The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces
Abstract
:1. Introduction
2. Materials and Methods
- Group C—control group without added sorbents;
- Group E1—with 3% addition of BC;
- Group E2—with 3% addition of bentonite;
- Group E3—with 3% addition of zeolite;
- Group E4—with 3% addition of a mixture of sorbents consisting of bentonite, zeolite and perlite in a 1:1:1 ratio;
- Group E5—with 3% addition of a mixture of bentonite and zeolite in a 1:1 ratio;
- Group E6—with 3% addition of perlite.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brennan, R.B.; Healy, M.G.; Fenton, O.; Lanigan, G.J. The effect of chemical amendments used for phosphorus abatement on greenhouse gas and ammonia emissions from dairy cattle slurry: Synergies and pollution swapping. PLoS ONE 2015, 10, e0111965. [Google Scholar]
- Mackiewicz, E.; Szynkowska, M.I.; Maniukiewicz, W.; Paryjczak, T. Removal of ammonia by the catalytic oxidation on MexOy/zeolite type catalysts. Przem. Chem. 2011, 90, 896–899. [Google Scholar]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Ossowski, M.; Stasińska, B.; Kułażyński, M. Estimation of ammonia emissions from a dairy farm using a computer program. Carbon Manag. 2020, 11, 195–201. [Google Scholar] [CrossRef]
- United Nations Population Division—World Population Prospects, 2019 Revision Population Database. Available online: https://population.un.org/wpp/ (accessed on 15 August 2021).
- Food and Agriculture Organization (FAO) of the United Nations—Climate Change. Available online: www.fao.org/climate-change (accessed on 16 August 2021).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. Technical Guidance to Prepare National Emission Inventories. Available online: https://www.eea.europa.eu//publications/emep-eea-guidebook-2019 (accessed on 20 August 2021).
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- ColdOx™ Energy Efficient Removal of VOC and Odour. Available online: http://www.centriair.com/content/uploads/2016/11/ColdOx-Energy-efficient-removal-of-VOC-and-odour.pdf (accessed on 20 August 2021).
- Grant, R.H.; Boehm, M.T. Ammonia emissions from differing manure storage facilities at two midwestern free-stall dairies. Atmosphere 2020, 11, 1108. [Google Scholar] [CrossRef]
- Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C.R. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 2012, 9, 1611–1632. [Google Scholar] [CrossRef] [Green Version]
- Emmerling, C.; Krein, A.; Junk, J. Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. J. Clean. Prod. 2016, 131, 296–307. [Google Scholar] [CrossRef]
- Fangueiro, D.; Pereira, J.L.; Macedo, S.; Trindade, H.; Vasconcelos, E.; Coutinho, J. Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2 and CH4 emissions and crop uptake. Geoderma 2017, 306, 160–166. [Google Scholar] [CrossRef]
- Covali, P.; Raave, H.; Escuer-Gatius, J.; Kaasik, A.; Tõnutare, T.; Astover, A. The effect of untreated and acidified biochar on NH3-N emissions from slurry digestate. Sustainability 2021, 13, 837. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, Q. Fluxes and influencing factors of ammonia emission from monosodium glutamate production in Shenyang, China. Bull. Environ. Contam. Toxicol. 2010, 85, 279–286. [Google Scholar] [CrossRef]
- Nowakowicz-Debek, B.; Wlazlo, L.; Tymczyna, L.; Chmielowiec-Korzeniowska, A. Absorption of ammonia from the faeces of mink by using sodium bentonite. Przem. Chem. 2011, 90, 958–960. [Google Scholar]
- Trckova, M.; Matlova, L.; Dvorska, L.; Pavlik, I. Kaolin, bentonite, and zeolites as feed supplements for animals: Health advantages and risks. Vet. Med.-Czech 2004, 49, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Khachlouf, K.; Hamed, H.; Gdoura, R.; Gargouri, A. Effects of zeolite supplementation on dairy cow production and ruminal parameters–a review. Ann. Anim. Sci. 2018, 18, 857–877. [Google Scholar] [CrossRef] [Green Version]
- Wlazlo, L.; Nowakowicz-Debek, B.; Tymczyna, L.; Kwiecien, M.; Bis-Wencel, H.; Trawinska, B. Use of montmorillonite as a sorbent for ammonia. Przem. Chem. 2014, 93, 1383–1385. [Google Scholar]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Kapica, J.; Kwiecień, M.; Pawlak, H. Removal of ammonia from poultry manure by aluminosilicates. J. Environ. Manag. 2016, 183, 722–725. [Google Scholar] [CrossRef]
- Gutarowska, B.; Matusiak, K.; Borowski, S.; Rajkowska, A.; Brycki, B. Removal of odorous compounds from poultry manure by microorganisms on perlite–bentonite carrier. J. Environ. Manag. 2014, 141, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Nuernberg, G.B.; Moreira, M.A.; Ernani, P.R.; Almeida, J.A.; Maciel, T.M. Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter. J. Environ. Manag. 2016, 183, 667–672. [Google Scholar] [CrossRef]
- Berthelot, M.P.E. Berthelot’s reaction mechanism. Rep. Chim. Appl. 1859, 2884, 217. [Google Scholar]
- Sommer, S.G.; Webb, J.; Hutchings, N.D. New emission factors for calculation of ammonia volatilization from European livestock manure management systems. Front. Sustain. Food Syst. 2019, 3, 101. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Flechard, C.; Fauvel, Y.; Häni, C.; Sintermann, J.; Jocher, M.; Menzi, H.; Hensen, A.; Neftel, A. Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling. Atmos. Meas. Tech. 2017, 10, 1875–1892. [Google Scholar] [CrossRef] [Green Version]
- Voglmeier, K.; Jocher, M.; Häni, C.; Ammann, C. Ammonia emission measurements of an intensively grazed pasture. Biogeosciences 2018, 15, 4593–4608. [Google Scholar] [CrossRef] [Green Version]
- European Union Emission Inventory Report 1990–2018 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP). Available online: https://www.eea.europa.eu/publications/european-union-emission-inventory-report-1990-2018 (accessed on 25 August 2021).
- Backes, A.M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 2016, 126, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Milic, D.; Tofant, A.; Vucemilo, M.; Venglovsky, J.; Ondrasovicova, O. The performance of natural zeolite as a feed additive in reducing aerial ammonia and slurry ammonium ion concentration in the pig farm nursery. Folia Vet. 2005, 49, 23–25. [Google Scholar]
- Ramos-Morales, E.; De La Fuente, G.; Duval, S.; Wehrli, C.; Bouillon, M.; Lahmann, M.; Preskett, D.; Braganca, R.; Newbold, C.J. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Front. Microbiol. 2017, 8, 399. [Google Scholar] [CrossRef]
- VuCemilo, M.; Tofant, A.; Hatlina, S.; Baral, D. Effect of Yucca schidigera extract, a feed additive, to reduce air pollutants in pig fattening units. In Proceedings of the “inbetween” Congress of the ISAH: Animal Production in Europe, Animal Production in Europe: The Way Forward in a Changing World “in-between” Congress of the International Society for Animal, Saint-Malo, France, 11–13 October 2004; Volume 1, p. 83. [Google Scholar]
- Belanche, A.; Ramos-Morales, E.; Newbold, C.J. In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. J. Sci. Food Agric. 2016, 96, 3069–3078. [Google Scholar] [CrossRef] [Green Version]
- Chakir, A.; Bessiere, J.; Kacemi, K.E.; Marouf, B. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J. Hazard. Mater. 2002, 95, 29–46. [Google Scholar] [CrossRef]
- Shah, G.A.; Shah, G.M.; Rashid, M.I.; Groot, J.C.; Traore, B.; Lantinga, E.A. Bedding additives reduce ammonia emission and improve crop N uptake after soil application of solid cattle manure. J. Environ. Manag. 2018, 209, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Ellersdorfer, M.; Pesendorfer, S.; Stocker, K. Nitrogen recovery from swine manure using a zeolite-based process. Processes 2020, 8, 1515. [Google Scholar] [CrossRef]
- Montégut, G.; Michelin, L.; Brendlé, J.; Lebeau, B.; Patarin, J. Ammonium and potassium removal from swine liquid manure using clinoptilolite, chabazite and faujasite zeolites. J. Environ. Manag. 2016, 167, 147–155. [Google Scholar] [CrossRef]
- Krounbi, L.; Enders, A.; Gaunt, J.; Ball, M.; Lehmann, J. Plant uptake of nitrogen adsorbed to biochars made from dairy manure. Sci. Rep. 2021, 11, 15001. [Google Scholar] [CrossRef]
- Marlon, V.R.; Alon, R.; Ashaki, A.R. Thermochemical analysis of ammonia gas sorption by struvite from livestock wastes and comparison with biochar and metal–organic framework sorbents. Environ. Sci. Technol. 2020, 54, 13264–13273. [Google Scholar]
- Kaikiti, K.; Stylianou, M.; Agapiou, A. Use of biochar for the sorption of volatile organic compounds (VOCs) emitted from cattle manure. Environ. Sci. Pollut. Res. 2021, 28, 59141–59149. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Koziel, J.A.; Lee, M.; O’Brien, S.C.; Li, P.; Brown, R.C. Mitigation of acute H2S and NH3 emissions from swine manure during agitation using pelletized biochar. In Proceedings of the 2021 ASABE Annual International Virtual Meeting, St. Joseph, MI, USA, 12–16 July 2021; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2021; p. 2100087. [Google Scholar]
- Sepperer, T.; Tondi, G.; Petutschnigg, A.; Young, T.M.; Steiner, K. Mitigation of ammonia emissions from cattle manure slurry by tannins and tannin-based polymers. Biomolecules 2020, 10, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Period | C | E1 | E2 | E3 | E4 | E5 | E6 |
---|---|---|---|---|---|---|---|
I | 10.54 ± 0.96 a | 6.33 ± 0.77 bc | 8.71 ± 0.85 bc | 10.51 ± 1.36 | 11.49 ± 1.19 | 9.78 ± 0.68 | 11.09 ± 1.06 |
II | 11.66 ± 0.97 a | 6.75 ± 0.49 bc | 9.58 ± 1.22 bc | 10.33 ± 1.21 | 11.21 ± 0.91 | 9.03 ± 0.78 bc | 10.68 ± 0.54 |
III | 13.14 ± 1.10 a | 6.27 ± 0.49 bc | 8.08 ± 1.90 bc | 10.33 ± 1.04 bc | 11.05 ± 0.34 bc | 8.20 ± 0.69 bc | 11.06 ± 0.70 bc |
IV | 16.85 ± 0.60 a | 10.57 ± 1.05 bc | 14.93 ± 0.51 bc | 15.78 ± 0.94 | 15.30 ± 1.06 bc | 12.73 ± 1.09 bc | 15.65 ± 1.16 |
V | 18.24 ± 3.27 a | 10.71 ± 0.58 bc | 16.11 ± 0.37 | 16.68 ± 0.89 | 15.20 ± 0.30 | 13.06 ± 2.49 bc | 16.21 ± 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymula, A.; Wlazło, Ł.; Sasáková, N.; Wnuk, W.; Nowakowicz-Dębek, B. The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces. Agronomy 2021, 11, 2543. https://doi.org/10.3390/agronomy11122543
Szymula A, Wlazło Ł, Sasáková N, Wnuk W, Nowakowicz-Dębek B. The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces. Agronomy. 2021; 11(12):2543. https://doi.org/10.3390/agronomy11122543
Chicago/Turabian StyleSzymula, Agnieszka, Łukasz Wlazło, Naďa Sasáková, Wioletta Wnuk, and Bożena Nowakowicz-Dębek. 2021. "The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces" Agronomy 11, no. 12: 2543. https://doi.org/10.3390/agronomy11122543
APA StyleSzymula, A., Wlazło, Ł., Sasáková, N., Wnuk, W., & Nowakowicz-Dębek, B. (2021). The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces. Agronomy, 11(12), 2543. https://doi.org/10.3390/agronomy11122543