Assessment of Spatiotemporal Variations in the Water Quality of the Han River Basin, South Korea, Using Multivariate Statistical and APCS-MLR Modeling Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Sampling Parameters and Analysis Methods
2.3. Data Treatment
2.4. Multivariate Statistical Analysis Techniques
3. Results and Discussion
3.1. Spatiotemporal Variations in the Water Quality
3.2. Correlation Analysis
3.3. Cluster Analysis
3.4. Factor Analysis and Principal Component Analysis
3.5. Analysis of the Source Contribution Using APCS-MLR
3.6. Strengths and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pejman, A.H.; Nabi Bidhendi, G.R.; Karbassi, A.R.; Mehrdadi, N.; Esmaeili Bidhendi, M. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of Gomti River (India). Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Tavera, E.; Rodriguez-Espinosa, P.F.; Shruti, V.C.; Sujitha, S.B.; Morales-Garcia, S.S.; Munoz-Sevilla, N.P. Monitoring the seasonal dynamics of physicochemical parameters from Atoyac River basin (Puebla), Central Mexico: Multivariate approach. Environ. Earth Sci. 2017, 76, 95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Z.; Zeng, G.; Li, J.; Fang, Y.; Yuan, Q.; Wang, Y.; Ye, F. Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: A case study of Xiangjiang watershed, China. Environ. Monit. Assess. 2009, 152, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Anteneh, Y.; Zeleke, G.; Gebremariam, E. Assessment of surface water quality in Legedadie and Dire catchments, Central Ethiopia, using multivariate statistical analysis. Acta Ecol. Sin. 2018, 38, 81–95. [Google Scholar] [CrossRef]
- Najafpour, S.; Alkarkhi, A.F.M.; Kadir, M.O.A.; Najafpour, G.D. Evaluation of spatial and temporal variation in river water quality. Int. J. Environ. Res. 2008, 2, 349–358. [Google Scholar]
- Khadka, R.B.; Khanal, A.B. Environmental management plan (EMP) for Melamchi water supply project, Napal. Environ. Monit. Assess. 2008, 146, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z. Seasonal change in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Mouri, G.; Takizawa, S.; Oki, T. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact. J. Environ. Manag. 2011, 92, 1837–1848. [Google Scholar] [CrossRef]
- Varol, M.; Gokot, B.; Bekleyen, A.; Sen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Sargaonkar, A.; Deshpande, V. Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ. Monit. Assess. 2003, 89, 43–67. [Google Scholar] [CrossRef]
- Strobl, R.O.; Robillard, P.D. Network design for water quality monitoring of surface freshwaters: A review. J. Environ. Manag. 2008, 87, 639–648. [Google Scholar] [CrossRef]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Cordoba city (Argentina) on Suquia River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Bordalo, A.A.; Nilsumranchit, W.; Chalermwat, K. Water quality and uses of the Bangpakong River (Eastern Thailand). Water Res. 2001, 35, 3635–3642. [Google Scholar] [CrossRef]
- Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, M.H. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques. Appl. Water Sci. 2017, 7, 2767–2777. [Google Scholar] [CrossRef] [Green Version]
- Karim, B.; Taha, F.M. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. 2003, B100, 179–195. [Google Scholar]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd, S.K.; Aldosari, A.A.; Khalil, M.M.N.; Abdel, M.K. On the use of multivariate analysis and land evaluation for potential agricultural development of the northwestern Coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Tadano, S.; Chiyapo, G.; Ishimoto, Y.; Konaka, T.; Mazereku, C.; Tsujimoto, H.; Akashi, K. Multivariate analysis of seed chemical diversity among Jatropha curcas in Botswana. Agronomy 2021, 11, 1570. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Ioele, G.; De Luca, M.; Grande, F.; Durante, G.; Trozzo, R.; Crupi, C.; Ragno, G. Assessment of Surface Water Quality Using Multivariate Analysis: Case Study of the Crati River, Italy. Water 2020, 12, 2214. [Google Scholar] [CrossRef]
- Alberto, W.D.; Pilar, D.M.D.; Valeria, A.M.; Fabiana, P.S.; Cecilia, H.A.; Angeles, B.M.D.L. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (Cordoba-Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Panda, U.C.; Nayak, B.B.; Bhatta, D. Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of the Mahanadi river-estuarine system (India)—A case study. Environ. Geochem. Health 2006, 28, 317–330. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River Basin, Japan. Environ. Model. Soft. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Kanel, S.R.; Khan, S.P. Chemometric application and assessment of monitoring locations of an urban river system. Anal. Chim. Acta 2007, 582, 390–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2009, 152, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.A.; Lee, J.K.; Zoh, K.D. Evaluation of the Geum River by multivariate analysis: Principle component analysis and factor analysis. J. Korean Soc. Water Environ. 2007, 23, 161–168. [Google Scholar]
- Park, S.M.; Kazama, F.; Lee, S.H. Assessment of water quality using multivariate statistical techniques: A case study of the Nakdong River Basin, Korea. Environ. Eng. Res. 2014, 19, 197–203. [Google Scholar] [CrossRef]
- Jung, K.Y.; Lee, K.L.; Im, T.H.; Lee, I.J.; Kim, S.; Han, K.Y.; Ahn, J.M. Evaluation of water quality for the Nakdong River watershed using multivariate analysis. Environ. Technol. Innov. 2016, 5, 67–82. [Google Scholar] [CrossRef]
- Lee, K.H.; Kang, T.W.; Ryu, H.S.; Hwang, S.H.; Kim, K. Analysis of spatiotemporal variation in river water quality using clustering techniques: A case study in the Yeongsan River, Republic of Korea. Environ. Sci. Pollut. Res. 2020, 27, 29327–29340. [Google Scholar] [CrossRef]
- Chang, H.J. Spatial Analysis of Water Quality Trends in the Han River Basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef] [PubMed]
- Park, T.J.; Lee, S.H.; Lee, M.S.; Lee, J.K.; Lee, S.H.; Zoh, K.D. Occurrence of Microplastics in the Han River and Riverine Fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.C.; Choi, H.M.; Ryu, I.G.; Kim, S.H.; Shin, D.S.; Yu, S.J. Assessment of water quality in the lower reaches Namhan River by using statistical analysis and water quality index (WQI). J. Korean Soc. Water Environ. 2021, 37, 114–127. [Google Scholar]
- Collins, A. The Global Risks Report 2019; World Economic Forum: Geneva, Switzerland, 2018; Volume 6. [Google Scholar]
- Rifkin, J. The Global Green New Deal. Why the Fossil Fuel Civilization Will Collapse by 2028, and the Bold Economic Plan to Save Life on Earth; St. Martin’s Press: New York, NY, USA, 2019. [Google Scholar]
- Chang, H.J. Spatial and Temporal Variations of water Quality in the Han River and Its Tributaries, Seoul, Korea, 1993–2002. Water Air Soil Pollut. 2005, 161, 267–284. [Google Scholar] [CrossRef]
- Thom, T.L.; Li, L.; Kyung, S.J. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar]
- Park, S.R.; Hwang, S.J.; An, K.J.; Lee, S.W. Identifying Key Watershed Characteristics That Affect the Biological Integrity of Streams in the Han River Watershed, Korea. Sustainability 2021, 13, 3359. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). National Water Environment Management Plan for Han River Basin; Han River Basin Environmental Office: Yangpyeong-Gun, Korea, 2015. [Google Scholar]
- Lee, K.S.; Ryu, J.K.; Ahn, S.J. Change of regime coefficient due to dredging and dam construction. J. Korean Environ. Dredg. Soc. 2014, 4, 30–38. [Google Scholar]
- Ji, U.; Jang, E.K.; Yeo, W.K. Channel-forming discharge evaluation for rivers with high coefficients of river regime. J. Korean Soc. Civ. Eng. 2011, 31, 361–367. [Google Scholar]
- Kim, K.S.; Na, Y.M. The present state and improvement of water quality of Han River. J. Korean Soc. Environ. Eng. 2011, 29, 1169–1178. [Google Scholar]
- Ministry of Environment (MOE). Standard Methods of Water Sampling and Analysis; Ministry of Environment: Incheon, Korea, 2011.
- Kumar, M.; Ramanathan, A.; Rao, M.S.; Kumar, B. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ. Geol. 2006, 50, 1025–1039. [Google Scholar] [CrossRef]
- Liu, C.W.; Linn, K.H.; Kuon, Y.M. Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Yu, H.; Cheng, S. Water quality assessment and pollution source apportionment using multi-statistic and APCS-MLR modeling techniques in Min River Basin, China. Environ. Sci. Pollut. Res. 2020, 27, 41987–42000. [Google Scholar] [CrossRef]
- Varekar, V.; Karmakar, S.; Jha, R. Seasonal rationalization of river water quality sampling locations: A comparative study of the modified Sander and multivariate statistical approaches. Environ. Sci. Pollut. Res. 2016, 23, 2308–2328. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2019, 27, 9000–9011. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Kong, M.; Zhou, J.; Zhao, H.; Tang, Z.; Wang, Z. Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistics analysis models. Chemosphere 2019, 242, 125272. [Google Scholar]
- Dyer, S.D.; Peng, C.; McAvoy, D.C.; Fendinger, N.J.; Masscheleyn, P.; Castillo, L.V.; Lim, J.M.U. The influence of untreated wastewater to aquatic communities in the Balatuin River, The Philippines. Chemosphere 2003, 52, 43–53. [Google Scholar] [CrossRef]
- Me Metcalf, L.; Eddy, H.P. Wastewater Engineering, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Kim, Y.Y.; Lee, S.J. Evaluation of water quality for the Han River tributaries using multivariate analysis. J. Korean Soc. Environ. Eng. 2011, 33, 501–510. [Google Scholar] [CrossRef]
- Choi, O.Y.; Kim, K.H.; Han, I.S. A study on the spatial strength and cluster analysis at the unit watershed for the management of total maximum daily loads. J. Korean Soc. Water Environ. 2015, 31, 700–714. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, Q.; Ye, L.; Qu, X. Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques; A case study of the Xiangxi River Basin, China. Quat. Int. 2012, 282, 137–144. [Google Scholar] [CrossRef]
- Sponza, D.T. Application of toxicity tests into discharge of the pulp-paper industry in Turkey. Ecotoxicol. Environ. Saf. 2003, 54, 74–86. [Google Scholar] [CrossRef]
- Emmanuel, E.; Keck, G.; Blanchard, J.M.; Vermande, P.; Perrodin, Y. Toxicological effects of disinfection using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ. Int. 2004, 30, 891–900. [Google Scholar] [CrossRef]
- Seiss, M.; Gahr, A.; Niessner, R. Improved Aox degradation in UV oxidative waste water treatment by dialysis with nanofiltration mem membrane. Water Res. 2001, 35, 3242–3248. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yoon, C.G.; Ham, J.H. Analysis of relationships among the pollutant concentrations in non-urban area. Korean J. Ecol. Environ. 2001, 34, 215–222. [Google Scholar]
- Wan, B.; Cai, S.; Li, H.; Yang, G.; Li, Z.; Nie, X. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River watershed, China. J. Environ. Manag. 2014, 133, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.; Antoine, L.; Bernard, L. Principal component analysis an appropriate tool for water quality evaluation and management application to a tropical lake system. Ecol. Model. 2004, 178, 295–311. [Google Scholar]
- Zhou, F.; Guo, H.; Liu, L. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ. Geol. 2007, 53, 295–305. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Lv, J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 244, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, L.; Zhang, H. Spatio-temporal variations and source apportionment of water pollution in Danjiangkou Reservoir Basin, Central China. Water 2015, 7, 2591–2611. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Mei, K.; Liu, X.; Wu, L.; Zhang, M.; Xu, J.; Wang, F. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environ. Sci. Pollut. Res. 2013, 20, 5341–5352. [Google Scholar] [CrossRef] [PubMed]
Classification | MPR a | LPR b | HPR c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VF1 d | VF2 | VF3 | VF4 | VF1 | VF2 | VF3 | VF4 | VF1 | VF2 | VF3 | |
WT | 0.517 | −0.639 e | 0.239 | 0.008 | 0.025 | −0.300 | 0.179 | 0.885 | 0.159 | −0.945 | 0.046 |
pH | 0.114 | −0.129 | −0.019 | 0.915 | 0.237 | 0.021 | −0.688 | −0.225 | −0.026 | −0.396 | −0.652 |
EC | 0.506 | 0.642 | 0.117 | 0.182 | 0.106 | 0.799 | 0.037 | 0.080 | 0.410 | −0.043 | 0.785 |
DO | −0.280 | 0.604 | −0.215 | 0.235 | 0.164 | 0.220 | −0.287 | −0.826 | −0.193 | 0.889 | −0.203 |
BOD | 0.846 | 0.199 | 0.067 | 0.083 | 0.863 | 0.193 | 0.220 | −0.036 | 0.817 | 0.146 | 0.074 |
COD | 0.872 | 0.184 | 0.218 | −0.143 | 0.793 | 0.477 | 0.139 | 0.217 | 0.887 | 0.063 | 0.310 |
TOC | 0.752 | 0.028 | 0.294 | 0.015 | 0.662 | 0.386 | 0.337 | 0.082 | 0.792 | 0.031 | 0.487 |
TSS | 0.449 | −0.146 | 0.288 | −0.399 | 0.260 | 0.304 | −0.156 | 0.677 | 0.717 | −0.064 | −0.206 |
TN | 0.184 | 0.891 | 0.207 | −0.087 | 0.393 | 0.832 | 0.181 | −0.216 | 0.235 | 0.903 | 0.234 |
NH3-N | 0.161 | 0.741 | 0.112 | −0.192 | 0.526 | 0.614 | 0.345 | −0.255 | 0.287 | 0.798 | 0.112 |
NO3-N | 0.130 | 0.850 | 0.191 | −0.054 | 0.162 | 0.879 | 0.014 | −0.183 | −0.097 | 0.744 | 0.256 |
TP | 0.308 | 0.103 | 0.884 | −0.100 | 0.512 | 0.223 | 0.755 | 0.087 | 0.729 | 0.028 | 0.335 |
PO4-P | 0.040 | 0.149 | 0.930 | −0.011 | 0.337 | 0.135 | 0.826 | 0.004 | 0.549 | −0.096 | 0.314 |
Chl-a | 0.835 | −0.007 | −0.052 | 0.043 | 0.894 | 0.064 | −0.151 | −0.029 | 0.632 | −0.505 | −0.093 |
Eigenvalue | 3.728 | 3.395 | 2.078 | 1.171 | 3.608 | 3.197 | 2.222 | 2.189 | 4.205 | 4.160 | 1.817 |
% Total variance | 26.629 | 24.252 | 14.846 | 8.364 | 25.771 | 22.837 | 15.872 | 15.636 | 30.038 | 29.714 | 12.979 |
Cumulative % | 26.629 | 50.880 | 65.727 | 74.091 | 25.771 | 48.608 | 64.480 | 80.117 | 30.038 | 59.752 | 72.731 |
Region | Dependent Variable | Regression Equations | R2 | p-Value |
---|---|---|---|---|
MPR | VF1 | Y = −2.050 + 0.162COD + 0.030Chl-a + 0.365TOC + 0.317BOD + 0.005TSS | 0.927 | <0.001 |
VF2 | Y = −2.133 + 0.199TN − 0.034WT + 0.02EC + 0.092DO + 0.544NH3-N + 0.282NO3-N | 0.992 | <0.001 | |
VF4 | Y = −19.923 + 2.465pH | 0.837 | <0.001 | |
LPR | VF1 | Y = −1.770 + 0.037Chl-a + 0.372BOD + 1.333TOC | 0.916 | <0.001 |
VF2 | Y = −2.395 + 0.828NO3-N + 0.003EC − 0.146TN + 0.154NH3-N | 0.918 | <0.001 | |
VF3 | Y = 11.823 + 15.662PO4-P − 1.561pH − 3.239 | 0.910 | <0.001 | |
VF4 | Y = 0.844 + 0.040WT + 0.045TSS − 0.185DO | 0.967 | <0.001 | |
HPR | VF1 | Y = −2.594 + 0.089COD + 0.007TSS + 0.014Chl-a + 2.389TP + 0.354BOD + 6.072PO4-P | 0.904 | <0.001 |
VF2 | Y = −2.220 − 0.028WT + 0.202TN + 0.126DO + 0.369NH3-N + 0.210NO3-N | 0.987 | <0.001 | |
VF3 | Y = 11.745 + 0.001EC − 1.576pH | 0.770 | <0.001 |
Classification | MPR | R2 | LPR | R2 | HPR | R2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VF1 | VF2 | VF3 | VF4 | UIS | VF1 | VF2 | VF3 | VF4 | UIS | VF1 | VF2 | VF3 | UIS | ||||
WT | 29.0 | 31.0 | 26.1 | - | 13.9 | 0.73 | - | 23.8 | 25.5 | 36.2 | 14.5 | 0.90 | 33.8 | 51.0 | - | 15.2 | 0.92 |
pH | 30.2 | 30.2 | - | 31.5 | 8.1 | 0.87 | 31.0 | - | 30.3 | 30.8 | 7.9 | 0.58 | - | 46.6 | 45.6 | 7.8 | 0.57 |
EC | 19.8 | 27.4 | 8.0 | 28.7 | 16.1 | 0.71 | 26.9 | 36.8 | - | 26.8 | 9.5 | 0.65 | 35.0 | - | 48.9 | 16.1 | 0.78 |
DO | 21.4 | 23.2 | 21.9 | 22.0 | 11.4 | 0.53 | 23.5 | 23.6 | 22.9 | 19.7 | 10.4 | 0.84 | 28.1 | 32.9 | 28.2 | 10.8 | 0.88 |
BOD | 32.0 | 22.6 | 22.1 | 22.1 | 1.2 | 0.77 | 40.2 | 28.9 | 29.1 | - | 1.9 | 0.83 | 55.9 | 42.2 | - | 1.9 | 0.68 |
COD | 37.4 | 29.6 | - | 29.4 | 3.6 | 0.86 | 26.0 | 23.8 | 22.6 | 22.8 | 4.8 | 0.92 | 51.3 | - | 41.9 | 6.8 | 0.88 |
TOC | 52.3 | - | 45.5 | - | 2.2 | 0.65 | 26.0 | 24.1 | 23.9 | 23.2 | 2.7 | 0.70 | 51.5 | - | 45.3 | 3.2 | 0.86 |
TSS | 27.2 | 19.3 | 22.3 | 25.4 | 5.9 | 0.46 | 20.7 | 21.1 | 19.0 | 27.7 | 11.4 | 0.64 | 49.6 | - | 39.8 | 10.6 | 0.55 |
TN | 22.4 | 30.3 | 22.5 | 22.1 | 2.7 | 0.88 | 23.6 | 28.8 | 22.4 | 21.6 | 3.7 | 0.93 | 30.8 | 36.7 | 29.3 | 3.3 | 0.92 |
NH3-N | 19.5 | 43.7 | 17.5 | 19.2 | 0.2 | 0.62 | 27.2 | 29.6 | 23.5 | 19.2 | 0.5 | 0.84 | 37.3 | 62.3 | - | 0.4 | 0.72 |
NO3-N | 22.8 | 29.4 | 23.0 | 22.7 | 2.0 | 0.78 | 29.9 | 38.3 | - | 29.3 | 2.5 | 0.83 | - | 52.0 | 45.8 | 2.2 | 0.61 |
TP | 23.4 | 21.6 | 33.4 | 21.6 | 0.04 | 0.90 | 25.6 | 22.3 | 30.5 | 21.6 | 0.1 | 0.89 | 54.6 | - | 45.3 | 0.1 | 0.64 |
PO4-P | 30.6 | 31.1 | 38.2 | - | 0.01 | 0.89 | 28.6 | 25.9 | 45.4 | - | 0.05 | 0.81 | 52.2 | - | 47.8 | 0.04 | 0.39 |
Chl-a | 46.3 | - | 22.8 | 22.7 | 8.2 | 0.70 | 36.9 | 22.4 | 21.9 | - | 18.7 | 0.83 | 43.6 | 39.6 | - | 16.8 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-C.; Choi, H.; Yu, S.-J.; Kim, S.-H.; Im, J.-K. Assessment of Spatiotemporal Variations in the Water Quality of the Han River Basin, South Korea, Using Multivariate Statistical and APCS-MLR Modeling Techniques. Agronomy 2021, 11, 2469. https://doi.org/10.3390/agronomy11122469
Cho Y-C, Choi H, Yu S-J, Kim S-H, Im J-K. Assessment of Spatiotemporal Variations in the Water Quality of the Han River Basin, South Korea, Using Multivariate Statistical and APCS-MLR Modeling Techniques. Agronomy. 2021; 11(12):2469. https://doi.org/10.3390/agronomy11122469
Chicago/Turabian StyleCho, Yong-Chul, Hyeonmi Choi, Soon-Ju Yu, Sang-Hun Kim, and Jong-Kwon Im. 2021. "Assessment of Spatiotemporal Variations in the Water Quality of the Han River Basin, South Korea, Using Multivariate Statistical and APCS-MLR Modeling Techniques" Agronomy 11, no. 12: 2469. https://doi.org/10.3390/agronomy11122469
APA StyleCho, Y. -C., Choi, H., Yu, S. -J., Kim, S. -H., & Im, J. -K. (2021). Assessment of Spatiotemporal Variations in the Water Quality of the Han River Basin, South Korea, Using Multivariate Statistical and APCS-MLR Modeling Techniques. Agronomy, 11(12), 2469. https://doi.org/10.3390/agronomy11122469