Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Organic Amendments
2.2. Experiment Details
2.3. Analytical Methods
2.4. Statistical Analyses
3. Results
3.1. Characteristics of Soils and Organic Amendments
3.2. Soil Microbial Parameters
3.3. Available Sulfur and Sulfur Fractions
3.4. Sulfur Oxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant Sci. 2010, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Menna, A. Assessment of Sulfur Deficiency in Soils through Plant Analysis in Three Representative Areas of the Central Highlands of Ethiopia-IV. J. Agric. Ecol. Res. Int. 2017, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Divito, G.A.; Echeverria, H.E.; Andrade, F.H.; Sadras, V.O. Diagnosis of S deficiency in soybean crops: Performance of S and N S determination in leaf, shoot and seed. Field Crop. Res. 2015, 180, 167–175. [Google Scholar] [CrossRef]
- Khurana, M.P.S.; Sadana, U.S.; Singh, B.A. Sulfur Nutrition of Crops in the Indo-Gangetic Plains of South Asia. In Sulfur: A Missing Link Between Soils, Crops, and Nutrition; ASA-CSSA-SSSA: Madison, WI, USA, 2008; pp. 11–24. [Google Scholar]
- Riley, N.G.; Zhao, F.J.; McGrath, S.P. Leaching losses of sulfur from different forms of sulfur fertilizers: A field lysimeter study. Soil Use Manag. 2002, 18, 120–126. [Google Scholar] [CrossRef]
- Zhao, C.; Degryse, F.; Gupta, V.; McLaughlin, M.J. Elemental sulfur oxidation in Australian cropping soils. Soil Sci. Soc. Am. J. 2015, 79, 89–96. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Jaggi, R.C.; Sharma, R. Mineralization-immobilization of soil organic S and oxidation of elemental S in subtropical soils under flooded and nonflooded conditions. Biol. Fertil. Soils 2002, 35, 197–203. [Google Scholar] [CrossRef]
- Vitolins, M.I.; Swaby, R.J. Activity of sulfur-oxidizing microorganisms in some Australian soils. Soil Res. 1969, 7, 171–183. [Google Scholar] [CrossRef]
- Germida, J.J.; Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 1993, 35, 101–114. [Google Scholar] [CrossRef]
- Lopez-Aguirre, J.G.; Farias-Larios, J. Guzman-Gonzalez, S. Michel-Rosales, A. De-Freitas, J.R. Effect of sulfur application on chemical properties and microbial populations in a tropical alkaline soil. Pedobiologia 1999, 43, 183–191. [Google Scholar]
- Kusale, S.P.; Attar, Y.C.; Sayyed, R.Z.; Malek, R.A.; Ilyas, N.; Suriani, N.L.; Khan, N.; El Enshasy, H.A. Production of Plant Beneficial and Antioxidants Metabolites by Klebsiellavariicola under Salinity Stress. Molecules 2021, 26, 1894. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Germida, J.J. Enumeration of sulfur-oxidizing populations in saakatchewan agricultural soils. Can. J. Soil Sci. 1991, 71, 127–136. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Khan, N.; Ali, S.; Shahid, M.A.; Mustafa, A.; Sayyed, R.Z.; Curá, J.A. Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells 2021, 10, 1551. [Google Scholar] [CrossRef]
- Rezapour, S. Effect of sulfur and composted manure on SO4-S, P and micronutrient availability in a calcareous saline–sodic soil. Chem. Ecol. 2014, 30, 147–155. [Google Scholar] [CrossRef]
- Zhao, C.; Gupta, V.V.S.R.; Degryse, F.; McLaughlin, M.J. Abundance and diversity ofsulfur-oxidising bacteria and their role in oxidising elemental sulfur in cropping soils. Biol. Fert. Soils 2017, 53, 159–169. [Google Scholar] [CrossRef]
- Jorgenson, B.B.; Findlay, A.J.; Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 2019, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Rameez, M.J.; Pyne, P.; Mandal, S.; Chatterjee, S.; Alam, M.; Bhattacharya, S.; Mondal, N.; Sarkar, J. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST. Microbiol. Res. 2020, 230, 126345. [Google Scholar] [CrossRef]
- Naseem, H.; Ahsan, M.; Shahid, M.A.; Khan, N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol. 2018, 58, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Tourna, M.; Maclean, P.; Condron, L.; O’Callaghan, M.; Wakelin, S.A. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 2014, 88, 538–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyngaard, N.; Cabrera, M.L. Measuring and estimating sulfur mineralization potential in soils amended with poultry litter or inorganic fertilizer. Biol. Fert. Soils 2015, 51, 545–552. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, F.; He, T.; Wang, S. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Ann. Sci. 2013, 70, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Verma, B.C.; Choudhury, B.U.; Kumar, M.; Hazarika, S.; Ramesh, T.; Bordoloi, L.J.; Moirangthem, P.; Bhuyan, D. Soil organic carbon fractions and enzymes activities as affected by organic and inorganic amendments in an acid soil of Meghalaya. J. Ind. Soc. Soil Sci. 2017, 65, 54–61. [Google Scholar] [CrossRef]
- Filipek-Mazur, B.; Gorczyca, O.; Tabak, M. The effect of sulfur coating fertilizers on soil biological properties. Water Environ. Rural Areas 2017, 2, 69–81. [Google Scholar]
- Gupta, V.V.S.R.; Lawrence, J.R.; Germida, J.J. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can. J. Soil Sci. 1988, 68, 463–473. [Google Scholar] [CrossRef]
- Garcıa-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Compost and phosphorus amendments for stimulations microorganisms and growth of ryegrass in a Ferralsol and Luvisol. J. Plant Nutr. Soil Sci. 2012, 175, 108–114. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Yang, H.; Fan, M.; Kuzyakov, Y. Effects of 15 years of manureand mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014, 60, 112–119. [Google Scholar] [CrossRef]
- Zhongqi, H.E.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar]
- Lawrence, J.R.; Germida, J.J. Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci. Soc. Am. J. 1988, 52, 672–677. [Google Scholar] [CrossRef]
- Dick, R.P.; Deng, S. Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils. Biogeochemistry 1991, 12, 87–101. [Google Scholar] [CrossRef]
- Wani, S.P.; Chander, G.; Sahrawat, K.L.; Pal, D.K.; Pathak, P.; Pardhasaradhi, G.; Kamadi, P.J. Sustainable use of natural resources for crop intensification and better livelihoods in the rainfed semi-arid tropics of Central India. NJAS-Wagen J. Life Sci. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G. Effect of different sulfur levels from various sources on Brassica napus growth and soil sulfur fractions. J. Chem. Soc. Pak. 2012, 34, 1023–1031. [Google Scholar]
- Singh, Y.V.; Singh, D.K.; Sharma, P.K.; Singh, R.K.; Singh, P. Interaction effect of phosphorous and sulfur on the growth, yield and mineral composition of mungbean (Vigna radiata L.). J. Indian Soc. Soil Sci. 2014, 62, 179–183. [Google Scholar]
- Malik, K.M.; Khan, S.; Rukh, A.; Khan, S.; Akbar, M.; Billah, S.; Bashir, S.; Danish, M.S.; Alwahibi, M.S.; Elshikh, A.A.; et al. Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils. Sustainability 2021, 13, 2392. [Google Scholar] [CrossRef]
- Rayan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Manual; ICARDA: Beirut, Lebanon, 2001; pp. 42–165. [Google Scholar]
- Polemio, M.; Rhoades, J.D. Determination of cation exchange capcity: A new procedure for calcarious and gypsiferous soils. Soil Sci. Soc. Am. J. 1997, 41, 524–528. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total, Methods of Soil Analysis; Page, A.L., Ed.; ASA & SSSA: Madison, WI, USA, 1982; pp. 595–622. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Mukhtar, I.; Shahid, M.A.; Khan, M.W.; Balal, R.M.; Iqbal, M.M.; Naz, T.; Zubair, M.; Ali, H.H. Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil Environ. 2016, 1, 35. [Google Scholar]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R.; Brookes, P.C. Measurement of soil microbial biomass-C by fumigation-extraction-an automated procedure. Soil Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Wu, J.; O’donnell, A.G.; He, Z.L.; Syers, J.K. Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol. Biochem. 1994, 26, 117–125. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Arylsulfatase Activity of Soils. Soil Sci. Soc. Am. J. 1970, 34, 225–229. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Morche, L. S-Fluxes and Spatial Alterations of Inorganic and Organic Sulfur Fractions in Soil as Well as Their Accumulation and Depletion in the Rhizosphere of Agricultural Crops by Partial Use of the Radioisotope 35S. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2008. (In German). [Google Scholar]
- Verma, B.C.; Swaminathan, K.; Sud, K.C. An improved turbidimetric procedure for the determination of sulphate in plants and soils. Talanta 1977, 24, 49–50. [Google Scholar] [CrossRef]
- Johnson, C.M.; Nishita, H. Microestimation of sulfur in plant materials, soils, and irrigation waters. Anal. Chem. 1952, 24, 736–742. [Google Scholar] [CrossRef]
- Zhi-Hui, Y.; St¨oven, K.; Haneklaus, S.; Singh, B.R.; Schnug, E. Elemental sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 2010, 20, 71–79. [Google Scholar]
- Soltanpour, P.N. Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun. Soil Sci. Plant Anal. 1985, 16, 323–338. [Google Scholar] [CrossRef]
- He, Z.; Senwo, Z.N.; Mankolo, R.N.; Honeycutt, C.W. Phosphorus fractions in poultry litter characterized by sequential fractionation coupled with phosphatase hydrolysis. J. Food Agric. Environ. 2006, 4, 304. [Google Scholar]
- Brooks, P.C.; McGrath, S.P. Effect of metal toxicity on the size of the soil microbial biomass. J. Soil Sci. 1984, 35, 341–346. [Google Scholar] [CrossRef]
- Tandon, H.L.S. Sulphur Research and Agricultural Production in India, 3rd ed.; The Sulphur Institute: Washington, DC, USA, 1991; p. 140. [Google Scholar]
- Khan, N.; Bano, A.; Curá, J.A. Role of Beneficial Microorganisms and Salicylic Acid in Improving Rainfed Agriculture and Future Food Safety. Microorganisms 2020, 8, 1018. [Google Scholar] [CrossRef]
- Khalid, R.; Khan, K.S.; Akram, Z.; Qureshi, R.; Gulfraz, M. Relationship of plant available sulphur with soil characteristics, rainfall and yield levels of oilseed crops in Pothwar Pakistan. Pak. J. Bot. 2011, 43, 2929–2935. [Google Scholar]
- Yang, Z.; Haneklaus, S.; Singh, B.R.; Schnu, E. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 2008, 39, 124–140. [Google Scholar] [CrossRef]
- Chapman, S.J. Thiobacillus population in some agricultural soils. Soil Biol. Biochem. 1990, 22, 479–482. [Google Scholar] [CrossRef]
- ALKahtani, M.D.F.; Attia, K.A.; Hafez, Y.M.; Khan, N.; Eid, A.M.; Ali, M.A.M.; Abdelaal, K.A.A. Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. Agronomy 2020, 10, 1180. [Google Scholar] [CrossRef]
- Bewley, R.J.F.; Stotzky, G. Stimulated acid rain (H2SO4) and microbial activity in soil. Soil Biol. Biochem. 1983, 15, 425–429. [Google Scholar] [CrossRef]
- Maynard, D.G.; Germida, J.J.; Addison, P.A. The effect of elemental sulfur on certain chemical and biological properties of surface organic horizons of a forest soil. Can. J. Res. 1986, 16, 1050–1054. [Google Scholar] [CrossRef]
- Gupta, V.V.S.R.; Germida, J.J. Determination of Microbial Biomass Sulfur in Soil. In Abstracts of the American Society of Agronomy Annual Meeting; ASA: Chicago, IL, USA, 1985; p. 156. [Google Scholar]
- Billah, M.; Khan, M.; Bano, A.; Nisa, S.; Hussain, A.; Dawar, K.M.; Munir, A.; Khan, N. Rock phosphate-enriched compost in combination with Rhizobacteria; A cost-effective source for better soil health and wheat (Triticum aestivum) productivity. Agronomy 2020, 10, 1390. [Google Scholar] [CrossRef]
- Saggar, S.; Bettany, J.R.; Stewart, J.W.B. Measurement of microbial biomass sulfur in soil. Soil Biol. Biochem. 1982, 13, 493–498. [Google Scholar] [CrossRef]
- Wainwright, M.; Nevell, W.; Grayston, S.J. Effects of organic matter on sulfur oxidation in soil and influence of sulfur oxidation on soil nitrification. Plant Soil 1986, 96, 369–376. [Google Scholar] [CrossRef]
- Czaban, J.; Kobus, J. Oxidation of elemental sulfur by bacteria and fungi in soil. Acta Microbiol. Pol. 2000, 49, 135–147. [Google Scholar]
- Xu, H.-B.; Tsukuda, M.; Takahara, Y.; Sato, T.; Gu, J.-D.; Katayama, Y. Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int. Biodeter. Biodegr. 2018, 126, 95–102. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, Y.; Peng, Y.; Chen, W.; Jiang, Y. Organic manure stimulates biological activity and barley growth in soil subject to secondary Stalinization. Soil Biol. Biochem. 2005, 37, 1185–1195. [Google Scholar] [CrossRef]
- Bouranis, D.L.; Venieraki, A.; Chorianopoulou, S.N.; Katinakis, P. Impact of Elemental Sulfur on the Rhizospheric Bacteria of Durum Wheat Crop Cultivated on a Calcareous Soil. Plants 2019, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Siwik-Ziomek, A. Sulfur content and its fractions arylsulfatase activity in lesive soil after changes fertilization. Ekol. Tech. 2005, 13, 233–239. [Google Scholar]
- Khan, A.U.; Ullah, F.; Khan, N.; Mehmood, S.; Fahad, S.; Datta, R.; Irshad, I.; Danish, S.; Saud, S.; Alaraidh, I.A.; et al. Production of Organic Fertilizers from Rocket Seed (Eruca Sativa L.), Chicken Peat and Moringa Oleifera Leaves for Growing Linseed under Water Deficit Stress. Sustainability 2021, 13, 59. [Google Scholar] [CrossRef]
- Klose, S.; Tabatabai, M.A. Arylsulfatase activity of microbial biomass in soils. Soil Sci. Soc. Am. J. 1999, 63, 569–574. [Google Scholar] [CrossRef]
- Leilah, A.A.A.; Khan, N. Interactive Effects of Gibberellic Acid and Nitrogen Fertilization on the Growth, Yield, and Quality of Sugar Beet. Agronomy 2021, 11, 137. [Google Scholar] [CrossRef]
- Pepper, I.L.; Miller, R.H. Comparison of the oxidation of thiosulfate and elemental sulfur by two heterotrophic bacteria and Thiobacillus thiooxidans. Soil Sci. 1978, 126, 9–14. [Google Scholar] [CrossRef]
- Cifuentes, F.R.; Lindemann, W.C. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Sci. Soc. Am. J. 1993, 57, 727–731. [Google Scholar] [CrossRef]
- Lucheta, A.R.; Lambais, M.R. Sulphur in agriculture. Rev. Bras. Ciênc. Solo 2012, 36, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Lara, L.; Medrano-Macías, J.; Pérez-Labrada, F.; Rivas-Martínez, E.; García-Enciso, E.; González-Morales, S.; Juarez-Maldonado, A.; Rincon-Sanchez, F.; Benavides-Mendoza, A. From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules 2019, 24, 2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wang, M.-Y.; Khan, N.; Tan, L.-L.; Yang, S. Potentials, Utilization, and Bioengineering of Plant Growth-Promoting Methylobacterium for Sustainable Agriculture. Sustainability 2021, 13, 3941. [Google Scholar] [CrossRef]
- Ali, S.; Waseem, M.; Hussain, A.; Rizwan, M.; Ahmad, A.; Khan, N. Combined Application of Citric Acid and Cr Resistant Microbes Improved Castor Bean Growth and Photosynthesis while it Alleviated Cr Toxicity by Reducing Cr+6 to Cr3+. Microorganisms 2021, 9, 2499. [Google Scholar] [CrossRef]
- Franz, B.; Lichtenberg, H.; Hormes, J.; Modrow, H.; Dahl, C.; Prange, A. Utilization of solid ‘elemental’sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: A sulfur K-edge X-ray absorption spectroscopy study. Microbiology 2007, 153, 1268–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saren, S.; Barman, S.; Mishra, A.; Saha, D. Effect of added organic matter and sulfur on transformation of different fractions of sulfur in soil. Bioscan 2016, 11, 2399–2403. [Google Scholar]
- Karimizarchi, M.; Aminuddin, H.; Khanif, M.Y.; Radziah, O. Incorporation and transformations of elemental sulfur in high pH soils of Malaysia. Int. J. Soil Sci. 2014, 9, 133–141. [Google Scholar] [CrossRef]
- Niknahad-Gharmakher, H.; Piutti, S.; Machet, J.-M.; Benizri, E.; Recous, S. Mineralization-immobilization of sulfur in a soil during decomposition of plant residues of varied chemical composition and S content. Plant Soil. 2012, 360, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Mar, H.; Arm, S.; Mah, C. Biodynamics of Microbial Biomass Nitrogen and Sulfur in Organic Matter Amended Soil; Bulletin of the Institute of Tropical Agriculture: Kyushu University, Fukuoka, Japan, 2008; Volume 31, pp. 19–29. [Google Scholar]
Soils | pH | EC dS m−1 | CEC (cmol kg−1) | Ca CO3 | TOC | WHC | Textural Class | Total N | Olsen P | NH4OAc K | Available SO42− | AB-DTPA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Class | Zn | Fe | Cu | Mn | |||||||||||
% | (g kg−1) | (mg kg−1) | ||||||||||||||||
Missa | 7.5 | 0.31 | 6.10 | 13.4 | 0.47 | 36 | 37.5 | 54 | 8.5 | Silt loam | 6.2 | 79 | 105 | 9.4 | 2.2 | 2.8 | 0.8 | 23.8 |
Kahuta | 7.2 | 0.92 | 5.08 | 5.3 | 0.33 | 30 | 47.5 | 34 | 18.5 | Sandy loam | 6.7 | 84 | 76 | 7.7 | 2.7 | 1.4 | 0.7 | 26.2 |
Organic amendments | TOC (%) | Moisture % | TOC/TN | TOC/TP | TOC/TS | Total N | Total P | DOC | Total S % | (mg kg−1) | ||||||||
(g kg−1) | ||||||||||||||||||
Farmyard manure (FYM) | 22.4 | 7.9 | 13.9 | 4.8 | 133 | 1.3 | 3.6 | 21.2 | 0.13 | 2.5 | 63.4 | 0.4 | 7.6 | |||||
Poultry litter (PL) | 31.8 | 41.2 | 11.1 | 2.5 | 138 | 2.9 | 12.7 | 24.7 | 0.23 | 18.5 | 5.6 | 0.7 | 1.5 | |||||
Sugarcane filter cake (SF) | 28.6 | 12.2 | 14.0 | 2.9 | 92.3 | 2.1 | 9.7 | 15.9 | 0.31 | 0.7 | 5.0 | 0.7 | 1.1 |
Main Effects | Rate of CO2-C Evolution (mg kg−1 soil day−1) | ΣCO2-C (mg kg−1 soil) | ΣCO2-C/MBC |
---|---|---|---|
Soils (S) | |||
Missa (S1) | 44.01 a | 2464.6 a | 10.85 b |
Kahuta (S2) | 36.78 b | 2059.7 b | 12.88 a |
HSD | 0.62 | 34.63 | 0.31 |
Treatments (T) | |||
Control (T1) | 23.36 e | 1308.2 e | 11.19 cd |
ES (T2) | 25.73 d | 1440.9 d | 10.78 d |
ES+FYM (T3) | 38.71 c | 2167.6 c | 11.77 bc |
ES+PL (T4) | 59.86 a | 3352.3 a | 12.18 b |
ES+SF (T5) | 54.32 b | 3041.7 b | 13.41 a |
HSD | 1.41 | 78.76 | 0.69 |
Soils (S) × Treatments (T) | |||
S1 × T1 | 24.67 h | 1381.6 h | 9.59 d |
S1 × T2 | 27.86 g | 1560.4 g | 9.61 d |
S1 × T3 | 43.13 e | 2415.4 e | 11.44 c |
S1 × T4 | 65.43 a | 3664.0 a | 11.79 bc |
S1 × T5 | 58.96 b | 3301.5 b | 11.82 bc |
S2 × T1 | 22.05 i | 1234.8 i | 12.78 b |
S2 × T2 | 23.59 hi | 1321.4 hi | 11.96 bc |
S2 × T3 | 34.28 f | 1919.8 f | 12.09 bc |
S2 × T4 | 54.29 c | 3040.6 c | 12.57 bc |
S2 × T5 | 49.68 d | 2782.0 d | 14.99 a |
HSD | 2.36 | 132.02 | 1.17 |
CV | 1.99 | 1.99 | 3.37 |
Main Effects | DOC (mg kg−1 soil) | MBC (mg kg−1 soil) | MBS (mg kg−1 soil) | DHA (mg INF kg−1 soil) | ASA (µg p-Nitrophenol kg−1 s−1) | MBC/MBS | DHA/MBC | ASA/MBC |
---|---|---|---|---|---|---|---|---|
Soils (S) | ||||||||
Missa (S1) | 107.1 a | 219.9 a | 4.19 a | 9.24 a | 2.19 a | 56.05 a | 0.047 a | 0.010 b |
Kahuta (S2) | 76.8 b | 157.0 b | 3.02 b | 7.10 b | 1.73 b | 54.59 b | 0.042 b | 0.012 a |
HSD | 0.75 | 2.99 | 0.03 | 0.11 | 0.025 | 1.18 | 0.0001 | 0.0003 |
Treatments (T) | ||||||||
Control (T1) | 67.1 d | 119.8 e | 1.87 e | 4.62 d | 0.99 d | 64.59 a | 0.040 d | 0.0086 c |
ES (T2) | 65.1 e | 135.8 d | 2.08 d | 4.69 d | 1.04 d | 65.68 a | 0.036 e | 0.0079 d |
ES + FYM(T3) | 85.5 c | 182.8 c | 3.85 c | 10.25 b | 2.29 c | 49.39 c | 0.057 a | 0.0131 a |
ES + PL (T4) | 131.0 a | 274.2 a | 4.65 b | 11.83 a | 2.59 b | 54.98 b | 0.046 b | 0.0118 b |
ES + SF(T5) | 111.2 b | 229.8 b | 5.58 a | 9.47 c | 2.89 a | 41.95 d | 0.044 c | 0.0126 a |
HSD | 1.66 | 6.62 | 0.07 | 0.24 | 0.052 | 2.61 | 0.0021 | 0.0006 |
Sampling days (D) | ||||||||
0 day | 102.1 a | 184.7 c | 2.92 e | 4.80 e | 0.99 e | 61.98 a | 0.029 d | 0.0061 d |
14 day | 80.5 d | 247.6 a | 4.77 a | 7.13 d | 1.44 d | 54.28 b | 0.029 d | 0.0060 d |
28 day | 90.7 c | 192.7 b | 3.99 b | 11.84 a | 2.54 b | 50.42 c | 0.050 c | 0.0126 c |
42 day | 94.7 b | 165.4 d | 3.27 c | 9.37 b | 2.63 a | 55.08 b | 0.055 b | 0.0152 a |
56 day | 91.8 c | 152.0 e | 3.07 d | 7.71 c | 2.22 c | 54.81 b | 0.059 a | 0.0141 b |
HSD | 1.66 | 6.62 | 0.07 | 0.24 | 0.052 | 2.61 | 0.0021 | 0.0006 |
Analysis of variance (p-value) | ||||||||
S | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0551 | 0.0000 | 0.0000 |
O | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
D | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
S × O | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
S × D | 0.0001 | 0.8903 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 |
O × D | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
S × O × D | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 |
Main Effects | Water Soluble-S (mg kg−1 soil) | Adsorbed-S (mg kg−1 soil) | Occluded-S (mg kg−1 soil) | Carbon Bonded-S (mg kg−1 soil) | Ester-Bonded-S (mg kg−1 soil) | Organic S (mg kg−1 soil) | Total S (mg kg−1 soil) |
---|---|---|---|---|---|---|---|
Soils (S) | |||||||
Missa (S1) | 13.8 a | 3.89 a | 25.1 a | 60.1 a | 26.16 a | 86.2 a | 146.95 a |
Kahuta (S2) | 11.8 b | 2.21 b | 19.3 b | 54.1 b | 17.40 b | 71.55 b | 133.63 b |
HSD | 0.14 | 0.09 | 0.20 | 0.65 | 0.38 | 0.55 | 1.31 |
Treatments (T) | |||||||
Control (T1) | 6.9 e | 1.83 e | 19.7 e | 45.6 e | 18.4 d | 64.07 e | 89.2 e |
ES (T2) | 9.4 d | 2.09 d | 22.4 b | 51.5 d | 19.8 c | 71.31 d | 137.5 d |
ES+FYM(T3) | 13.1 c | 2.98 c | 20.9 d | 58.5 c | 21.9 b | 80.41 c | 147.0 c |
ES+PL (T4) | 16.7 b | 3.70 b | 21.8 c | 63.7 b | 24.7 a | 88.39 b | 158.1 b |
ES+SF (T5) | 18.1 a | 4.67 a | 25.9 a | 66.2 a | 24.1 a | 90.28 a | 169.7 a |
HSD | 0.31 | 0.19 | 0.45 | 1.46 | 0.85 | 1.22 | 2.91 |
Sampling days (D) | |||||||
0 day | 8.8 c | 2.69 c | 24.0 a | 56.9 b | 21.9 b | 78.8 b | 148.2 a |
28 day | 14.3 b | 3.00 b | 21.6 b | 58.1 a | 23.0 a | 81.1 a | 136.7 b |
56 day | 15.3 a | 3.46 a | 20.9 c | 56.3 b | 20.4 c | 76.7 c | 136.0 b |
HSD | 0.21 | 0.13 | 0.29 | 0.96 | 0.56 | 0.67 | 1.93 |
Analysis of variance (p-value) | |||||||
S | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
O | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
D | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
S × O | 0.0000 | 0.0000 | 0.0000 | 0.0277 | 0.4400 | 0.0418 | 0.0076 |
S × D | 0.0202 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5299 | 0.7377 |
O × D | 0.0000 | 0.0000 | 0.2833 | 0.0000 | 0.0075 | 0.0000 | 0.0000 |
S × O × D | 0.4159 | 0.2161 | 0.0061 | 0.0035 | 0.2199 | 0.0036 | 0.9837 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, K.M.; Khan, K.S.; Billah, M.; Akhtar, M.S.; Rukh, S.; Alam, S.; Munir, A.; Mahmood Aulakh, A.; Rahim, M.; Qaisrani, M.M.; et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy 2021, 11, 2514. https://doi.org/10.3390/agronomy11122514
Malik KM, Khan KS, Billah M, Akhtar MS, Rukh S, Alam S, Munir A, Mahmood Aulakh A, Rahim M, Qaisrani MM, et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy. 2021; 11(12):2514. https://doi.org/10.3390/agronomy11122514
Chicago/Turabian StyleMalik, Kouser Majeed, Khalid Saifullah Khan, Motsim Billah, Mohammad Saleem Akhtar, Shah Rukh, Sadia Alam, Asia Munir, Azhar Mahmood Aulakh, Majid Rahim, Muther Mansoor Qaisrani, and et al. 2021. "Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils" Agronomy 11, no. 12: 2514. https://doi.org/10.3390/agronomy11122514
APA StyleMalik, K. M., Khan, K. S., Billah, M., Akhtar, M. S., Rukh, S., Alam, S., Munir, A., Mahmood Aulakh, A., Rahim, M., Qaisrani, M. M., & Khan, N. (2021). Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy, 11(12), 2514. https://doi.org/10.3390/agronomy11122514