Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health?
Abstract
:1. Introduction
2. Effect of Agronomic Practices on Crop Yield, Health and Nutritional Quality
2.1. Crop Rotation Design
2.2. Fertilization Regimes
2.2.1. Replacing Mineral N-Fertilizer with Organic Fertilizer Inputs
2.2.2. Replacing Superphosphate with Organic Fertilizer Inputs
2.2.3. Rhizobium and Mycorrhizal Fungal Inocula
2.3. Crop Protection
- Use of diverse crop rotation (see Section 2.1 above);
- Non-use of water-soluble mineral N and P-fertilizers (see Section 2.2 above);
- Use of organic fertilizers and soil amendments to increase soil suppressiveness (see Section 2.3.1 below);
- Use of environmental enrichment measures to increase populations of natural enemies of invertebrate pests on farms (see Section 2.3.2);
- Use of elicitors for crop resistance where necessary (see Section 2.3.3 below);
- Use of biological control products for pest and disease control where necessary (see Section 2.3.4 below);
- Use of barrier, mating disruption, and mass-trapping methods for pest control where necessary (see Section 2.3.5 below);
- Use of thermal weed control or soil disinfection; these practices are increasingly restricted and should only be used as a last resort (see Section 2.3.6 below);
- Use of pesticide products that are permitted in organic farming; these products should only be used as a last resort (see Section 2.3.6 below);
- Non-use of all synthetic chemical pesticides (see Section 2.3.7 below).
2.3.1. Soil/Substrate Suppressiveness against Pests and Diseases
2.3.2. Environmental Enrichment Practices
2.3.3. Elicitors of Crop Resistance
- Chitin (a long-chain polymer of N-acetylglucosamine, which is a primary component of fungal cell walls and the exoskeleton of insects and crustaceans) is mainly produced from the shells of shrimps and other crustaceans;
- Chitosan (a linear polysaccharide composed of randomly distributed β-(1→4)-linked D-glucosamine and N-acetyl-D-glucosamine) is produced by treating the chitin shells of shrimp and other crustaceans with an alkaline substance, such as sodium hydroxide;
- Giant knotweed (Reynoutria sachalinensis Schmidt ex Maxim.) extracts (tradename: Milsana®).
2.3.4. Biological Control Products
2.3.5. Barrier, Mating Disruption, and Mass-Trapping Methods for Pest Control
2.3.6. Thermal Crop Protection Methods and Pesticide Products Used in Organic Farming
2.3.7. Synthetic Chemical Pesticides That Are Prohibited in Organic Farming
- “Impairment of the innate physiological defenses by interruption of the shikimic acid pathway”;
- “Interference with rhizosphere microbial ecology (in particular, GBHs have the potential to enhance the population and/or virulence of some phytopathogenic microbial species in the crop rhizosphere)”;
- “As yet incompletely elucidated reduction in the uptake and utilization of nutrient metals by crops”.
2.4. Crop Breeding and Selection
2.4.1. Wheat
2.4.2. Grapes
2.4.3. Butternut Squash
2.5. Confounding Effects of Pedoclimatic Background Conditions
3. Effects of Organic Crop Consumption on Health Markers and Disease Incidence
- Lower concentrations of pesticides and cadmium;
- Higher concentrations of mineral micronutrients;
3.1. Evidence from Animal Dietary Intervention Studies
3.2. Evidence from Human Dietary Intervention and Cohort Studies
3.3. Evidence for Interactions between Diet and Food Type (Organic vs. Conventional)
3.3.1. Nutrition and Health
- Whole-grain consumption (resulting in a higher dietary intake of pesticides and Fusarium mycotoxins from cereal products);
- Fruit and vegetable consumption (resulting in an increased dietary intake of pesticides, in particular insecticides and organophosphates).
3.3.2. Food Security
4. Conclusions
4.1. Organic Crop Production Practices Increase the Nutritional Quality of Food Crops
4.2. Agricultural Intensification Practices have Reduced Food Quality and Safety
- Monoculture and short rotations increase crop species-specific weed, pest and disease pressure and may lead to (a) greater dependence on synthetic chemical pesticides, (b) higher pesticide residues being present in crops, and (c) a greater risk of Fusarium infection and mycotoxin contamination of cereal grains;
- Mineral phosphorus fertilizer can (a) reduce mycorrhizal development on roots and thereby negatively affect mineral micronutrient uptake and resistance against soil-borne diseases, and (b) increase cadmium concentrations in crops;
- Mineral nitrogen fertilizer is associated with (a) a reduction in crop resistance, (b) lower concentrations of nutritionally desirable phenolics and other resistance-related phytochemicals/antioxidants in crops, and (c) increases the risk of Fusarium infection and mycotoxin contamination in cereal grains;
- Synthetic chemical pesticides in agriculture are responsible for chronic dietary pesticide exposure and may reduce concentrations of certain nutritionally desirable phytochemicals/antioxidants and mineral micronutrients in crops;
- Modern short-straw cereal varieties, (a) are less competitive against weeds and more susceptible to certain diseases (e.g., Fusarium, Septoria), (b) have lower grain protein and mineral micronutrient concentrations, and (c) increase the risk of Fusarium mycotoxin contamination in cereal grain.
- Reduce concentrations of nutritionally desirable omega-3 fatty acids in milk and meat, and conjugated linoleic acid (CLA), carotenoids and vitamin E in milk;
4.3. Health Benefits Linked to Organic Food Consumption Need to Be Confirmed in Clinical Trials
4.4. Support Required to Increase the Availability and Affordability of Organic Foods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willer, H.; Schlatter, B.; Trávníček, J.; Kemper, L.; Julia Lernoud, J. The World of Organic Agriculture 2020; FiBL/IFOAM: Frick, Switzerland, 2020; Available online: www.fibl.org/fileadmin/documents/shop/5011-organic-world-2020.pdf (accessed on 23 February 2021).
- Joshi, Y.; Rahman, Z. Factors Affecting Green Purchase Behaviour and Future Research Directions. Int. Strateg. Manag. Rev. 2015, 3, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Stolz, H.; Stolze, M.; Hamm, U.; Janssen, M.; Ruto, E. Consumer attitudes towards organic versus conventional food with specific quality attributes. NJAS-Wagen. J. Life Sci. 2011, 58, 67–72. [Google Scholar] [CrossRef] [Green Version]
- European Union. Commission Implementation Regulation (EU) 2016/673 of 29 April 2016 Amending Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. 2016. Available online: https://eur-lex.europa.eu/eli/reg_impl/2016/673/oj (accessed on 23 February 2021).
- Baker, B.P.; Benbrook, C.M.; Groth, E.; Benbrook, K. Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: Insights from three US data sets. Food Addit. Contam. 2002, 19, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.L. The Organic Farming Manual: A Comprehensive Guide to Starting and Running a Certified Organic Farm; Storey Publishing: North Adams, MA, USA, 2010. [Google Scholar]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crop. Res. 2007, 102, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Speiser, B.; Tamm, L.; Amsler, T.; Lambion, J.; Bertrand, C.; Hermansen, A.; Ruissen, M.A.; Haaland, P.; Zarb, J.; Santos, J.; et al. Field tests of blight control methods for organic farming: Tolerant varieties and copper fungicides. Biol. Agric. Hortic. 2006, 23, 393–412. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323. [Google Scholar] [CrossRef] [Green Version]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wagen. J. Life Sci. 2010, 58, 193–205. [Google Scholar] [CrossRef]
- Crespo-Herrera, L.A.; Ortiz, R. Plant breeding for organic agriculture: Something new? Agric. Food Secur. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Seal, C.; Rosa, E.A.S.; Iversen, P.O.; Vigar, V.; Barkla, B.; et al. Effects of Production Region, Production Systems and Grape Type/Variety on Nutritional Quality Parameters of Table Grapes; Results from a UK Retail Survey. Foods 2020, 16, 1874. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Almuayrifi, M.S.B.; Barański, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crop. Res. 2020, 254, 107822. Available online: https://authors.elsevier.com/sd/article/S0378429019315990 (accessed on 4 November 2021). [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields in organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Wilbois, K.-P.; Schmidt, J.E. Reframing the Debate Surrounding the Yield Gap between Organic and Conventional Farming. Agronomy 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Schram, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Pakos, P.; Seal, C.; Rosa, E.A.S.; Markellou, E.; Iversen, P.O.; et al. Effect of organic and conventional Production Methods on Fruit Yield and Nutritional Quality Parameters in Table Grapes and Wine made from three traditional Cretan Grape Varieties; Results from a Farm Survey. Foods 2021, 10, 476. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Baranski, M.; Eyre, M.; Shotton, P.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Tétard-Jones, C.; Edwards, M.G.; Rempelos, L.; Gatehouse, A.M.R.; Eyre, M.; Wilcockson, S.J.; Leifert, C. Effects of previous crop management, fertilization regime and water supply on potato tuber proteome and yield. Agronomy 2013, 3, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Roser, M.; Ritchie, H. Our World in Data—Fertilizers. Available online: https://ourworldindata.org/fertilizers (accessed on 23 February 2021).
- FAO. Statistics on Pesticide Use in Agriculture. Available online: http://www.fao.org/economic/ess/environment/data/pesticides-use/en/ (accessed on 23 February 2021).
- Leifert, C.; Rembiałkowska, E.; Nielson, J.H.; Cooper, J.M.; Butler, G.; Lueck, L. Effects of organic and ‘low input’ production methods on food quality and safety. In Improving Sustainability in Organic and Low Input Food Production Systems; Niggli, U., Leifert, C., Alföldi, T., Lueck, L., Willer, H., Eds.; FiBL: Frick, Switzerland, 2007; pp. 15–96. [Google Scholar]
- Blake, F. Organic Farming and Growing; The Crowood Press: Marlborough, UK, 2005. [Google Scholar]
- Nandwani, D. Organic Farming for Sustainable Agriculture; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Haghighi, R.S.; Critchley, N.; Leifert, C.; Eyre, M.; Cooper, J. Individual and interactive effects of crop type and management on weed and seed bank composition in an organic rotation. Int. J. Plant Prod. 2013, 7, 243–268. [Google Scholar]
- Eyre, M.D.; Critchley, C.N.R.; Leifert, C.; Wilcockson, S.J. Crop sequence, crop protection and fertility management effects on weed cover in an organic/conventional farm management trial. Eur. J. Agron. 2011, 59, 4715–4724. [Google Scholar] [CrossRef]
- Hill, O. How grazing livestock can beat blackgrass. Farmers Wkly. 2015. Available online: www.fwi.co.uk/arable/grazing-livestock-can-beat-blackgrass (accessed on 24 February 2021).
- Råberg, T.; Carlsson, G.; Jensen, E.S. Nitrogen balance in a stockless organic cropping system with different strategies for internal N cycling via residual biomass. Nutr. Cycl. 2018, 112, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [Green Version]
- Sandra Wayman, S.; Kissing Kucek, L.; Mirsky, S.B.; Ackroyd, V.; Cordeau, S.; Ryan, M.R. Organic and conventional farmers differ in their perspectives on cover crop use and breeding. Renew. Agric. Food Syst. 2016, 32, 376–385. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Keiser, A.; Haeberli, M.; Stamp, P. Quality deficiencies on potato (Solanum tuberosum L.) tubers caused by Rhizoctonia solani, wireworms (Agriotes ssp.) and slugs (Deroceras reticulatum, Arion hortensis) in different farming systems. Field Crop. Res. 2012, 128, 147–155. [Google Scholar] [CrossRef]
- Benaragama, D.; Leeson, J.L.; Shirtliffe, S.J. Understanding the long term weed community dynamics in organic and conventional crop rotations using the principal response curve method. Weed Sci. 2018, 67, 195–204. [Google Scholar] [CrossRef]
- Robson, M.C.; Fowler, S.M.; Lampkin, N.H.; Leifert, C.; Leitch, M.; Robinson, D.; Watson, C.A.; Litterick, A.M. The agronomic and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv. Agron. 2002, 77, 370–427. [Google Scholar]
- Paulsen, H.M.; Weißmann, F. Relevance of mycotoxins to product quality and animal health in organic farming. In Proceedings of the 14th IFOAM Organic World Congress, Victoria, Canada, 21–24 August 2002; Available online: https://orgprints.org/2023/1/2023-paulsen-weissmann-2002-14th-ifoam-ca-p212.pdf (accessed on 24 February 2021).
- Bernhoft, A.; Clasen, P.-E.; Kristoffersen, A.B.; Torp, M. Less Fusarium infestation and mycotoxin contamination in organic than in conventional cereals. Food Addit. Contam. 2010, 27, 842–852. [Google Scholar] [CrossRef]
- Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Iversen, P.O.; Bernhoft, A.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs. T. spelta), farming system (organic vs. conventional) and flour type (wholegrain vs. white) on composition of wheat flour; results of a retail survey in the UK and Germany—1. mycotoxin content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef]
- Wang, J. Effect of Organic and Conventional Agronomic Practices and Variety Choice on Nutritional Quality, the Contents of Undesirable Compounds and Yield of Cereals. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2019. [Google Scholar]
- Thavarajah, D.; Siva, N.; Johnson, N.; McGee, R.; Thavarajah, P. Effect of cover crops on the yield and nutrient concentration of organic kale (Brassica oleracea L. var. acephala). Sci. Rep. 2019, 9, 10374. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Cordell, D.; Jackson, M.; White, S. Phosphorus flows through the Australian food system: Identifying intervention points as a roadmap to phosphorus security. Environ. Sci. Policy 2013, 29, 87–102. [Google Scholar] [CrossRef]
- Farm Carbon Toolkit. Fertiliser Production. 2021. Available online: www.farmcarbontoolkit.org.uk/toolkit/fertiliser-production (accessed on 25 February 2021).
- Niggli, U. History and concepts of food quality and safety in organic food production and processing. In Handbook of Organic Food Safety and Quality; Cooper, J., Niggli, U., Leifert, C., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2007; pp. 9–24. [Google Scholar]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 119–128. [Google Scholar] [CrossRef]
- Gerlach, F.; Grieb, B.; Zerger, U. Sustainable Biogas Production; A Handbook for Organic Farmers; FiBL Projecte GmbH: Frankfurt, Germany, 2013; Available online: https://aa.ecn.cz/img_upload/8d8825f1d3b154e160e6e5c97cf9b8b3/sustaingas_handbook_en.pdf (accessed on 4 December 2021).
- Magistrali, A.; Vavera, R.; Janovska, D.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Butler, G.; Wilkinson, A.; Bilsborrow, P. Evaluating the effect of agronomic management practices on the performance of differing spelt (Triticum spelta) cultivars in contrasting environments. Field Crop. Res. 2020, 255, 107869. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defence responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Sander, J.F.; Heitefuss, R. Susceptibility to Erysiphe graminis f. sp. tritici and phenolic acid content of wheat as influenced by different levels of nitrogen fertilization. J. Phytopathol. 1988, 146, 495–507. [Google Scholar] [CrossRef]
- Leser, C.; Treutter, D. Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol. Plant. 2004, 123, 49–56. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, J.; Li, Y.; Luo, G.; Li, L.; Yuan, H.; Mur, L.A.J.; Guo, S. Negative effects of the simulated nitrogen deposition plant phenolic metabolism: A meta-analysis. Sci. Total Environ. 2020, 719, 137442. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. CRC Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Baranski, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, H.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analysis. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Final Report Summary—QUALITYLOWINPUTFOOD (Improving Quality and Safety and Reduction of Cost in the European Organic and ‘Low Input’ Supply Chains. 2009. Available online: https://cordis.europa.eu/project/id/506358/reporting (accessed on 24 February 2021).
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—2. Antioxidant activity, and phenolic and mineral content. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef]
- Hasanaliyeva, G. Effect of Organic Production Methods on Antioxidant Activity and Concentrations in Grapes, Grape Juice and Wine; Results from Meta-Analyses, and Farm and Retail Surveys. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2017. [Google Scholar]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G.D. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Lee, S.-W.; Lee, E.-H.; Eom, A.-H. Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi. Mycobiology 2008, 36, 19–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Säle, V.; Aguilera, P.; Laczko, E.; Mäder, P.; Berner, A.; Zihlmann, U.; van der Heijden, M.G.A.; Oehl, F. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2015, 84, 38–52. [Google Scholar] [CrossRef]
- Grant, C.A.; Sheppard, S.C. Fertilizer impacts on cadmium availability in agricultural soils and Crops. Hum. Ecol. Risk Assess. 2008, 14, 210–228. [Google Scholar] [CrossRef]
- Cooper, J.; Sanderson, R.; Cakmak, I.; Ozturk, L.; Shotton, P.; Carmichael, A.; Sadrabadi Haghighi, R.; Tetard-Jones, C.; Volakakis, N.; Eyre, M.; et al. Effect of organic and conventional crop rotation, fertilization and crop protection practices on metal contents in wheat (Triticum aestivum). J. Agric. Food Chem. 2011, 59, 4715–4724. [Google Scholar] [CrossRef] [PubMed]
- Dharma-wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ. Geochem. Health 2018, 40, 2739–2759. [Google Scholar] [CrossRef] [Green Version]
- Abou-Shanab, R.A.I.; Wongphatcharachai, M.; Sheaffer, C.C.; Sadowsky, M.J. Response of dry bean (Phaseolus vulgaris L.) to inoculation with indigenous and commercial Rhizobium strains under organic farming systems in Minnesota. Symbiosis 2019, 78, 125–134. [Google Scholar] [CrossRef]
- Ardakani, M.R.; Pietsch, G.; Moghaddam, A.; Raza, A.; Friedel, J.K. Response of Root Properties to Tripartite Symbiosis between Lucerne (Medicago sativa L.), Rhizobia and Mycorrhiza. Am. J. Agric. Biol. Sci. 2009, 4, 266–277. [Google Scholar]
- Wilkinson, A. Improving the Agronomic Management and Utilization of Breadmaking Wheat. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Aryal, U.K.; Shah, S.K.; Xu, H.L.; Fujita, M. Growth, Nodulation and Mycorrhizal Colonization in Bean Plants Improved by Rhizobial Inoculation with Organic and Chemical Fertilization. J. Sustain. Agric. 2007, 29, 71–83. [Google Scholar] [CrossRef]
- Faye, A.; Stewart, Z.P.; Ndung’u-Magiroi, K.; Diouf, M.; Ndoye, I.; Diop, T.; Dalpé, Y.; Prasad, P.V.V.; Lesueur, D. Testing of Commercial Inoculants to Enhance P Uptake and Grain Yield of Promiscuous Soybean in Kenya. Sustainability 2020, 12, 3803. [Google Scholar] [CrossRef]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Schüepp, H.; Barea, J.M.; Haselwandter, K. Mycorrhizal Technology in Agriculture; From Genes to Bioproducts; Springer: Basel, Switzerland, 2002. [Google Scholar]
- Oliveira, R.S.; Rocha, I.; Ma, Y.; Vosátka, M.; Freitas, H. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.). J. Toxicol. Environ. Health Part A 2016, 79, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.J.; Daniell, T.J.; Cameron, D.D.; Field, K.J. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants People Planet 2020, 3, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Elliott, L.F.; Unger, Y.L. Long-term effects of organic and conventional farming on soil erosion. Nature 1987, 330, 370–372. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mader, P.; Stolze, M.; Smith, P.; Scialabba Nel, H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, M.D.; Sanderson, R.A.; Shotton, P.N.; Leifert, C. Investigating the effects of crop type, fertility management and crop protection on the activity of beneficial invertebrates in an extensive farm management comparison trial. Ann. Appl. Biol. 2009, 155, 267–276. [Google Scholar] [CrossRef]
- Hadar, Y.; Papadopoulou, K.K. Suppressive composts: Microbial ecology links between abiotic environments and healthy plants. Ann. Rev. Phytopathol. 2012, 50, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Yogev, A.; Laor, Y.; Katan, J.; Hadar, Y.; Cohen, R.; Medina, S.; Raviv, M. Does organic farming increase soil suppression against Fusarium wilt of melon? Org. Agric. 2011, 1, 203–216. [Google Scholar] [CrossRef]
- Giotis, C.; Markelou, E.; Theodoropoulou, A.; Toufexi, E.; Hodson, R.; Shotton, P.; Shiel, R.; Cooper, J.; Leifert, C. Effect of soil amendments and biological control agents (BCAs) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium alboatrum in organic greenhouse tomato production systems. Eur. J. Plant Pathol. 2009, 123, 387–400. [Google Scholar] [CrossRef]
- Giotis, C.; Theodoropoulou, A.; Cooper, J.; Hodgson, R.; Shotton, P.; Shiel, R.; Eyre, M.; Wilcockson, S.; Markellou, E.; Liopa-Tsakalidis, A.; et al. Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems. Eur. J. Plant Pathol. 2012, 134, 605–617. [Google Scholar] [CrossRef]
- Tamm, L.; Thürig, B.; Bruns, C.; Fuchs, J.G.; Köpke, U.; Leifert, C.; Mahlberg, N.; Nietlispach, B.; Laustela, M.; Schmidt, C.; et al. Soil type, management history, and soil amendments influence the development of soilborne (Rhizoctonia solani, Pythium ultimum) and airborne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. Eur. J. Plant Pathol. 2010, 127, 465–481. [Google Scholar] [CrossRef]
- Willson, A.; Goltz, M.; Markellou, E.; Volakakis, N.; Leifert, C. Integrating the use of resistant rootstocks/cultivars, suppressive composts and elicitors to improve yields and quality in protected organic cultivation systems. Acta Hortic. 2020, 1268, 155–164. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Capodilupo, M.; Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 2010, 42, 136–144. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural production—A review. CRC Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- Noble, R.; Coventry, E. Suppression of soil-borne plant diseases with composts: A review. Biocontrol Sci. Technol. 2005, 15, 3–20. [Google Scholar] [CrossRef]
- Brennan, R.J.B.; Glaze-Corcoran, S.; Wick, R.; Hashemi, M. Biofumigation: An alternative strategy for the control of plant parasitic nematodes. J. Integr. Agric. 2020, 19, 1680–1690. [Google Scholar] [CrossRef]
- Ren, H.; Endo, H.; Hayashi, T. Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetables using water-soluble chitosan as a soil modifier and leaf surface spray. J. Sci. Food Agric. 2001, 81, 1426–1432. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Rahman, M.; Mukta, J.A.; Sabir, A.A.; Gupta, D.R.; Mohi-Ud-Din, M.; Hasanuzzaman, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE 2018, 13, 0203769. [Google Scholar] [CrossRef]
- Ben-Issa, R.; Gomez, L.; Gautier, H. Companion Plants for Aphid Pest Management. Insects 2017, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Eyre, M.D.; Leifert, C. Crop and field boundry influences on the activity of a wide range of beneficial invertebrate groups on a split conventional/organic farm in northern England. Bull. Entomol. Res. 2011, 101, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Eyre, M.D.; Labanowska-Bury, D.; White, R.; Leifert, C. Relationship between beneficial invertebrates, field margin vegetation, and thrip damage in organic leek fields in eastern England. Org. Agric. 2011, 1, 45–54. [Google Scholar] [CrossRef]
- Eyre, M.D.; Luff, M.L.; Leifert, C. Crop, field boundary, productivity and disturbance influences on ground beetles (Coleoptera, Carabidae) in the agroecosystem. Agric. Ecosyst. Environ. 2013, 165, 60–67. [Google Scholar] [CrossRef]
- MacLeod, A.; Wratten, S.D.; Sotherton, N.W.; Thomas, M.B. ‘Beetle banks’ as refuges for beneficial arthropods in farmland: Long-term changes in predator communities and habitat. Agric. For. Entomol. 2004, 6, 147–154. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.-C. The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-Analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Gabriel, D.; Tscharntke, T. Insect pollinated plants benefit from organic farming. Agric. Ecosyst. Environ. 2007, 118, 43–48. [Google Scholar] [CrossRef]
- Muneret, L.; Auriol, A.; Bonnard, O.; Richart-Cervera, S.; Thiéry, D.; Rusch, A. Organic farming expansion drives natural enemy abundance but not diversity in vineyard-dominated landscapes. Ecol. Evol. 2019, 9, 13532–13542. [Google Scholar] [CrossRef] [PubMed]
- Birkhofer, K.; Arvidsson, F.; Ehlers, D.; Mader, V.L.; Bengtsson, J.; Smith, H.G. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 2016, 31, 567–579. [Google Scholar] [CrossRef]
- Kasselaki, A.M.; Malathrakis, N.E.; Goumas, D.E.; Leifert, C. Effect of alternative treatments on seed borne Didymella lycopersici in tomato. J. Appl. Microbiol. 2008, 105, 36–41. [Google Scholar] [CrossRef]
- Kasselaki, A.-M.; Goumas, D.; Tamm, L.; Fuchs, J.; Cooper, C.; Leifert, C. Effect of alternative strategies for the disinfection of tomato seed infected with bacterial canker (Clavibacter michiganensis subsp. michiganensis). NJAS-Wagen. J. Life Sci. 2011, 58, 145–147. [Google Scholar] [CrossRef]
- Giotis, C.; Markellou, E.; Theodoropoulou, A.; Kostoulas, G.; Wilcockson, S.; Leifert, C. The effects of different biological control agents (BCAs) and plant defence elicitors on cucumber powdery mildew (Podosphera xanthii). Org. Agric. 2012, 2, 89–101. [Google Scholar] [CrossRef]
- Dafermos, N.G.; Kasselaki, A.M.; Goumas, D.E.; Eyre, M.D.; Spandidakis, K.; Leifert, C. Integration of Elicitors and Less Susceptible Hybrids for the Control of Powdery Mildew in Organic Tomato Crops. Plant Dis. 2012, 96, 1506–1512. [Google Scholar] [CrossRef] [Green Version]
- Margaritopoulou, T.; Kizis, D.; Kotopoulis, D.; Papadakis, I.E.; Anagnostopoulos, C.; Baira, E.; Termentzi, A.; VichouLeifert, C.; Markellou, E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. Plant Physiol. 2021, kiab453. [Google Scholar] [CrossRef] [PubMed]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. Biocontrol 2018, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Itthayakor, P. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 00845. [Google Scholar] [CrossRef] [Green Version]
- Pesticide Action Network. Is Organic Better? 2017. Available online: www.pan-uk.org/organic/ (accessed on 1 June 2021).
- Kuesel, R.; Scott Hicks, D.; Archer, K.; Sciligo, A.; Bessin, R.; Gonthier, D. Effects of Fine-Mesh Exclusion Netting on Pests of Blackberry. Insects 2019, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Gogo, E.O.; Saidi, M.; Itulya, F.M.; Martin, T.; Mathieu Ngouajio, M. Eco-Friendly Nets and Floating Row Covers Reduce Pest Infestation and Improve Tomato (Solanum lycopersicum L.) Yields for Smallholder Farmers in Kenya. Agronomy 2014, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Savoldelli, S.; Trematerra, P. Mass-trapping, mating-disruption and attracticide methods for managing stored-product insects: Success stories and research needs. Stewart Postharvest Rev. 2011, 7, 1–8. [Google Scholar] [CrossRef]
- Volakakis, N.; Kabourakis, E.; Leifert, C. Conventional and organic cultivation and their effect on the functional composition of olive oil. In Olives and Olive Oil as Functional Foods; Kiritsakis, A., Shahidi, F., Eds.; Wiley: Oxford, UK, 2017; pp. 35–44. [Google Scholar]
- Volakakis, N. Development of Strategies to Improve the Quality and Productivity of Organic and ‘Low Input’ Olive Production Systems in Semi-Arid Mediterranean Regions. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2010. [Google Scholar]
- Nikolouli, K.; Sassù, F.; Mouton, L.; Stauffer, C.; Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 2020, 93, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.C.; Zhu, J.J.; Millar, J.G. Delivering on the promise of pheromones. J. Chem. Ecol. 2016, 42, 553–556. [Google Scholar] [CrossRef]
- Marliac, G.; Penvern, S.; Barbier, J.M.; Lescourret, F.; Capowiez, Y. Impact of crop protection strategies on natural enemies in organic apple production. Agron. Sustain. Dev. 2015, 35, 803–813. [Google Scholar] [CrossRef] [Green Version]
- van Loenen, M.C.A.; Turbett, Y.; Mullins, C.E.; Feilden, N.E.H.; Wilson, M.J.; Leifert, C.; Seel, W. Low temperature-short duration steaming of soils kills soil-borne pathogens, nematodes and weeds. Eur. J. Plant Pathol. 2003, 109, 993–1002. [Google Scholar] [CrossRef]
- Williams, J.S.; Cooper, R.M. The oldest fungicide and newest phytoalexin—A reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 2004, 53, 263–279. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Ndakidemi, B.; Mtei, K.; Ndakidemi, P.A. Impacts of Synthetic and Botanical Pesticides on Beneficial Insects. Agric. Sci. 2016, 7, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Zanuncio, J.C.; Abreu Mourão, S.; Martínez, L.C.; Wilcken, C.F.; Ramalho, F.S.; Plata-Rueda, A.; Alvarenga Soares, M.; Serrão, J.E. Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2016, 6, 30261. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Peer review of the pesticide risk assessment of the active substance spinosad. EFSA J. 2018, 16, 5252. [Google Scholar]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The 2018 European Union Report on Pesticide Residues in Food. EFSA J. 2020, 18, 6057. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6057 (accessed on 4 February 2021).
- Markantonis, M.; van der Velde-Koerts, T.; Graven, C.; te Biesebeek, J.D.; Zeilmaker, M.; Rietveld, A.G.; Ossendorp, B.C. Assessment of occupational and dietary exposure to pesticide residues. EFSA J. 2018, 16, 16087. [Google Scholar]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Evaluation of the data on clothianidin, imidacloprid and thiamethoxam for the updated risk assessment to bees for seed treatments and granules in the EU. EFSA Support. Publ. 2018, 15, 1378. [Google Scholar]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 12, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costas, L.; Infante-Rivard, C.; Zock, J.P.; Van Tongeren, M.; Boffetta, P.; Cusson, A.; Robles, C.; Casabonne, D.; Benavente, Y.; Becker, N.; et al. Occupational exposure to endocrine disruptors and lymphoma risk in a multi-centric European study. Br. J. Cancer 2015, 112, 1251–1256. [Google Scholar] [CrossRef] [Green Version]
- Bonde, J.P.; Meulengracht Flachs, E.; Rimborg, S.; Glaser, C.H.; Giwercman, A.; Ramlau-Hansen, C.H.; Sørig Hougaard, K.; Høyer, B.B.; Keglberg Hærvig, K.; Bondo Petersen, S.; et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Hum. Reprod. Update 2017, 23, 104–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Burns, C.J.; McIntosh, L.J.; Mink, P.J.; Jurek, A.M.; Li, A.A. Pesticide exposure and neurodevelopmental outcomes: Review of the epidemiologic and animal studies. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 127–283. [Google Scholar] [CrossRef]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.E.; Clay Bavinger, J.; Pearson, M.; Eschbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; et al. Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann. Intern. Med. 2012, 157, 348–366. [Google Scholar] [CrossRef] [Green Version]
- Hoefkens, C.; Vandekinderen, I.; De Meulenaer, B.; Devlieghere, F.; Baert, K.; Sioen, I.; De Henauw, S.; Verbeke, W.; Van Camp, J. A literature-based comparison of nutrient and contaminat contents between organic and conventional vegetables and potatoes. Brit. Food J. 2009, 1078–1097. [Google Scholar] [CrossRef] [Green Version]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hasanalieva, G.; Wood, L.; Anagnostopoulos, C.; Ampadogiannis, G.; Bempelou, E.; Kiousi, M.; Markellou, E.; Iversen, P.O.; Seal, C.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—3. Pesticide residue content. Food Chem. X 2020, 6, 100089. [Google Scholar] [CrossRef]
- Rempelos, L.; Wang, J.; Baranski, M.; Watson, A.; Volakakis, N.; Hoppe, H.-W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2021, nqab308. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Baranski, M.; Gromadzka-Ostrowska, J.; Skwarło-Sońta, K.; Rembiałkowska, E.; Hajslova, J.; Schulzova, V.; Cakmak, I.; Ozturk, L.; Krolikowski, T.; et al. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and selected physiological parameters in rats. J. Agric. Food Chem. 2013, 61, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Baranski, M.; Średnicka-Tober, D.; Rempelos, L.; Hasanaliyeva, G.; Gromadzka-Ostrowska, J.; Skwarło-Sońta, K.; Królikowski, T.; Rembiałkowska, E.; Hajslova, J.; Schulzova, V.; et al. Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats—Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients 2021, 13, 377. [Google Scholar] [CrossRef]
- Rahman, A. Effect of soil organic matter on the phytotoxicity of soil applied herbicides—Glasshouse studies. N. Z. J. Exp. Agric. 1976, 4, 85–88. [Google Scholar] [CrossRef]
- Jones, R.L.; Norris, F.A. Factors affecting degradation of aldicarb and ethoprop. J. Nematol. 1998, 30, 45–55. [Google Scholar] [PubMed]
- Kirchmann, H.; Haberhauer, G.; Kandeler, E.; Sessitsch, A.; Gerzabek, M.H. Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Global Biogeochem. Cycles 2004, 18, GB4011. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mader, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression. PLoS ONE 2017, 12, 0180442. [Google Scholar] [CrossRef]
- Harkes, P.; Suleiman, A.K.A.; van den Elsen, S.J.J.; de Haan, J.J.; Holterman, M.; Kuramae, E.; Helder, J. Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents. Sci. Rep. 2019, 9, 13521. [Google Scholar] [CrossRef] [PubMed]
- Saladin, G.; Clément, C. Physiological side effects of pesticides on non-target plants. In Agriculture and Soil Pollution; Livingston, J.V., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2005; pp. 53–86. [Google Scholar]
- McCurdy, J.D.; McElroy, J.S.; Kopsell, D.A.; Sams, C.E.; Sorochan, J.C. Effects of Mesotrione on Perennial Ryegrass (Lolium perenne L.) Carotenoid Concentrations under Varying Environmental Conditions. J. Agric. Food Chem. 2008, 56, 9133–9139. [Google Scholar] [CrossRef]
- Marcelo, P.; Gomes, E.; Smedbol, A.; Chalifour, L.; Hénault-Ethier, M.; Labrecque, L.; Lepage, M.; Lucotte, P.J. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. J. Exp. Bot. 2014, 65, 4691–4703. [Google Scholar] [CrossRef] [Green Version]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Yazici, A.; Tutus, Y.; Ozturk, L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur. J. Agron. 2009, 31, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Bott, S.; Tesfamariam, T.; Candan, H.; Cakmak, I.; Römheld, V.; Neumann, G. Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 2008, 312, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.A.; Loening, U.E.; Graham, M.C. Impacts of glyphosate-based herbicides on disease resistance and health of crops: A review. Environ. Sci. Eur. 2018, 30, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammerts van Bueren, E.T.; Thorup-Kristensen, K.; Leifert, C.; Cooper, J.M.; Becker, H.C. Breeding for nitrogen efficiency; concepts, methods, and case studies. Euphytica 2014, 199, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Nuijten, E.; Messmer, M.M.; Lammerts van Bueren, E.T. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability 2017, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Lammerts van Bueren, E.T.; Myers, J.R. Organic Crop Breeding; Wiley-Blackwell: Hoboken, NY, USA, 2012. [Google Scholar]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Rubén Domínguez, F.J.B.; Lucini, L.; Lorenzo, J.L. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef] [PubMed]
- Hornick, S.B. Factors affecting the nutritional quality of crops. Am. J. Altern. Agric. 1992, 7, 63–68. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R0396&from=EN (accessed on 4 December 2021).
- EU. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Legis. 2006, 364, 5–24. [Google Scholar]
- Jones, J.M.; Engleson, J. Whole Grains: Benefits and Challenges. Annu. Rev. Food Sci. Technol. 2010, 1, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Tennent, D.R.; Davidson, J.; Day, A.J. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Brit. J. Nutr. 2014, 112, 1214–1225. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.A.; Martin-Calvo, N. Mediterranean diet and life expectancy; beyond olive oil, fruits and vegetables. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 401–407. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission Health Promotion and Disease Prevention Knowledge Gateway 2021. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway (accessed on 1 March 2021).
- Castro-Quezada, I.; Román-Viňas, B.; Serra-Majem, L. The Mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Baranski, M.; Rempelos, L.; Iversen, P.O.; Leifert, C. Effects of organic food consumption on human health; The jury is still out. Food Nutr. Res. 2017, 61, 1287333. [Google Scholar] [CrossRef] [Green Version]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Velimirov, A.; Huber, M.; Lauridsen, C.; Rembialkowska, E.; Seidel, K.; Bugel, S. Feeding trials in organic food quality and health research. J. Sci. Food Agric. 2010, 90, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; van Goudoever, J.B.; de Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef]
- Yong, S.-B.; Wu, C.C.; Wang, L.; Yang, K. Influence and mechanisms of maternal and infant diets on the development of childhood asthma. Pediatr. Neonatol. 2013, 54, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, K.S.; Ferguson, L.R. The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015, 7, 922–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topart, C.; Werner, E.; Arimondo, P.B. Wandering along the epigenetic timeline. Clin. Epigenetics 2020, 12, 97. [Google Scholar] [CrossRef]
- Choi, S.-W.; Friso, S. Epigenetics: A new bridge between nutrition and health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef]
- Tryndyak, V.P.; Ross, S.A.; Beland, F.A.; Pogribny, I.P. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol. Carcinog. 2009, 48, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Gerhauser, C. Impact of dietary gut microbial metabolites on the epigenome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, M.; Chen, D.; Yang, C.S. Dietary polyphenols may affect DNA methylation. J. Nutr. 2007, 137, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-S.; Arnold, M.; Huang, Y.-W.; Sardo, C.; Seguin, C.; Martin, E.; Huang, T.H.-M.; Riedl, K.; Schwartz, S.; Frankel, W.; et al. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: A phase I pilot study. Clin. Cancer Res. 2011, 17, 598–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pudenz, M.; Roth, K.; Gerhauser, C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 2014, 6, 4218–4272. [Google Scholar] [CrossRef]
- Lascano, S.; Lopez, M.; Arimondo, P.B. Natural products and chemical biology tools: Alternatives to target epigenetic mechanisms in cancers. Chem. Rec. 2018, 18, 1854–1876. [Google Scholar] [CrossRef]
- King, A.J.F. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [Green Version]
- Buettner, R.; Schölmerich, D.; Bollheimer, L.C. High-fat diets: Modelling the metabolic disorders of human obesity in rodents. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef]
- Lutz, T.A.; Woods, S.C. Overview of animal models for obesity. Curr. Protoc. Pharmacol. 2012, 58, 5. [Google Scholar] [CrossRef] [Green Version]
- Brantsæter, A.L.; Ydersbond, T.A.; Hoppin, J.A.; Haugen, M.; Meltzer, H.M. Organic Food in the Diet: Exposure and Health Implications. Annu. Rev. Public Health 2017, 38, 295–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Schall, E.A.; Camacho, J.; Holland, N.T.; Boyd Barr, D.; Eskenazi, B. Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Baudry, J.; Debrauwer, L.; Durand, G.; Limon, G.; Delcambre, A.; Vidal, R.; Taupier-Letage Hercberg, B.; Lairon, D.; Cravedi, J.-P.; Kesse-Guyot, E. Urinary pesticide concentrations in French adults with low and high organic food consumption: Results from the general population-based NutriNet-Santé study. J. Expo Sci. Environ. Epidemiol. 2019, 29, 366–378. [Google Scholar] [CrossRef]
- Curl, C.L.; Porter, J.; Penwell, I.; Phinney, R.; Ospina, M.; Calafat, A.M. Effect of a 24-week randomized trial of an organic produce intervention on pyrethroid and organophosphate pesticide exposure among pregnant women. Environ. Int. 2019, 132, 104957. [Google Scholar] [CrossRef]
- Fagan, J.; Bohlen, L.; Patton, S.; Klein, K. Organic diet intervention significantly reduces urinary glyphosate levels in U.S. Children and adults. Environ. Res. 2020, 189, 109898. [Google Scholar] [CrossRef]
- Hyland, C.; Bradman, A.; Gerona, R.; Patton, S.; Zakharevich, I.; Guniera, R.B.; Klein, K. Organic diet intervention significantly reduces urinary pesticide levels in U.S. Children and adults. Environ. Res. 2019, 171, 568–575. [Google Scholar] [CrossRef]
- Transparency Market Research. Organophosphate and Carbamate Poisoning Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024; Transparency Market Research: Albany, NY, USA, 2016; Available online: www.transparencymarketresearch.com/organophosphate-carbamate-poisoning-market.html (accessed on 12 June 2021).
- Alavanja, M.C.R.; Hoppin, J.A.; Kamel, F. Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annu. Rev. Public Health 2004, 25, 155–197. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Ambrus, A.; Dieterle, R.; Felsot, A.; Harris, C.; Petersen, B.; Racke, K.; Wong, S.-S.; Gonzalez, R.; Tanaka, K.; et al. Pesticide residues in food—Acute dietary exposure. Pest Manag. Sci. 2004, 60, 311–339. [Google Scholar] [CrossRef]
- Winter, C.K. Chronic dietary exposure to pesticide residues in the United States. Int. J. Food Contam. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Heindel, J.J.; von Saal, F.S. Role of nutrition and environmental endocrine disrupting chemicals during the prerinatal period on the aetiology of obesity. Mol. Cell. Endocrinol. 2009, 304, 90–96. [Google Scholar] [CrossRef]
- Yang, O.; Kim, H.L.; Weon, J.I.; Seo, Y.R. Endocrine-disrupting chemicals: Review of toxicological mechanisms using molecular pathway analysis. J. Cancer Prev. 2015, 20, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.O.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A.M. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health 2017, 14, 1282. [Google Scholar] [CrossRef]
- Xin, F.; Susiarjo, M.; Bartolomei, M.S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin. Cell Dev. Biol. 2015, 43, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trasande, L.; Zoeller, R.T.; Hass, U.; Kortenkamp, A.; Grandjean, P.; Myers, J.P.; DiGangi, J.; Bellanger, M.; Hauser, R.; Legler, J.; et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union. J. Clin. Endocrinol. Metab. 2015, 100, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Rijk, I.; Duursen, M.; van der Berg, M. Health Cost That May Be Associated with Endocrine Disrupting Chemicals; Institute for Risk Assessment Sciences, 2016; Available online: www.uu.nl/sites/default/files/rijk_et_al_2016_-_report_iras_-_health_cost_associated_with_edcs_3.pdf (accessed on 4 December 2021).
- Cuhra, M.; Bøhn, T.; Cuhra, P. Glyphosate: Too much of a good thing? Front. Environ. Sci. 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- EU Pesticide Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN (accessed on 1 March 2021).
- Mnif, W.; Ibn Hadj Hassine, A.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2017, 16, 490–491. [Google Scholar] [CrossRef]
- Antoniou, M.; Habib, M.E.M.; Howard, C.V.; Jennings, R.C.; Leifert, C.; Nodari, R.O.; Robinson, C.J.; Fagan, J. Teratogenic Effects of Glyphosate-Based Herbicides: Divergence of Regulatory Decisions from Scientific Evidence. J. Environ. Anal. Toxicol. 2013, S4, 006. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M. How Did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Environ. Sci. Eur. 2019, 31, 2. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Baudry, J.; Assmann, K.E.; Galan, P.; Hercberg, S.; Lairon, D. Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: Results from the NutriNet-Santé Study. Br. J. Nutr. 2017, 117, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Baudry, J.; Lelong, H.; Adriouch, S.; Julia, C.; Allès, B.; Hercberg, S.; Touvier, M.; Lairon, D.; Galan, P.; Kesse-Guyot, E. Association between organic food consumption and metabolic syndrome: Cross-sectional results from the NutriNet-Santé study. Eur. J. Nutr. 2018, 57, 2477–2488. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Balkwill, A.; Spencer, E.A.; Roddam, A.W.; Reeves, G.K.; Green, J.; Key, T.J.; Beral, V.; Pirie, K. Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br. J. Cancer 2014, 110, 2321–2326. [Google Scholar] [CrossRef]
- Baudry, J.; Assmann, K.E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon, D.; et al. Association of frequency of organic food consumption with cancer risk: Findings from the nutrinet-santé prospective cohort study. JAMA Intern. Med. 2018, 178, 1597–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brantsæter, A.L.; Torjusen, H.; Meltzer, H.M.; Papadopoulou, E.; Hoppin, J.A.; Alexander, J.; Lieblein, G.; Roos, G.; Holten, J.M.; Swartz, J.; et al. Organic food consumption during pregnancy and hypospadias and cryptorchidism at birth: The Norwegian Mother and Child Cohort Study (MoBa). Environ. Health Perspect. 2016, 124, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, J.S.; Asklund, C.; Skakkebaek, N.E.; Jorgensen, N.; Andersen, H.R.; Jorgensen, T.M.; Olsen, L.H.; Hoyer, A.P.; Moesgaard, J.; Thorup, J.; et al. Association between organic dietary choice during pregnancy and hypospadias in offspring: A study of mothers of 306 boys operated on for hypospadias. J. Urol. 2013, 189, 1077–1082. [Google Scholar] [CrossRef]
- Torjusen, H.; Brantsæter, A.L.; Haugen, M.; Alexander, J.; Bakketeig, L.S.; Lieblein, G.; Stigum, H.; Næs, T.; Swartz, J.; Holmboe-Ottesen, G.; et al. Reduced risk of pre-eclampsia with organic vegetable consumption: Results from the prospective Norwegian Mother and Child Cohort Study. BMJ Open 2014, 4, 6143. [Google Scholar] [CrossRef] [PubMed]
- Kummeling, I.; Thijs, C.; Huber, M.; van de Vijver, L.P.L.; Snijders, B.E.P.; Penders, J.; Stelma, F.; van Ree, R.; van den Brandt, P.A.; Dagnelie, P.C. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Br. J. Nutr. 2008, 99, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Buscail, C.; Chevrier, C.; Serrano, T.; Pele, F.; Monfort, C.; Cordier, S.; Viel, J.F. Prenatal pesticide exposure and otitis media during early childhood in the PELAGIE mother-child cohort. Occup. Environ. Med. 2015, 72, 837–844. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Petrozza, J.C.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic. Hum. Reprod. 2015, 30, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Williams, P.L.; Gillman, M.W.; Gaskins, A.J.; Minguez-Alarcon, L.; Souter, I.; Toth, T.L.; Ford, J.B.; Hauser, R.; Chavarro, J.E.; et al. Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology. JAMA Intern. Med. 2018, 178, 17–26. [Google Scholar] [CrossRef]
- Rebouillat, P.; Vidal, R.; Cravedi, J.-P.; Taupier-Letage, B.; Debrauwer, L.; Gamet-Payrastre, L.; Touvier, M.; Deschasaux-Tanguy, M.; Latino-Martel, P.; Hercberg, S.; et al. Prospective association between dietary pesticide exposure profiles and postmenopausal breast-cancer risk in the NutriNet-Santé cohort. Int. J. Epidemiol. 2021, dyab015. [Google Scholar] [CrossRef]
- Baudry, J.; Méjean, C.; Péneau, S.; Galan, P.; Hercberg, S.; Lairon, D.; Kesse-Guyot, E. Health and dietary traits of organic food consumers: Results from the NutriNet-Santé study. Br. J. Nutr. 2015, 114, 2064–2073. [Google Scholar] [CrossRef] [Green Version]
- Eisinger-Watzl, M.; Wittig, F.; Heuer, T.; Hoffmann, I. Customers Purchasing Organic Food—Do They Live Healthier? Results of the German National Nutrition Survey II. Eur. J. Nutr. Food Saf. 2015, 5, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Baranski, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and omega-3 PUFA, CLA, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKnight, G.M.; Duncan, C.W.; Leifert, C.; Golden, M.H.N. Dietary Nitrate in Man—Friend or foe? Brit. J. Nutr. 1999, 81, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Li, H.; Dykhuizen, R.; Frazer, R.; Johnston, P.; MacKnight, G.; Smith, L.; Lamza, K.; McKenzie, H.; Batt, L.; et al. Protection against oral and gastrointestinal diseases: The importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1997, 118, 939–948. [Google Scholar] [CrossRef]
- Dykhuizen, R.; Frazer, A.; MacKenzie, H.; Golden, M.; Leifert, C.; Benjamin, N. Helicobacter pylori is killed by nitrite under acidic conditions. Gut 1998, 42, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Weitzberg, E.; Lundberg, J.O. Novel aspects of dietary nitrate and human health. Annu. Rev. Nutr. 2013, 33, 129–159. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-H.; Sandoval-Insausti, H.; Ley, S.H.; Bhupathiraju, S.N.; Hauser, R.; Rimm, E.B.; Manson, J.E.; Sun, Q.; Chavarroa, J.E. Association between intake of fruits and vegetables by pesticide residue status and coronary heart disease risk. Environ. Int. 2019, 132, 105113. [Google Scholar] [CrossRef]
- Herrero, M.; Wirsenius, S.; Henderson, B.; Rigolot, C.; Thornton, P.; Havlík, P.; de Boer, I.; Gerber, P. Livestock and the environment: What have we learned in the past decade? Annu. Rev. Environ. Resour. 2015, 40, 177–202. [Google Scholar] [CrossRef]
- Shepon, A.; Eshel, G.; Noor, E.; Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 2016, 11, 105002. [Google Scholar] [CrossRef]
- OECD. OECD-FAO Agricultural Outlook 2013. Available online: www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2013_agr_outlook-2013-en (accessed on 4 December 2021).
- FAO. Handbook of Agricultural Cost of Production Statistics; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2016; Available online: http://www.fao.org/3/ca6411en/ca6411en.pdf (accessed on 3 June 2021).
- Agnolucci, P.; De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Chang. 2020, 159, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, B.; Ben-Ari, T.; Makowski, D.; Kato, T.; Kato, H.; Ciais, P. Yield trends, variability and stagnation analysis of major crops in France over more than a century. Sci. Rep. 2018, 8, 16865. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, R.R.; Böhm, W.; Kirkham, M.B. On the origin of the theory of mineral nutrition of plants and the “Law of the Minimum”. Soil Sci. Soc. Am. J. 1999, 63, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J. A history of organic farming: Transitions from Sir Albert Howard’s War in the Soil to USDA National Organic Program. Renew. Agric. Food Syst. 2006, 21, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, E.; Röling, W.F.M.; Gamper, H.A.; Kowalchuk, G.A.; Verhoef, H.A.; van der Heijden, M.G.A. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soil. New Phytol. 2010, 186, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.; Sait, S.M.; Hodgson, J.A.; Schmutz, U.; Kumin, W.E.; Benton, T.G. Scale matters: The impact of organic farming on biodiversityat different spatial scales. Ecol. Let. 2010, 13, 858–869. [Google Scholar] [CrossRef]
- Lee, K.S.; Choe, Y.C.; Park, S.H. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J. Environ. Manag. 2015, 162, 263–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef] [Green Version]
- Mie, A.; Kesse-Guyot, E.; Kahl, J.; Rembiałkowska, E.; Andersen, H.R.; Grandjean, P.; Gunnarsson, S. Human Health Implications of Organic Food and Organic Agriculture; European Parliamentary Research Services, Scientific Foresight Unit (STOA): Brussels, Belgium, 2016; Available online: www.europarl.europa.eu/RegData/etudes/STUD/2016/581922/EPRS_STU(2016)581922_EN.pdf (accessed on 3 June 2021).
- Voutzourakis, N.; Stefanakis, A.; Stergiadis, S.; Rempelos, L.; Tzanidakis, N.; Eyre, M.; Butler, G.; Leifert, C.; Sotiraki, S. Effect of intensification practices, lambing period and environmental parameters on animal health, and milk yield and quality in dairy sheep production systems on Crete. Sustainability 2021, 13, 9706. [Google Scholar] [CrossRef]
- Voutzourakis, N.; Tzanidakis, N.; Stergiadis, S.; Rempelos, L.; Eyre, M.; Atsali, I.; Franceschin, E.; Leifert, C.; Stefanakis, A.; Sotiraki, S.; et al. Sustainable Intensification? Increased Production Diminishes Omega-3 Content of Sheep Milk. Sustainability 2020, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.; Chatzidimitriou, E.; Leifert, C.; Butler, G. Evidence that forage-fed cows can enhance milk quality. Sustainability 2020, 12, 3688. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergerman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Marcin Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition differences between organic and conventional meat; A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Stergiades, S.; Leifert, C.; Seal, C.J.; Eyre, M.D.; Larsen, M.K.; Slots, T.; Nielsen, J.H.; Butler, G. A 2-year study on milk quality from three pasture-based dairy systems of contrasting production intensities in Wales. J. Agric. Sci. 2015, 153, 708–731. [Google Scholar] [CrossRef] [Green Version]
- Stergiadis, S.; Leifert, C.; Seal, C.J.; Eyre, M.D.; Nielsen, J.H.; Larsen, M.K.; Slots, T.; Steinshamn, H.; Butler, G. Effect of feeding intensity and milking systems on nutritionally relevant milk components in dairy farming systems in the north east of England. J. Agric. Food Chem. 2012, 60, 7270–7281. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Larsen, M.L.; Rehberger, B.; Stergiadis, S.; Canever, A.; Leifert, C. The effects of dairy management and processing on quality characteristics of milk and dairy products. NJAS-Wagen. J. Life Sci. 2011, 58, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Butler, G.; Collomb, M.; Rehberger, B.; Sanderson, R.; Eyre, M.; Leifert, C. CLA isomer concentrations in milk from high and low-input management dairy systems. J. Sci. Food Agric. 2009, 89, 697–705. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat soluble antioxidant concentrations in milk from high and low input conventional and organic systems; seasonal variation. J. Sci. Food Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Gilling-Ulph, M. Can you Boost Your Fertility by Eating Organic Food; The Augora Clinic: Brighton & Hove, UK, 2019; Available online: https://agoraclinic.co.uk/fertility-organic-food (accessed on 10 November 2021).
- Jensen, T.K.; Giwercman, A.; Carlsen, E.; Scheike, T.; Skakkebaek, N.E. Semen quality among members of organic food associations in Zealand, Denmark. Lancet 1996, 347, 1844. [Google Scholar] [CrossRef]
- Gundala, R.R.; Singh, A. What motivates consumers to buy organic foods? Results of an empirical study in the United States. PLoS ONE 2021, 16, e0257288. [Google Scholar] [CrossRef] [PubMed]
- FAO. Why is Organic Food More Expensive Than Conventional Food. Available online: www.fao.org/organicag/oa-faq/oa-faq5/en/ (accessed on 10 November 2021).
- IFOAM. Organic in Europe. Prospects & Developments for Organic in National CAP Strategic Plans. 2021. Available online: https://www.organicseurope.bio/content/uploads/2021/06/ifoameu_advocacy_CAP_StrategicPlansAnd25Target_202106.pdf?dd (accessed on 10 November 2021).
- EC. Communication from the commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the Regions on an Action Plan for the Development of Organic Farming, SWD(2021) 65 Final. 2021. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/com2021_141_act_organic-action-plan_en.pdf (accessed on 4 December 2021).
- McNair, K. Organic Food is More Expensive, but Conventional Prices are Catching Up. Magnify. Money. 2021. Available online: www.magnifymoney.com/blog/news/organic-vs-conventional-food-study (accessed on 10 November 2021).
ANOVA Results (p-Values) | ||||||||
---|---|---|---|---|---|---|---|---|
Crop Protection (CP) | Fertilization (F) | Man Effects | Inter-Action | |||||
Crop | Parameter Assessed | CON | ORG | Mineral NPK | Cattle Manure | CP | F | CP×F |
Potato | Marketable tuber yield (t/ha) | 9.2 | 7.7 | 9.3 | 7.6 | <0.001 | <0.001 | 0.003 |
total phenolics (µg/g FW) | 285 | 293 | 277 | 301 | NS | 0.016 | NS | |
vitamin C (µg/g FW) | 95 | 97 | 91 | 101 | NS | <0.001 | NS | |
total carotenoids (µg/g FW) | 0.7 | 0.8 | 0.7 | 0.7 | 0.060 | NS | 0.018 | |
folate (µg/g FW) | 0.17 | 0.18 | 0.17 | 0.18 | NS | <0.001 | 0.006 | |
glycoalkaloids (mg/kg FW) | 42 | 40 | 45 | 37 | NS | <0.001 | NS | |
Cabbage | Yield (t/ha FW) | 54 | 61 | 71 | 45 | <0.001 | <0.001 | 0.007 |
total phenolics 1 (µg/g FW) | 11.0 | 9.4 | 8.8 | 11.6 | 0.093 | 0.001 | NS | |
vitamin C (µg/g FW) | 224 | 223 | 211 | 236 | NS | 0.006 | NS | |
total carotenoids (µg/g FW) | 3.5 | 3.2 | 3.0 | 3.7 | NS | 0.008 | 0.051 | |
folate (µg/g FW) | 0.4 | 0.3 | 0.3 | 0.4 | <0.001 | 0.022 | NS | |
total glucosinolates (g/g FW) | 1.37 | 1.23 | 1.13 | 1.48 | 0.037 | <0.001 | NS | |
total volatiles 2 (mg/g FW) | 33 | 31 | 28 | 35 | NS | <0.001 | 0.032 | |
Lettuce | Yield (t/ha FW) | 38 | 36 | 39 | 34 | NS | <0.001 | NS |
total phenolics (µg/g FW) | 104 | 108 | 102 | 112 | NS | 0.036 | NS | |
vitamin C (µg/g FW) | 6.8 | 6.7 | 6.8 | 6.7 | NS | NS | NS | |
total carotenoids (µg/g FW) | 4.4 | 5.0 | 4.6 | 4.8 | 0.085 | NS | NS | |
folate (µg/g FW) | 0.3 | 0.3 | 0.3 | 0.3 | 0.064 | 0.042 | NS | |
Onion | Marketable yield (t/ha FW) | 22 | 20 | 21 | 21 | NS | NS | NS |
total phenolics 3 (µg/g FW) | 725 | 721 | 740 | 706 | NS | NS | NS | |
vitamin C (µg/g FW) | 100 | 93 | 86 | 107 | NS | NS | NS | |
total carotenoids (µg/g FW) | 0.6 | 0.7 | 0.7 | 0.6 | NS | NS | 0.083 | |
folate (µg/g FW) | 0.4 | 0.4 | 0.4 | 0.4 | NS | NS | NS |
Variety | Production Systems | ANOVA (p-Values) | ||||
---|---|---|---|---|---|---|
Parameter Assessed | Ariel | Pluto | Conventional 1 | Organic 2 | Variety | Production System |
Vitamins (Vit) | ||||||
water soluble (µg/g FW) | ||||||
folate (Vit B9) | 0.25 | 0.31 | 0.30 | 0.26 | <0.001 | <0.001 |
fat soluble (µg/g FW) | ||||||
β-carotene (provitamin A) | 2.04 | 3.67 | 3.63 | 2.24 | <0.001 | <0.001 |
total carotenoids | 39.53 | 34.54 | 38.38 | 35.95 | NS | NS |
tocopherol (Vit E) | 5.60 | 1.65 | 1.28 | 5.50 | <0.001 | <0.001 |
total phenolics (μg GAE/g) | 199 | 195 | 205 | 191 | NS | NS |
antioxidant activity (μg TE/g) | 257 | 281 | 286 | 254 | NS | <0.05 |
amino acids (AA; mg/100g) | ||||||
total essential AA 3 | 204 | 348 | 233 | 324 | <0.001 | <0.05 |
total non-essential AA 4 | 430 | 792 | 593 | 659 | <0.001 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. https://doi.org/10.3390/agronomy11122494
Rempelos L, Baranski M, Wang J, Adams TN, Adebusuyi K, Beckman JJ, Brockbank CJ, Douglas BS, Feng T, Greenway JD, et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy. 2021; 11(12):2494. https://doi.org/10.3390/agronomy11122494
Chicago/Turabian StyleRempelos, Leonidas, Marcin Baranski, Juan Wang, Timothy N. Adams, Kolawole Adebusuyi, Jeremy J. Beckman, Charlotte J. Brockbank, Bradley S. Douglas, Tianer Feng, Jem D. Greenway, and et al. 2021. "Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health?" Agronomy 11, no. 12: 2494. https://doi.org/10.3390/agronomy11122494
APA StyleRempelos, L., Baranski, M., Wang, J., Adams, T. N., Adebusuyi, K., Beckman, J. J., Brockbank, C. J., Douglas, B. S., Feng, T., Greenway, J. D., Gür, M., Iyaremye, E., Kong, C. L., Korkut, R., Kumar, S. S., Kwedibana, J., Masselos, J., Mutalemwa, B. N., Nkambule, B. S., ... Leifert, C. (2021). Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy, 11(12), 2494. https://doi.org/10.3390/agronomy11122494