.; Labate, C.A.; Canal, E.C. Relationship between N, P, and K and the quality and stem structural characteristics of Caesalpinia echinata Lam. plants. Trees 2013, 27, 1477–1484. [Google Scholar] [CrossRef]
- Reis, B.E.; Paiva, H.N.; Barros, T.C.; Ferreira, A.L.; Cardoso, W.D.C. Growth and seedling quality of Jacarandá-da-bahia in response to potassium and sulfur fertilization. Ciência Florest. 2012, 22, 389–396. [Google Scholar]
- Pinho, E.K.C.; Costa, A.C.; Vilar, C.C.; Souza, M.E.D.; Silva, A.B.V.; Oliveira, C.H.G.D. Phosphate and nitrogen fertilization in the production of Barueiro (Dipteryx alata Vog.) seedlings. Rev. Bras. Frutic. 2019, 41, e-008. [Google Scholar] [CrossRef] [Green Version]
- Zuffo, A.M.; Júnior, J.M.Z.; Carvalho, R.M.; dos Santos, A.S.; Oliveira, J.B.D.S.; Fonseca, W.L. Response of baru (Dipteryx alata Vog.) seedlings to liming and NPK application. J. Plant Nutr. 2017, 40, 1332–1338. [Google Scholar] [CrossRef]
- Cavalcante, A.L.G.; Oliveira, F.D.A.; Pereira, K.T.O.; Dantas, R.D.P.; de Oliveira, M.K.T.; da Cunha, R.C.; Souza, M.D.L. Development of seedlings Mulungu fertigated with different nutrient solutions. Floresta 2016, 46, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Rebouças, J.R.L.; Ferreira Neto, M.; Dias, N.D.S.; Gomes, J.W.S.; Gurgel, G.D.S.; de Queiroz, I.S.R. Quality of sabiá seedlings irrigated with domestic effluent. Floresta 2018, 48, 173–182. [Google Scholar]
- Souza, N.H.D.; Marchetti, M.E.; Carnevali, T.D.O.; Ramos, D.D.; Scalon, S.D.P.Q.; Silva, E.F.D. Nutrition study of Canafístula (I): Initial growth and seedlings quality of Peltophorum dubium in response to fertilization with nitrogen and phosphorus. Rev. Árvore 2013, 37, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Freitas, E.C.S.D.; Paiva, H.N.D.; Leite, H.G.; Oliveira Neto, S.N.D. Effect of phosphate fertilization and base saturation of substrate on the seedlings growth and quality of Plathymenia foliolosa Benth. Rev. Árvore 2017, 41, e410111. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Araújo, M.; Coneglian, A.; Hodecker, B.E.R.; Pelá, A.; Gonçalves, R.N.; Rocha, E.C. Initial growth of Brazilian firetree (Schizolobium parahyba (Vell.) SF Blake) fertilized with phosphorus in Red–Yellow Latosol. Aust. J. Crop Sci. 2018, 12, 1108–1113. [Google Scholar] [CrossRef]
- De Souza, P.H.; de Paiva, H.N.; Neves, J.C.L.; Gomes, J.M.; Marques, L.S. Growth and seedling quality of Senna macranthera (Collad.) Irwin et Barn. in response to calagem. Rev. Árvore 2010, 34, 233–240. [Google Scholar] [CrossRef]
- Escamilla–Hernández, N.; Obrador–Olán, J.J.; Carrillo–Ávila, E.; Palma–López, D.J. Effect of controlled release fertilizers on growth of teak plants (Tectona grandis) on nursery. Rev. Fitotec. Mex. 2015, 38, 329–333. [Google Scholar]
- Smiderle, O.J.; das Graças Souza, A. Production and quality of Cinnamomum zeylanicum Blume seedlings cultivated in nutrient solution. Rev. Bras. Ciências Agrárias 2016, 11, 104–110. [Google Scholar] [CrossRef]
- Das Graces Souza, A.; Smiderle, O.J.; Chagas, E.A. Nutrition and accumulation of nutrients in Pochota fendleri seedlings. Rev. Bras. Ciências Agrárias 2018, 13, e5559. [Google Scholar]
- Mesquita, F.D.O.; Nunes, J.C.; de Lima Neto, A.J.; Souto, A.D.L.; Batista, R.O.; Cavalcante, L.F. Formation of NIM seedlings under salinity, biofertilizer and soil drainage. Irriga 2015, 20, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Carmo, É.R.D.; Silva, C.F.D.; Freitas, M.S.M.; Lima, K.B.; Martins, M.A. Production of Australian cedar seedlings inoculated with arbuscular mycorrhizal fungi in different types of containers. Rev. Árvore 2016, 40, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Lucchese, J.R.; Lazarotto, M.; Hilgert, M.A.; Fior, C.S.; de Sá, L.C.; Brose, C.B. Nitrogen fertilization for the nursery production of Australian red cedar. Floresta 2019, 49, 431–438. [Google Scholar] [CrossRef]
- Leite, T.D.S.; Dombroski, J.L.D.; Freitas, R.M.O.D.; Leite, M.D.S.; Rodrigues, M.R.D.O. Production of Enterolobium contortisiliquum seedlings and assimilate partitioning in response to phosphorus fertilization and inoculation with mycorrhizal fungi. Ciência Florest. 2017, 27, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Sousa, W.C.; Nóbrega, R.S.A.; Nóbrega, J.C.A.; Brito, D.R.S.; Moreira, F.M.S. Nitrogen sources and Mauritia flexuosa decomposed stem on nodulation and growth of Enterolobium contortsiliquum. Rev. Árvore 2013, 37, 969–979. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, J.P.; de Freitas, R.M.; Nogueira, N.W.; Oliveira, F.D.A.D.; Ferreira, H.; Leite, M.D.S. Production of Piptadenia stipulacea (Benth.) Ducke seedlings irrigated with fish farming wastewater. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Souza, F.M.D.; Pereira, W.E.; Dantas, J.S.; Nóbrega, J.S.; Lima, E.C.S.; Sá, F.V.D.S. Initial growth of Moringa oleifera Lam. as a function of poultry litter doses and granulometry. Pesq. Agropec. Trop. 2018, 48, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.O.; Martinez, M.A.; Paiva, H.N.D.; Batista, R.O.; Cecon, P.R. Effect of hog production wastewater in the development and quality of Eucalyptus urophylla substrate produced in urban solid waste. Rev. Ambient Água 2013, 8, 180–191. [Google Scholar] [CrossRef]
- Batista, R.O.; Martinez, A.M.; Paiva, H.N.; Batista, R.O.; Cecon, P.R. The effect of swine wastewater in the development and quality of seedling of Eucalyptus urophylla. Ciência Florest. 2014, 24, 127–135. [Google Scholar]
- Guimarães, M.M.C.; Cairo, P.A.R.; Neves, O.S.C. Growth of Eucalyptus urophylla in hydroponic medium with different ratios of nitrate and ammonium. Floram 2014, 21, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Morais, T.C.B.D.; Prado, R.D.M.; Traspadini, E.I.F.; Wadt, P.G.S.; Paula, R.C.D.; Rocha, A.M.S. Efficiency of the CL, DRIS and CND methods in assessing the nutritional status of Eucalyptus spp. rooted cuttings. Forests 2019, 10, 786. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-García, J.V.; Rodríguez-Trejo, D.A.; Villanueva-Morales, A.; García-Diaz, S.; Romo-Lozano, J.L. Water quality for the forest nursery production of Pinus cembroides Zucc. Agrociencia 2015, 49, 205–219. [Google Scholar]
- Schoen, C.; Aumond, J.J.; Stürmer, S.L. Efficiency of the on–farm mycorrhizal inoculant and phonolite rock on growth and nutrition of Schinus terebinthifolius and Eucalyptus saligna. Rev. Bras. Ciênc. Solo 2016, 40, e0150440. [Google Scholar] [CrossRef] [Green Version]
- Smiderle, O.J.; Souza, A.G.; Schwengber, L.A.M.; Schwengber, D.R. Shading of seedlings of pau–rainha and the use of fertilized substrate. Espacios 2017, 38, 21–30. [Google Scholar]
- Porto, D.S.; Farias, E.D.N.C.; Chaves, J.D.S.; Souza, B.F.; Medeiros, R.D.D.; Zilli, J.É.; Silva, K.D. Symbiotic effectiveness of Bradyrhizobium ingae in promoting growth of Inga edulis Mart. seedlings. Rev. Bras. Ciênc. Solo 2017, 41, e0160222. [Google Scholar] [CrossRef] [Green Version]
- Araújo, K.S.; Carvalho, F.D.; Moreira, F.M.D.S. Bukholderia strains promote Mimosa spp. growth but not Macroptilium atropurpureum. Rev. Ciência Agronômica 2017, 48, 41–48. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, A.V.N.; Santana, J.S.; da Silva, J.P.; da Silva, T.F.R.; Lima, Y.M.W.; da Silva, W.A. Growth of Schizolobium amazonicum (Huber ex Ducke) seedlings inoculated with arbuscular mycorrhizal fungi. Floresta 2019, 49, 651–660. [Google Scholar] [CrossRef]
- Weirich, S.W.; Silva, R.F.D.; Perrando, E.R.; Ros, C.O.D.; Dellai, A.; Scheid, D.L.; Trombeta, H.W. Influence of ectomycorrhizae on the growth of seedlings of Eucalyptus grandis, Corymbia citriodora, Eucalyptus saligna and Eucalyptus dunnii. Ciência Florest. 2018, 28, 765–775. [Google Scholar] [CrossRef] [Green Version]
- De Azevedo, G.B.; de Novaes, Q.S.; Azevedo, G.D.O.; Silva, H.F.; Rocha Sobrinho, G.G.; de Novaes, A.B. Effect of Trichoderma spp. on Eucalyptus camaldulensis clonal seedlings growth. Sci. For. 2017, 45, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Dellai, A.; Silva, R.F.D.; Andreazza, R. Ectomycorhyza on the growth of Eucalyptus saligna in soil contaminated with copper. Ciência Florest. 2018, 28, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Gandini, A.M.M.; Grazziotti, P.H.; Rossi, M.J.; Grazziotti, D.C.F.S.; Gandini, E.M.M.; Silva, E.D.B.; Ragonezi, C. Growth and nutrition of eucalypt rooted cuttings promoted by ectomycorrhizal fungi in commercial nurseries. Rev. Bras. City Solo 2015, 39, 1554–1565. [Google Scholar] [CrossRef] [Green Version]
- Brunetta, J.M.F.C.; Alfenas, A.C.; Mafia, R.G.; Gomes, J.M.; Binoti, D.B.; Fonseca, É.D.P. Evalution of specificity of Rhizobacteria isolated from different species of Pinus sp. Rev. Árvore 2007, 31, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Valdés, R.C.; Villarreal, R.M.; García, F.G.; Morales, S.G.; Peña, S.S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 2019, 81, 23–30. [Google Scholar] [CrossRef]
- Godoy, T.G.; Rosado, S.C.D.S. Estimates of genetic gains for growth traits in young plants of Eucalyptus urophylla ST Blake. Cerne 2011, 17, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Barajas-Rodríguez, J.E.; Aldrete, A.; Vargas-Hernandez, J.J.; Lopez-Upton, J. Chemical pruning in the nursery increases root density in young trees of Pinus greggii. Agrociencia 2004, 38, 545–553. [Google Scholar]
- Oliet, J.; Planelles, R.; Arias, M.L.; Artero, F. Soil water content and water relations in planted and naturally regenerated Pinus halepensis Mill. seedlings during the first year in semiarid conditions. New For. 2002, 23, 31–44. [Google Scholar] [CrossRef]
- Ferraz, A.D.V.; Engel, V.L. Effect of the root trainers size on seedling quality of Jatobá (Hymenaea courbaril L. var. stilbocarpa (Hayne) Lee et Lang.), Ipê-amarelo (Tabebuia chrysotricha (Mart. ex DC.) Sandl.) and Guarucaia (Parapiptadenia rigida (Benth.) Brenan). Rev. Árvore 2011, 35, 413–423. [Google Scholar] [CrossRef]
- Andrade, F.R.; Petter, F.A.; Marimon Junior, B.H.; Zuffo, A.M.; de Souza, T.R.S.; Gonçalves, L.G.V. Formation of castor bean seedlings in different containers. Rev. Bras. Ciências Agrárias 2012, 7, 274–279. [Google Scholar]
- Melo, L.A.D.; Abreu, A.H.M.D.; Leles, P.S.D.S.; Oliveira, R.R.D.; Silva, D.T.D. Quality and initial growth of seedlings Mimosa caesalpiniifolia Benth. produced in different volumes of containers. Ciência Florest. 2018, 28, 47–55. [Google Scholar] [CrossRef]
- Parra, S.; Maciel, N. Effect of sowing and transplantation to conical container on the initial growth of Pithecellobium dulce and Platymiscium diadelphum. Bioagro 2018, 30, 125–134. [Google Scholar]
- Lisboa, A.C.; dos Santos, P.S.; Neto, S.N.O.; de Castro, D.N.; De Abreu, A.H.M. Effect of volume of tubes on the production of seedlings of Calophyllum brasiliense and Toona ciliata. Rev. Árvore 2012, 36, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Aimi, S.C.; Araujo, M.M.; Leon, E.B.; de Oliveira, G.G.; Cunha, F.D.S. Container volume and controlled–release fertilizer in growing Cabralea canjerana plants produced in nursery. Bosque 2016, 37, 401–407. [Google Scholar]
- Eloy, E.; Caron, B.O.; Schmidt, D.; Behling, A.; Schwers, L.; Elli, E.F. Quality assessment of Eucalyptus grandis seedlings using morphological parameters. Floresta 2013, 43, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Storck, E.B.; Schorn, L.A.; Fenilli, T.A.B. Growth and quality of Eucalyptus urophylla ST seedlings Blake x Eucalyptus grandis Hill (ex Maiden) in different containers. Floresta 2016, 46, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Castro–Garibay, S.L.; Aldrete, A.; Lopez–Upton, J.; Ordaz–Chaparro, V.M. Effect of container, substrate and fertilization on Pinus greggii var. australis growth in the nursery. Agrociencia 2018, 52, 115–127. [Google Scholar]
- Turchetto, F.; Mezzomo, J.C.; Araujo, M.M.; Griebeler, A.M.; Berghetti, Á.L.P.; Barbosa, F.M. Growth and physiology of Balfourodendron riedelianum seedlings in the nursery and in the field. Floresta 2019, 49, 763–772. [Google Scholar] [CrossRef]
- Leal, C.C.; Torres, S.B.; de Freitas, R.M.; Nogueira, N.W.; Farias, R.M.D. Light intensity and type of container on producing Cassia grandis L. f. seedlings. Rev. Bras. Eng. Agríc. Ambient. 2015, 19, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Reis, S.M.; Marimon–Junior, B.H.; Morandi, P.S.; Oliveira–Santos, C.; Oliveira, B.D.; Marimon, B.S. Initial development and quality of saplings of Copaifera langsdorffii Desf. under different levels of shading. Ciência Florest. 2016, 26, 11–20. [Google Scholar]
- Da Silva Santos–Moura, S.; Alves, E.U.; Ursulino, M.M.; Bruno, R.D.L.A.; dos Anjos Neto, A.P. Effect of shading on Dimorphandra gardneriana Tul. seedling production. Biosci. J. 2018, 34, 1147–1157. [Google Scholar] [CrossRef]
- Lopes, M.J.D.S.; Dias–Filho, M.B.; Menezes Neto, M.A.; Cruz, E.D. Morphophysiological behavior and cambial activity in seedlings of two amazonian tree species under shade. J. Bot. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- César, F.R.C.F.; Matsumoto, S.N.; Viana, A.E.S.; Bonfim, J.A. Initial growth and quality of Pterogyne nitens Tull. seedling under artificial shading gradient. Ciência Florest. 2014, 24, 357–366. [Google Scholar]
- Mazzanatti, T.; Calzavara, A.K.; Pimenta, J.A.; Oliveira, H.C.; Stolf–Moreira, R.; Bianchini, E. Light acclimation in nursery: Morphoanatomy and ecophysiology of seedlings of three light–demanding neotropical tree species. Braz. J. Bot. 2016, 39, 19–28. [Google Scholar] [CrossRef]
- Reis, R.; Pereira, M.D.S.; Goncalves, N.R.; Pereira, D.D.S.; Bezerra, A.M.E. Emergence and quality of Copernicia prunifera seedlings in function of the imbibition of seeds and shading. Rev. Caatinga 2011, 24, 43–49. [Google Scholar]
- Azevedo, G.T.D.O.S.; Novaes, A.B.D.; Azevedo, G.B.D.; Silva, H.F. Development of indian neem seedlings under different levels of shading. Floram 2015, 22, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Gonçalves, D.S.; Souza, P.A.D.; Lucena, F.R.; Silva, R.R.D.; Brondani, G.E. Luminosity levels affect the initial seedlings growth and nutrient accumulation in Khaya senegalensis A. Juss. Cerne 2018, 24, 344–351. [Google Scholar] [CrossRef]
- Marco, R.D.; Conte, B.; Perrando, E.R.; Fortes, F.D.O.; Somavilla, L.; Burgin, M.B. Effect of shading screens on growth and protection of Toona ciliata seedlings under low temperatures. Floresta 2014, 44, 607–616. [Google Scholar]
- Santelices, R.; Cerrillo, R.M.N.; Drake, F.; Mena, C. Effect of cover and fertilization on the early development of Nothofagus alessandrii nursery container seedlings. Bosque 2011, 32, 85–88. [Google Scholar] [CrossRef]
- Reis, S.M.; Morandi, P.S.; Oliveira, B.; Oliveira, E.A.; Valadão, M.B.X.; Marimon, B.S.; Marimon, B.H., Jr. Influence of shading on the initial development and nutrient use efficiency of Dilodendron bipinnatum Radkl (Sapindaceae). Sci. For. 2015, 43, 581–590. [Google Scholar]
- De Azevedo, I.M.G.; de Alencar, R.M.; Barbosa, A.P. Study of growth and quality of marupá (Simarouba amara Aubl.) nursery seedlings. Acta Amaz. 2010, 40, 157–164. [Google Scholar]
- Kratka, P.C.; Correia, C.R.M.D.A. Initial growth of Aroeira of Sertão (Myracrodruon urundeuva Allemão) in different substrates. Rev. Árvore 2015, 39, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.H.M.; dos Santos, L.P.S.; Amaral, M.L.; Rodrigues, O.R.; Alves, F.D.H.A. Characterization and potential of formulated substrate with biosolids in Schinus terebinthifolius Raddi. and Handroanthus heptaphyllus (Vell.) Mattos seedling production. Ciência Florest. 2017, 27, 1179–1190. [Google Scholar] [CrossRef] [Green Version]
- Faria, J.C.T.; de Melo, L.A.; Brondani, G.E.; Delarmelina, W.M.; da Silva, D.S.N.; Nieri, E.M. Substrates formulated with organic residues in the production of seedlings of Moquiniastrum polymorphum. Floresta 2017, 47, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Boechat, C.L.; Ribeiro, M.D.O.; Ribeiro, L.D.O.; Santos, J.A.G.; Accioly, A.D.A. Urban and industrial sewage sludge in the initial growth and quality of physic nut seedlings. Biosci. J. 2014, 30, 782–791. [Google Scholar]
- Afonso, M.V.; Martinazzo, E.G.; Aumonde, T.Z.; Villela, F.A. Physiological parameters of Albizia niopoides seedlings produced in different substrate compositions. Ciência Florest. 2017, 27, 1395–1402. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, M.V.W.; Peroni, L.; Gomes, D.R.; Delarmelina, W.M.; Trazzi, P.A. Different proportions of sewage sludge bio solids in the composition of substrates for the production of seedlings of timbo (Ateleia glazioveana Baill). Sci. For. 2012, 40, 15–22. [Google Scholar]
- Caldeira, M.V.W.; Delarmelina, W.M.; Faria, J.C.T.; Juvanhol, R.S. Alternative substrates in the production of seedlings of Chamaecrista desvauxii. Rev. Árvore 2013, 37, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.F.E.; de Souza, C.L.; Félix, D.V.; Fernandes, L.D.S.; Xavier, P.S.; Alves, L.M. Initial development of Baruzeiro (Dipteryx alata vog) seedling as function of substrates and irrigations levels. Irriga 2017, 22, 288–300. [Google Scholar] [CrossRef]
- Amaral, F.H.; Nóbrega, J.C.; Nóbrega, R.S.; Amorim, S.P.D.N. Growth of Leucaena leucocephala (Lam.) de Wit favored by organic waste in the Brazilian semiarid region. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Faria, J.C.T.; Caldeira, M.V.W.; Delarmelina, W.M.; Rocha, R.L.F. Alternative substrates in the seedling production of Mimosa setosa Benth. Ciência Florest. 2016, 26, 1075–1086. [Google Scholar] [CrossRef]
- Dutra, A.F.; Araujo, M.M.; Turchetto, F.; Rorato, D.G.; Aimi, S.C.; Gomes, D.R.; Nishijima, T. Substrate and irrigation scheme on the growth of Parapiptadenia rigida (angico–vermelho) seedlings. Ciência Rural 2016, 46, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Scheer, M.B.; Carneiro, C.; dos Santos, K.G. Parapiptadenia rigida (Benth.) Brenan seedling production using substrates based on composted sewage sludge. Sci. For. 2010, 38, 637–644. [Google Scholar]
- Sabonaro, D.Z.; Galbiatti, J.A. Seedling growth of Schizolobium parahyba on different substrates and irrigation levels. Rodriguésia 2011, 62, 467–475. [Google Scholar] [CrossRef]
- Delarmelina, W.M.; Caldeira, M.V.W.; Faria, J.C.T.; Gonçalves, E.D.O.; Rocha, R.L.F. Different substrates for the production of Sesbania virgata Seedlings. Floram 2014, 21, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, M.V.W.; Delarmelina, W.M.; Lübe, S.G.; Gomes, D.R.; Gonçalves, E.D.O.; Alves, A.F. Biosolids in composition of substrate for Tectona grandis Linn. F. seedlings production. Floresta 2012, 42, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Trazzi, P.A.; Caldeira, M.V.W.; Passos, R.R.; Gonçalves, E.D.O. Substrates of organic origin for production of seedlings of Teak (Tectona grandis Linn. F.). Ciência Florest. 2013, 23, 401–409. [Google Scholar]
- Trazzi, P.A.; Caldeira, M.V.W.; Reis, E.F.D.; Silva, A.G.D. Seedling production of Tectona grandis on substrates formulated with biosolids. Cerne 2014, 20, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, M.V.; Santos, F.E.; Kunz, S.H.; Klippel, V.H.; Delarmelina, W.M.; Gonçalves, E.D.O. Solid urban waste in the production of Aegiphila sellowiana Cham. seedlings. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 831–836. [Google Scholar] [CrossRef]
- Maranho, Á.S.; de Paiva, A.V. Physocalymma scaberrimum seedlings production in substrate composed by different percentages of organic residue of açaí. Floresta 2012, 42, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Gasparin, E.; de Avila, A.L.; Araujo, M.M.; Dorneles, D.U.; Foltz, D.R.B. Influence of substrate and container volume on the quality of Cabralea canjerana (Vell.) Mart. seedlings in nursery and field. Ciência Florest. 2014, 24, 553–563. [Google Scholar]
- Petter, F.A.; Andrade, F.R.; Marimon Junior, B.H.; Goncalves, L.G.; Schossler, T.R. Biochar conditioner as substrate for the production of Eucalipto seedlings. Rev. Caatinga 2012, 25, 44–51. [Google Scholar]
- Menegatti, A.; de Arruda, G.O.S.F.; Nesi, C.N. The poultry manure fertilizer in the production and in the quality of Eucalyptus dunnii Maiden seedlings. Sci. Agrar. 2017, 18, 43–49. [Google Scholar]
- Caldeira, M.V.; Delarmelina, W.M.; Peroni, L.; Gonçalves, E.D.; Gomes da Silva, A. Use of sewage sludge and vermiculite for producing Eucalyptus seedlings. Pesqui. Agropecu. Trop. 2013, 43, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.F.; Marco, R.D.; da Ros, C.O.; de Almeida, H.S.; Antoniolli, Z.I. Influence of different concentrations of vermicompost in the development of eucalyptus and pine seedlings. Floram 2017, 24, e20160269. [Google Scholar]
- Gonzaga, M.I.S.; Mackowiak, C.; Almeida, A.Q.D.; Carvalho Júnior, J.I.T.D. Sewage sludge derived biochar and its effect on the growth and morphological traits of Eucalyptus grandis W. Hill ex Maiden seedlings. Ciência Florest. 2018, 28, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.I.; Mackowiak, C.; Minogue, P.; Reis, A.F.; Moline, E.F.D.V. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings. Ciência Rural 2017, 47, e20160064. [Google Scholar] [CrossRef] [Green Version]
- Sallesses, L.F.; Rizzo, P.F.; Riera, N.; Torre, V.D.; Crespo, D.E.; Pathauer, P.S. Effect of poultry manure compost in the production of hybrid clones of Eucalyptus grandis x Eucalyptus camaldulensis. Ciência Suelo 2015, 33, 221–228. [Google Scholar]
- De Barros, D.L.; de Rezende, F.A.; Campos, A.T. Production of Eucalyptus urograndis plants cultivated with activated biochar. Rev. Bras. Ciêc. Agrár. 2019, 14, e5649. [Google Scholar] [CrossRef]
- Madrid–Aispuro, R.E.; Prieto-Ruíz, J.Á.; Aldrete, A.; Hernández–Díaz, J.C.; Wehenkel, C.; Chávez–Simental, J.A.; Mexal, J.G. Alternative substrates and fertilization doses in the production of Pinus cembroides Zucc. in nursery. Forests 2020, 11, 71. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, B.; López, M.Á.; Cetina Alcala, V.M.; Diakite, L. Substrates and nutrient addition rates affect morphology and physiology of Pinus leiophylla seedlings in the nursery stage. iForest-Biogeosciences For. 2016, 10, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Romero–Arenas, O.; Flores, A.D.P.; Rivera Tapia, J.A.; Hernandez Aldana, F.; Parraguirre Lezama, J.F.C.; Villa Ruano, N.; Landeta Cortes, G. Production of Pinus pseudostrobus seedlings in nurseries in compost based on shiitake waste. Madera Bosques 2019, 25, e2511675. [Google Scholar]
- Bonamigo, T.; Scalon, S.D.P.Q.; Pereira, Z.V. Substrates and levels of light intensity on initial growth of seedlings of Tocoyena formosa (Cham. & Schltdl.) K. Schum (Rubiaceae). Ciência Florest. 2016, 26, 501–511. [Google Scholar]
- Dutra, A.F.; Araujo, M.M.; Tabaldi, L.A.; Rorato, D.G.; Gomes, D.R.; Turchetto, F. Optimization of water use in seedling production of arboreal species. Cerne 2018, 24, 201–208. [Google Scholar] [CrossRef]
- Costa, E.; Sassaqui, A.R.; Silva, A.K.D.; Rego, N.H.; Fina, B.G. Soursop seedlings: Biomasses and biometric relations in different farming environments and substrates–part II. Eng. Agríc. 2016, 36, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Leal, P.A.M.; Rego, N.H.; Benatti, J. Initial seedling development of Jatobazeiro do cerrado in Aquidauana, MS. Rev. Bras. Frutic. 2011, 33, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.D.G.; Spinelli, V.M.; Souza, R.O.D.; Smiderle, O.J.; Bianchi, V.J. Optimization of germination and initial quality of seedlings of Prunus persica tree rootstocks. J. Seed Sci. 2017, 39, 166–173. [Google Scholar] [CrossRef]
- Paixão, M.V.S.; Lopes, J.C.; Schmildt, E.R.; Alexandre, R.S.; Meneghelli, C.M. Avocado seedlings multiple stems production. Rev. Bras. Frutic. 2016, 38, e-221. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.D.G.; José Smiderle, O.; Fischer, C.; João Bianchi, V. Post–harvest management of Prunus persica stones and the effects on seed and seedling quality. Agric. Conspec. Sci. 2019, 84, 257–261. [Google Scholar]
- Ferreira, B.C.; Lima, S.F.D.; Simon, C.A.; Andrade, M.G.D.O.; Ávila, J.D.; Alvarez, R.D.C.F. Effect of biostimulant and micronutrient on emergence, growth and quality of Arabica coffee seedlings. Coffee Sci. 2018, 13, 324–332. [Google Scholar] [CrossRef]
- Silva, A.R.; Bezerra, F.T.; Cavalcante, L.F.; Pereira, W.E.; Araújo, L.M.; Bezerra, M.A. Frequency of irrigation with saline water in sugar–apple seedlings produced on substrate with polymer. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 825–830. [Google Scholar] [CrossRef] [Green Version]
- De Melo Jr, J.C.F.; Lima, A.M.N.; Teixeira, M.V.; da Conceicao, G.C.; dos Santos, L.R. Water depletion on substrate and Osmocote fertilizer dose in the papaya seedlings formation. Comun. Sci. 2014, 5, 499–508. [Google Scholar]
- De Melo Júnior, J.C.F.; Costa, D.D.S.; Gervásio, E.S.; Lima, A.M.N.; Sediyama, G.C. Effects of water depletion levels in the substrate and fertilizer rates of controlled release on the yield of passion seedlings. Irriga 2015, 20, 204–219. [Google Scholar]
- De Azevedo, J.M.G.; dos Reis, E.F.; Tomaz, M.A.; Garcia, G.D.O.; Nogueira, N.O.; Dardengo, M.C.J.D. Quality index and Conilon coffee seedling growth under irrigation and hydroretentive. Rev. Bras. Ciências Agrárias 2014, 9, 432–439. [Google Scholar]
- Veloso, L.L.; Nobre, R.G.; Lima, G.S.; Barbosa, J.L.; Melo, E.N.; Gheyi, H.R.; Gonçalves, E.B.; Souza, C.M. Quality of soursop (Annona muricata L.) seedlings under different water salinity levels and nitrogen fertilization. Aust. J. Crop Sci. 2018, 12, 306–310. [Google Scholar] [CrossRef]
- De Freitas, R.M.O.; Nogueira, N.W.; Pinto, J.D.S.; Tosta, M.D.S.; Dombroski, J.L.D. Phosphate fertilizer in the initial development of sugar apple seedlings. Biosc. J. 2013, 29, 319–327. [Google Scholar]
- De Almeida, J.P.; Mendonça, V.; Alves, A.A.; Cardoso Neto, R.; Costa, L.P.; Silva, F.S. Morphometric responses and tolerance of pomegranate seedlings irrigated with saline water. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Melo, E.N.; Nobre, R.G.; Pinheiro, F.W.A.; Souza, L.P.; de Lima, G.S.; Gheyi, H.R.; Silva, W.L. Evaluation of west Indian cherry (Malpighia emarginata) rootstock under saline water irrigation and nitrogen fertilization. Aust. J. Crop Sci. 2018, 12, 1034–1040. [Google Scholar] [CrossRef]
- Moura, R.S.; Gheyi, H.R.; Coelho Filho, M.A.; Jesus, O.N.; Lima, L.K.S.; Cruz, C.S. Formation of seedlings of species from the genus Passiflora under saline stress. Biosci. J. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Medeiros, S.D.S.; Cavalcante, L.F.; Bezerra, M.A.F.; do Nascimento, J.A.M.; Bezerra, F.T.C.; Prazeres, S.D.S. Saline water and bovine manure biofertilizer in the formation and quality of yellow passion fruit seedlings. Irriga 2016, 21, 779–795. [Google Scholar] [CrossRef]
- Lemos, V.T.; França, A.C.; Silva, E.B.; Marinho, R.L.S.; Franco, M.H.R.; Avellar, M.D.; Freitas, A.F.D.; Reis, L.A.C.; Corrêa, J.M.; Carvalho, G.R. Citric acid and phosphorus on development and nutritional status of coffee seedling. Coffee Sci. 2015, 10, 298–308. [Google Scholar]
- Marana, J.P.; Miglioranza, É.; Fonseca, É.D.P.; Kainuma, R.H. Seedling quality in coffee grown in containers. Ciência Rural 2008, 38, 39–45. [Google Scholar] [CrossRef]
- Santinato, F.; Caione, G.; Tavares, T.O.; Prado, R.M. Doses of phosphorus associated with nitrogen on development of coffee seedlings. Coffee Sci. 2014, 9, 419–426. [Google Scholar]
- De Melo Filho, J.S.; Véras, M.L.M.; Alves, L.D.S.; Da Silva, T.I.; De Melo Gonçalves, A.C.; Dias, T.J. Hydrical salinity, bovine biofertilizer and dead cover vegetal on production of Pitombeira (Talisia esculenta). Sci. Agrar. 2017, 18, 131–145. [Google Scholar]
- Tosta, M.D.S.; de Almeida, J.P.; Góes, G.B.D.; Freire, P.D.A.; Mendonça, V. Nitrogen fertilization in the production of seedlings of Talisia esculenta (A. St. Hil) Radlk. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Véras, M.L.M.; da Silva Arruda, R.; de Sousa Alves, L.; de Melo Filho, J.S.; da Silva Irineu, T.H.; Dias, T.J. Growth and dry matter of pitombeira seedlings under salinity levels and application of biofertilizer. Comun. Sci. 2017, 8, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Covre, A.M.; Canal, L.; Partelli, F.L.; Alexandre, R.S.; Ferreira, A.; Vieira, H.D. Development of clonal seedlings of promising Conilon coffee (Coffea canephora) genotypes. Aust. J. Crop Sci. 2016, 10, 385–392. [Google Scholar] [CrossRef]
- Almeida, U.O.D.; Andrade Neto, R.D.C.; Lunz, A.M.P.; Nogueira, S.R.; Costa, D.A.D.; Araújo, J.M.D. Environment and slow–release fertilizer in the production of Euterpe precatoria seedlings. Pesqui. Agropecu. Trop. 2018, 48, 382–389. [Google Scholar] [CrossRef]
- Salles, J.S.; de Lima, A.H.; Costa, E.; Binotti, E.D.; Binotti, F.F.D.S. Papaya seedling production under different shading levels and substrate compositions. Eng. Agríc. 2019, 39, 698–706. [Google Scholar] [CrossRef]
- Marana, J.P.; Miglioranza, É.; Fonseca, É.D.P. Quality of jaracatia seedling submitted to different periods of shade in nursery. Rev. Árvore 2015, 39, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.L.; Costa, E.; Salles, J.S.; Binotti, F.F.D.S.; Benett, C.G. Protected environments and substrates for Achachairu seedlings. Eng. Agríc. 2018, 38, 309–318. [Google Scholar] [CrossRef]
- Gomes Júnior, G.A.; Pereira, R.A.; Santos, D.J.D.; Sodré, G.A.; Gross, E. Substrate and quality mangosteen seedlings. Rev. Bras. Frutic. 2019, 41, e-135. [Google Scholar] [CrossRef] [Green Version]
- Mota, C.S.; Araújo, E.L.S.; Silva, F.G.; Dornelles, P.; Freiberger, M.B.; Mendes, G.C. Physiology and quality of Eugenia dysenterica DC seedlings grown in vermiculite and rice husk–based substrates. Rev. Bras. Frutic. 2018, 40, e-049. [Google Scholar] [CrossRef] [Green Version]
- Scalon, S.P.; Jeromini, T.S.; Mussury, R.M.; Dresch, D.M. Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. seedlings on substrate function and water levels. An. Acad. Bras. Ciênc. 2014, 86, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.T.D.; Hafle, O.M.; Mendonça, V.; Moreira, J.N.; Pereira, E.B.; Rolim, H.O. Responses of guava rootstocks under different sources and proportions of organic materials. Comun. Sci. 2015, 6, 17–25. [Google Scholar]
- Da Costa, G.G.S.; Costa, E.; Cardoso, E.D.; Binotti, F.F. da S.; Zuffo, A.M.; Jorge, M.H.A.; Zoz, T. Substrates to produce Jambolan (Syzygium cumini) seedlings. Aust. J. Crop Sci. 2018, 12, 1997–2003. [Google Scholar] [CrossRef]
- Berilli, S.S.; Zooca, A.A.F.; Ferraz, T.M.; de Assis, F.A.M.M.; Rodrigues, W.P.; Berilli, A.P.C.G.; Campostrini, E. Influence of tannery wastewater sludge doses on biometric and chlorophyll fluorescence parameters in Conilon coffee. Biosci. J. 2018, 34, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, M.E.P.C.; Saluci, J.C.G.; Rodrigues, R.R.; Gravina, G. deA.; de Lima, W.L. Alternative substrates in different containers for production of conilon coffee seedlings. Coffee Sci. 2018, 13, 80–89. [Google Scholar] [CrossRef]
- Mota, C.S.; Silva, F.G.; Dornelles, P.; Freiberger, M.B.; Mendes, G.C. Growth, nutrition and quality of Pouteria garderiana (A. DC.) Radlk. seedlings produced in organic substrates. Cerne 2016, 22, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.S.L.; Mesak, C.; Silva, M.L.G.; Silva, G.S.; Leandro, W.M.; Malafaia, G. Organic waste vermicomposting through the addition of rock dust inoculated with domestic sewage wastewater. J. Environ. Manag. 2017, 196, 651–658. [Google Scholar] [CrossRef]
- Campos, L.F.C.; Vendruscolo, E.P.; Campos, C.D.A.; da Costa, R.B.; dos Santos, M.M. Production of Ocimum basilicum L. (basil) cuttings on organic substrates. Rev. Cuba. Plantas Med. 2018, 23. Available online: https://www.cabdirect.org/cabdirect/abstract/20203431073 (accessed on 13 November 2021).
- Francisco, J.P.; Jose, J.V.; De Sousa Andrade, I.P.; Folegatti, M.V.; Marques, P.A.A. Quality of Basil seedlings (Ocimum basilicum L.) in a greenhouse, with different substrates and concentrations of indolbutiric acid. Rev. Agro. Amb. 2015, 8, 401–419. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.A.A.; Fontinelle, G.B.; de Lima, A.G.; José, J.V.; da Rocha, H.S.; Alves, D.S. Artemisia seedlings quality produced in greenhouse under different irrigation system and fertilizer doses. Irriga 2017, 22, 301–313. [Google Scholar] [CrossRef]
- De Aquino Arantes, C.R.; Pallaoro, D.S.; Correa, A.R.; Camili, E.C.; Barbosa Coelho, M.D.F. Shading and substrate in the production of Lactuca canadensis L. seedlings. Iheringia Ser. Bot. 2019, 74, e2019005. [Google Scholar]
- Santos, L.W.; Coelho, M.F.B. Shading and substrate on the production of seedlings of Erythrina velutina Willd. Ciência Florest. 2013, 23, 571–577. [Google Scholar]
- Gonçalves, M. daP.M.; da Silva, M.I.O.; Grugiki, M.A.; Feliciano, A.L.P.; da Silva, L.B. Alternative substrates in the production of seedlings of Harpalyce brasiliana Benth. Oecol. Aust. 2019, 23, 464–472. [Google Scholar] [CrossRef]
- Coelho, M.F.B.; Souza, R.L.C.; Albuquerque, M.C.F.; Weber, O.S.; Nogueira Borges, H.B. Quality of Heteropteris aphrodisiaca O. Mach. seedlings in different substrates. Rev. Bras. Plantas Med. 2008, 10, 82–90. [Google Scholar]
- Rodrigues, L.A.; Muniz, T.A.; Samarão, S.S.; Cyrino, A.E. Quality of Moringa oleifera Lam. seedlings cultivated in substrates with green coconut fiber and organic compounds. Rev. Ceres 2016, 63, 545–552. [Google Scholar] [CrossRef]
- Dornelles, P.; Silva, F.G.; Freiberger, M.B.; da Costa Severiano, E.; Tavares, G.G. Initial development and nutrition of Eugenia dysenterica DC. on substrates formulated with sugarcane bagasse and filter cake. Aust. J. Crop Sci. 2018, 12, 1459–1464. [Google Scholar] [CrossRef]
- Costa, E.; Santo, T.L.; Batista, T.B.; Curi, T.M. Different type of greenhouse and substrata on pepper production. Hortic. Bras. 2017, 35, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Neto, F.J.D.; Dalanhol, S.J.; Machry, M.; Pimentel, A.; Rodrigues, J.D.; Ono, E.O. Effects of plant growth regulators on eggplant seed germination and seedling growth. Aust. J. Crop Sci. 2017, 11, 1277–1282. [Google Scholar] [CrossRef]
- Vendruscolo, E.P.; Campos, L.F.C.; Nascimento, L.M.; Seleguini, A. Quality of muskmelon seedlings treated with thiamine in pre–sowing and nutritional suplementation. Sci. Agrar. 2018, 19, 164–171. [Google Scholar]
- Diánez, F.; Santos, M.; Carretero, F.; Marín, F. Trichoderma saturnisporum, a new biological control agent. J. Sci. Food Agric. 2016, 96, 1934–1944. [Google Scholar] [CrossRef]
- Song, J.X.; Meng, Q.W.; Du, W.F.; He, H.X. Effects of light quality on growth and development of cucumber seedlings in controlled environment. Int. J. Agr. Biol. Eng. 2017, 10, 312–318. [Google Scholar]
- De Almeida, R.N.; Ferraz, D.R.; Silva, A.S.; Cunha, E.G.; Vieira, J.C.; Souza, T.D.S.; Berilli, S.D.S. Use of tannery sludge in complementation to the commercial substrate in the production of pepper seedlings. Sci. Agrar. 2017, 18, 20–33. [Google Scholar]
- Zhang, R.H.; Duan, Z.-Q.; Li, Z.-G. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 2012, 22, 333–342. [Google Scholar] [CrossRef]
- Neto, M.; Lopes, J.L.; Araújo, W.F.; Oliveira Vilarinho, L.B.; de Oliveira Nunes, T.K.; da Silva, E.S.; da Silva Maia, S.; Albuquerque, J.D.A.A.D.; Alves Chagas, E.; da Silva, S.; et al. Seedlings productionof two tomato (Solanum licopersicum L.) cultivars under different environments and substrates. Acta Agron. 2018, 67, 270–276. [Google Scholar] [CrossRef]
- Herrera, F.; Castillo, J.E.; Lopez–Bellido, R.J.; Bellido, L.L. Replacement of a peat–lite medium with municipal solid waste compost for growing melon (Cucumis melo L.) transplant seedlings. Compost Sci. Util. 2009, 17, 31–39. [Google Scholar] [CrossRef]
- De Freitas, G.A.D.; Silva, R.R.D.; Barros, H.B.; Vaz-de-Melo, A.; Abrahão, W.A.P. Production of lettuce seedlings for different combinations of substrata. Rev. Cienc. Agron. 2013, 44, 159–166. [Google Scholar]
- Simões, A.C.; Alves, G.K.; Ferreira, R.L.; Araújo Neto, S.E. Seedling quality and yield of organic lettuce using different substrate conditioners: Development of clonal seedlings of promising Conilon coffee (Coffea canephora) genotypes. Hortic. Bras. 2015, 33, 521–526. [Google Scholar] [CrossRef] [Green Version]
Research Topic | 1st Factor (%) | 2nd Factor (%) | 3rd Factor (%) |
---|---|---|---|
Substrate Plant nutrition and fertilisation Lighting control | 29.07 | 11.42 | 0.69 |
25.61 | 13.84 | 2.42 | |
9.34 | 1.73 | 0.00 | |
Plant protection Irrigation and water management | 6.57 | 2.08 | 0.00 |
6.23 | 2.77 | 0.35 | |
Environment and crop growth Growth in containers Growth regulation and plant propagation Evaluation of plant quality indices | 5.88 | 0.35 | 0.00 |
5.54 | 4.50 | 0.69 | |
5.19 | 2.77 | 0.00 | |
4.15 | 1.38 | 0.00 | |
Plant selection and genetic improvement | 2.42 | 0.00 | 0.00 |
100.00 | 40.83 | 4.15 |
Parameter | Growth | Development | Quality | Survival | Vigour | Performance | Desired Value | Destructive Nature |
---|---|---|---|---|---|---|---|---|
Height | * | ** | * | No | ||||
Stem Diameter | * | * | * | No | ||||
Leaf Number | * | ** | * | * | No | |||
Leaf Area | * | ** | * | Yes | ||||
Fresh Weight | ** | Yes | ||||||
Dry Weight | * | ** | * | * | High | Yes | ||
Root Length | ** | No | ||||||
Root Volume | * | * | No | |||||
Root Dry Weight | ** | * | High | Yes | ||||
Root Density | ** | High | Yes | |||||
Root Fibrosity | * | Yes | ||||||
Specific Surface Area of the Roots (SSAR (cm2)) | * | * | No | |||||
Number of First Order Lateral Roots (FOLRs) | ** | * | * | Yes | ||||
Root Growth Potential (RGP) | *** | * | * | * | High | Yes | ||
Root Aggregation to the Substrate | ** | No | ||||||
Seedling Extraction Ease (SEE) | ** | No | ||||||
Height/Basal Diameter Ratio [H/D ratio cm mm−1] | * | ** | * | Low (≤6) | No | |||
Shoot/Root Dry Weight Ratio [S/R ratio (g g−1)] | ** | * | Low (≤2) | Yes | ||||
Dickson Quality Index (DQI) | * | ** | * | * | * | High (≥0.20) | Yes | |
Root/Shoot Ratio [R/S ratio (g g−1)] | ** | * | Low (≤10) | Yes | ||||
Height/Shoot Dry Matter Ratio [H/SDM ratio (cm g−1)] | ** | High | Yes | |||||
Shoot Dry Matter/Height Ratio [SDM/H (mg cm−1)] | ** | * | * | High | Yes | |||
Root Dry Matter/Root Length [RDW/RL ratio (g cm−1)] | ** | * | Yes | |||||
Root Quality Index (RQI) | * | ** | High | Yes | ||||
Height/Root Length Ratio [H/RL ratio (cm cm−1)] | *** | High | Yes | |||||
Leaf Area/Root Dry Matter Ratio [LA/RDM ratio (cm2 g−1)] | ** | High | Yes | |||||
Root Length/Leaf Area [RL/LA ratio (cm cm−2)] | * | *** | High | |||||
Total Non-Structural Carbohydrates (NSC) | *** | * | High | Yes | ||||
Leaf Area Ratio [LAR (cm2 g−1)] | * | ** | High | Yes | ||||
Specific Leaf Area [SLA (cm2 g−1)] | ** | High | Yes | |||||
Leaf Weight Ratio [LWR (g g−1)] | * | * | ||||||
Leaf Area Index [LAI (m2 m−2)] | ** | High | Yes | |||||
Absolute and Relative Growth | * | ** | * | High | Yes | |||
Physiological Measurements | * | *** | Yes | |||||
Vegetation Indices | ** | No | ||||||
Plant Analysis and Nutritional Status | * | * | ** | May be |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Cedillo, V.M.; Diánez, F.; Nájera, C.; Santos, M. Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis. Agronomy 2021, 11, 2305. https://doi.org/10.3390/agronomy11112305
Gallegos-Cedillo VM, Diánez F, Nájera C, Santos M. Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis. Agronomy. 2021; 11(11):2305. https://doi.org/10.3390/agronomy11112305
Chicago/Turabian StyleGallegos-Cedillo, Victor M., Fernando Diánez, Cinthia Nájera, and Mila Santos. 2021. "Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis" Agronomy 11, no. 11: 2305. https://doi.org/10.3390/agronomy11112305
APA StyleGallegos-Cedillo, V. M., Diánez, F., Nájera, C., & Santos, M. (2021). Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis. Agronomy, 11(11), 2305. https://doi.org/10.3390/agronomy11112305