Plant Disease Identification Using Shallow Convolutional Neural Network
Abstract
:1. Introduction
- •
- In this paper, we have proposed two models namely: shallow VGG with Xgboost, shallow VGG with RF to identify the diseases in plants. VGG19 is considered as the base model of the network.
- •
- The implemented network consists of only nine layers of VGG network with a global average pooling layer. It differs from the original VGG19 network with no fully connected layers in the network. This simply reduces the number of the parameter by a huge margin. We found that shallow VGG network with machine learning classifier performs well and shallow VGG with Xgboost classifier outperforms original VGG19.
- •
- Instead of using only laboratory images, we have measured the model performances with both laboratory and field conditioned images.
- •
- We have done an extensive experiment on the proposed model and find that, the proposed model has an advantages in accuracy, precision, recall, and f1-score. Finally, a comparative analysis of the implemented model, with other deep learning models, and traditional hand-crafted based approaches is carried out.
2. Related Work
3. Materials and Methods
3.1. Convolutional Neural Network
3.2. Visual Geometry Group (VGG19)
3.3. Extreme Gradient Boosting (Xgboost)
3.4. Random Forest (RF)
3.5. Proposed Approach
4. Results and Discussion
4.1. Experiment Setup
4.2. Data Acquisition
4.3. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Singh, V.; Misra, A.K. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nie, J.; Chao, X. Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 2020, 178, 105803. [Google Scholar] [CrossRef]
- Pelczar, R.M.; Shurtleff, M.C.; Kelman, A.; Pelczar, M.J. Plant Disease. Available online: https://www.britannica.com/science/plant-disease (accessed on 15 March 2021).
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Prasad, S.; Peddoju, S.K.; Ghosh, D. Multi-resolution mobile vision system for plant leaf disease diagnosis. Signal Image Video Process. 2016, 10, 379–388. [Google Scholar] [CrossRef]
- Singh, A.K.; Rubiya, A.; Raja, B. Classification of rice disease using digital image processing and svm classifier. Int. J. Electr. Electron. Eng. 2015, 7, 294–299. [Google Scholar]
- Pujari, J.D.; Yakkundimath, R.; Byadgi, A.S. Image processing based detection of fungal diseases in plants. Procedia Comput. Sci. 2015, 46, 1802–1808. [Google Scholar] [CrossRef] [Green Version]
- Hlaing, C.S.; Zaw, S.M.M. Tomato plant diseases classification using statistical texture feature and color feature. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 6–8 June 2018; pp. 439–444. [Google Scholar]
- Arivazhagan, S.; Shebiah, R.N.; Ananthi, S.; Varthini, S.V. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 2013, 15, 211–217. [Google Scholar]
- Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 2017, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Lee, S.H.; Goëau, H.; Bonnet, P.; Joly, A. New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 2020, 170, 105220. [Google Scholar] [CrossRef]
- Trong, V.H.; Gwang-hyun, Y.; Vu, D.T.; Jin-young, K. Late fusion of multimodal deep neural networks for weeds classification. Comput. Electron. Agric. 2020, 175, 105506. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J. Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 2020, 169, 105240. [Google Scholar] [CrossRef]
- Ren, F.; Liu, W.; Wu, G. Feature reuse residual networks for insect pest recognition. IEEE Access 2019, 7, 122758–122768. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Tao, M.; Ma, X.; Huang, X.; Liu, C.; Deng, R.; Liang, K.; Qi, L. Smartphone-based detection of leaf color levels in rice plants. Comput. Electron. Agric. 2020, 173, 105431. [Google Scholar] [CrossRef]
- Chung, S.; Breshears, L.E.; Yoon, J.Y. Smartphone near infrared monitoring of plant stress. Comput. Electron. Agric. 2018, 154, 93–98. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Geetharamani, G.; Pandian, A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar] [CrossRef]
- Amara, J.; Bouaziz, B.; Algergawy, A. A deep learning-based approach for banana leaf diseases classification. In Proceedings of the Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband, Stuttgart, Germany, 6–7 March 2017. [Google Scholar]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Liang, Q.; Xiang, S.; Hu, Y.; Coppola, G.; Zhang, D.; Sun, W. PD2SE-Net: Computer-assisted plant disease diagnosis and severity estimation network. Comput. Electron. Agric. 2019, 157, 518–529. [Google Scholar] [CrossRef]
- Johannes, A.; Picon, A.; Alvarez-Gila, A.; Echazarra, J.; Rodriguez-Vaamonde, S.; Navajas, A.D.; Ortiz-Barredo, A. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 2017, 138, 200–209. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agric. 2020, 175, 105527. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar] [CrossRef]
- Zeng, W.; Li, M. Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput. Electron. Agric. 2020, 172, 105341. [Google Scholar] [CrossRef]
- Corn or Maize Plant Leaf Diseases. Available online: https://www.kaggle.com/smaranjitghose/corn-or-maize-leaf-disease-dataset (accessed on 15 January 2021).
- Nachtigall, L.G.; Araujo, R.M.; Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; pp. 472–476. [Google Scholar]
- Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef] [Green Version]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Dietterich, T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [Green Version]
Layers | Kernel Size | Output Size | Parameter |
---|---|---|---|
Input | - | (256, 256, 3) | - |
3 × 3 | (256, 256, 64) | 1792 | |
3 × 3 | (256, 256, 64) | 36,928 | |
2 × 2 | (128, 128, 64) | - | |
3 × 3 | (128, 128,128) | 73,856 | |
3 × 3 | (128, 128, 128) | 147,584 | |
2 × 2 | (64, 64, 128) | - | |
3 × 3 | (64, 64, 256) | 295,168 | |
3 × 3 | (64, 64, 256) | 590,080 | |
3 × 3 | (64, 64, 256) | 590,080 | |
3 × 3 | (64, 64, 256) | 590,080 | |
2 × 2 | (32, 32, 512) | - | |
3 × 3 | (32, 32, 512) | 1,180,160 | |
3 × 3 | (32, 32, 512) | 2,359,808 | |
3 × 3 | (32, 32, 512) | 2,359,808 | |
3 × 3 | (32, 32, 512) | 2,359,808 | |
2 × 2 | (16, 16, 512) | - | |
3 × 3 | (16, 16, 512) | 2359808 | |
3 × 3 | (16, 16, 512) | 2,359,808 | |
3 × 3 | (16, 16, 512) | 2,359,808 | |
3 × 3 | (16, 16, 512) | 2,359,808 | |
2 × 2 | (8, 8, 512) | - | |
Global Average Pooling | - | (512) | - |
Layers | Kernel Size | Output Size | Parameter |
---|---|---|---|
Input | - | (256, 256, 3) | - |
3 × 3 | (256, 256, 64) | 1792 | |
3 × 3 | (256, 256, 64) | 36,928 | |
2 × 2 | (128, 128, 64) | - | |
3 × 3 | (128, 128,128) | 73,856 | |
3 × 3 | (128, 128, 128) | 147,584 | |
2 × 2 | (64, 64, 128) | - | |
3 × 3 | (64, 64, 256) | 295,168 | |
3 × 3 | (64, 64, 256) | 590,080 | |
3 × 3 | (64, 64, 256) | 590,080 | |
Global Average Pooling | - | (256) | - |
Name of the Dataset | Class | Images in Dataset | Train Images | Test Images | Field Images | Total |
---|---|---|---|---|---|---|
Corn disease data | 4 | 4188 | 3350 | 838 | 312 | 4500 |
Potato disease data | 3 | 7128 | 5702 | 1426 | 570 | 7698 |
Tomato disease data | 4 | 7399 | 5919 | 1480 | 423 | 7822 |
Dataset | Parameter | Shallow VGG-Xgboost | Shallow VGG-RF | VGG-Softmax |
---|---|---|---|---|
Corn | Precision | 0.9298 | 0.8904 | 0.8942 |
Recall | 0.9345 | 0.9102 | 0.8756 | |
F1-score | 0.9321 | 0.9002 | 0.8849 | |
Accuracy | 0.9447 | 0.9201 | 0.8961 | |
Parameter | 1,735,488 | 1,735,488 | 20,173,700 | |
Potato | Precision | 0.9875 | 0.9626 | 0.9767 |
Recall | 0.9907 | 0.9634 | 0.9771 | |
F1-score | 0.9890 | 0.9630 | 0.9769 | |
Accuracy | 0.9874 | 0.9628 | 0.9772 | |
Parameter | 1,735,488 | 1,735,488 | 20,173,700 | |
Tomato | Precision | 0.9384 | 0.8658 | 0.9291 |
Recall | 0.9388 | 0.8678 | 0.9354 | |
F1-score | 0.9385 | 0.8668 | 0.9322 | |
Accuracy | 0.9391 | 0.8675 | 0.9279 | |
Parameter | 1,735,488 | 1,735,488 | 20,173,700 |
Disease Class | Precision | Recall | Specificity |
---|---|---|---|
Blight | 89.61 | 88.46 | 96.77 |
Common rust | 100.00 | 99.39 | 100.00 |
Grey leaf spot | 82.30 | 87.73 | 96.33 |
Healthy | 100.00 | 98.21 | 100.00 |
Average | 92.98 | 93.45 | 98.27 |
Disease Class | Precision | Recall | Specificity |
---|---|---|---|
Early blight | 98.35 | 100.0 | 99.15 |
Late blight | 98.96 | 98.76 | 99.46 |
Healthy | 98.90 | 98.47 | 99.48 |
Average | 98.74 | 99.07 | 99.36 |
Disease Class | Precision | Recall | Specificity |
---|---|---|---|
Bacterial spot | 96.85 | 92.64 | 98.90 |
Early blight | 86.91 | 91.92 | 95.80 |
Late blight | 93.04 | 92.36 | 97.74 |
Healthy | 98.59 | 98.59 | 99.52 |
Average | 93.84 | 93.88 | 97.99 |
Model | Avg. Accuracy (%) | Epoch | Training Time (s) |
---|---|---|---|
VGG19 | 93.37 | 50 | 1698 s/epoch |
Shallow VGG with Xgboost | 95.70 | 10 (fold) | 223.42 |
Shallow VGG with RF | 91.68 | 10 (fold) | 8.41 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Shallow VGG with Xgboost | 0.9422 | 0.9237 | 0.9310 | 0.9273 |
Shallow VGG with RF | 0.9102 | 0.8984 | 0.9101 | 0.9042 |
VGG19 | 0.8842 | 0.8792 | 0.8823 | 0.8807 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Shallow VGG with Xgboost | 0.9736 | 0.9729 | 0.9742 | 0.9735 |
Shallow VGG with RF | 0.9474 | 0.9461 | 0.9439 | 0.9449 |
VGG19 | 0.9698 | 0.9691 | 0.9674 | 0.9682 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Shallow VGG with Xgboost | 0.9314 | 0.9275 | 0.9329 | 0.9301 |
Shallow VGG with RF | 0.8534 | 0.8464 | 0.8495 | 0.8475 |
VGG19 | 0.9007 | 0.8959 | 0.8993 | 0.8976 |
Paper | Method | Parameter | Accuracy/Precision/Recall (%) |
---|---|---|---|
J. Chen [37] | INC-VGGN | more than 138 million | test accuracy: 84.25 (corn) test accuracy: 92.00 (rice) |
Yan li [3] | Shallow CNN | 260,160 | precision: 94.00 (maize) recall: 94.00 (maize) f1-score: 94.00 (maize) |
Xception | 20,869,676 | precision: 82.00 (maize) recall: 78.00 (maize) f1-score: 75.00 (maize) | |
Inception V3 | 21,810,980 | precision: 71.00 (maize) recall: 41.00 (maize) f1-score: 32.00 (maize) | |
Zeng [38] | SACNN | - | test acc: 95.33 (AES-CD9214 dataset) |
Sethy [35] | ResNet50 with SVM | - | test acc: 97.87 (rice) |
DenseNet-201 | 20,242,984 | training acc: 84.13 (rice) | |
ResNet-50 | 23,587,712 | training acc: 70.41 (rice) | |
Proposed | ShallowVGG with Xgboost | 1,735,488 | test acc: 94.47 (corn) 98.74 (potato) 93.91 (tomato) |
Proposed | Shallow VGG with RF | 1,735,488 | test acc: 92.01 (corn) 96.28 (potato) 86.75 (tomato) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.M.; Jasinski, M.; Leonowicz, Z.; Jasinska, E.; Maji, A.K. Plant Disease Identification Using Shallow Convolutional Neural Network. Agronomy 2021, 11, 2388. https://doi.org/10.3390/agronomy11122388
Hassan SM, Jasinski M, Leonowicz Z, Jasinska E, Maji AK. Plant Disease Identification Using Shallow Convolutional Neural Network. Agronomy. 2021; 11(12):2388. https://doi.org/10.3390/agronomy11122388
Chicago/Turabian StyleHassan, Sk Mahmudul, Michal Jasinski, Zbigniew Leonowicz, Elzbieta Jasinska, and Arnab Kumar Maji. 2021. "Plant Disease Identification Using Shallow Convolutional Neural Network" Agronomy 11, no. 12: 2388. https://doi.org/10.3390/agronomy11122388
APA StyleHassan, S. M., Jasinski, M., Leonowicz, Z., Jasinska, E., & Maji, A. K. (2021). Plant Disease Identification Using Shallow Convolutional Neural Network. Agronomy, 11(12), 2388. https://doi.org/10.3390/agronomy11122388