Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate
Abstract
:1. Introduction
2. The Ten Ways
2.1. General-Purpose Genotype
2.2. Life History Strategies
2.3. Rapid Evolution
2.3.1. Germination
2.3.2. Growth
2.3.3. Competitive Ability
2.3.4. Breeding System
2.3.5. Seed Production
2.3.6. Dispersal
2.4. Epigenetics
2.5. Hybridization
2.6. Herbicide Resistance
2.7. Herbicide Tolerance
2.8. Cropping Systems Vulnerability
2.9. Co-Evolution with Human Management
2.10. Riding the Climate Change Storm
3. Conclusions
4. Management Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darwin, C. On The Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life; J. Murray: London, UK, 1859. [Google Scholar]
- Koch, M.A.; Meyer, N.; Engelhardt, M.; Thiv, M.; Bernhardt, K.G.; Michling, F. Morphological and genetic variation of highly endangered Bromus species and the status of these Neolithic weeds in Central Europe. Plant Syst. Evol. 2016, 302, 515–525. [Google Scholar] [CrossRef]
- Rühl, A.T.; Eckstein, R.L.; Otte, A.; Donath, T.W. Distinct germination response of endangered and common arable weeds to reduced water potential. Plant Biol. 2016, 18, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Quammen, D. Planet of Weeds. Harper’s Mag. 1998, 275, 57–69. [Google Scholar]
- Makra, L.; Matyasovszky, I.; Hufnagel, L.; Tusnady, G. The history of ragweed in the world. Appl. Ecol. Environ. Res. 2015, 13, 489–512. [Google Scholar]
- Lavoie, C. The impact of invasive knotweed species (Reynoutria spp.) on the environment: Review and research perspectives. Biol. Invasions 2017, 19, 2319–2337. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Zulfiqar, U.; Sadia, S.; Bhowmik, P.; Chauhan, B.S. A gobal perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: Two troublesome agricultural and environmental weeds. Environ. Sci. Pollut. Res. 2019, 26, 5357–5371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Y.; Peng, S.; Zobel, K. Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 2014, 9, e105500. [Google Scholar] [CrossRef] [Green Version]
- Day, M.D.; Clements, D.R.; Gile, C.; Senaratne, W.K.; Shen, S.; Weston, L.A.; Zhang, F. Biology and Impacts of Pacific Islands Invasive Species. 13. Mikania micrantha Kunth (Asteraceae) 1. Pac. Sci. 2016, 70, 257–285. [Google Scholar]
- Kaur, M.; Aggarwal, N.K.; Kumar, V.; Dhiman, R. Effects and management of Parthenium hysterophorus: A weed of global significance. Int. Sch. Res. Not. 2014, 1–12. [Google Scholar]
- Ziska, L.H.; Blumenthal, D.M.; Franks, S.J. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Sci. Manag. 2019, 13, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.G. Characteristics and modes of origin of weeds. In The Genetics of Colonizing Species; Baker, H.G., Stebbins, G.L., Eds.; Academic Press: New York, NY, USA, 1965; pp. 147–168. [Google Scholar]
- Baker, H.G. The evolution of weeds. Annu. Rev. Ecol. Syst. 1974, 5, 1–24. [Google Scholar] [CrossRef]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.R.; DiTommaso, A.; Jordan, N.; Booth, B.D.; Cardina, J.; Doohan, D.; Mohler, C.L.; Murphy, S.D.; Swanton, C.J. Adaptability of plants invading North American cropland. Agric. Ecos. Environ. 2004, 104, 379–398. [Google Scholar] [CrossRef]
- Darmency, H. Does genetic variability in weeds respond to non-chemical selection pressure in arable fields? Weed Res. 2019, 59, 260–264. [Google Scholar] [CrossRef]
- Geng, Y.P.; Pan, X.Y.; Xu, C.Y.; Zhang, W.J.; Li, B.; Chen, J.K.; Lu, B.R.; Song, Z.P. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions 2007, 9, 245–256. [Google Scholar] [CrossRef]
- Mal, T.K.; Lovett-Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 2005, 92, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Caton, B.P.; Foin, T.C.; Hill, J.E. Phenotypic plasticity of Ammannia spp. in competition with rice. Weed Res. 1997, 37, 33–38. [Google Scholar] [CrossRef]
- Poff, N.L. Ecological response to and management of increased flooding caused by climate change. Philos. Trans. R. Soc. A 2002, 360, 1497–1510. [Google Scholar] [CrossRef]
- Curry, H.A. Breeding uniformity and banking diversity: The genescapes of industrial agriculture, 1935–1970. Glob. Environ. 2017, 10, 83–113. [Google Scholar] [CrossRef] [Green Version]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2014, 7, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Swanton, C.J.; Clements, D.R.; Derksen, D.A. Weed succession under conservation tillage: A hierarchical framework for research and management. Weed Technol. 1993, 7, 286–297. [Google Scholar] [CrossRef]
- Clements, D.R.; Benoit, D.L.; Murphy, S.D.; Swanton, C.J. Tillage effects on weed seed return and seedbank composition. Weed Sci. 1996, 44, 314–322. [Google Scholar] [CrossRef]
- Swanton, C.J.; Booth, B.D.; Chandler, K.; Clements, D.R.; Shrestha, A. Management in a modified no-tillage corn–soybean–wheat rotation influences weed population and community dynamics. Weed Sci. 2006, 54, 47–58. [Google Scholar] [CrossRef]
- Ziska, L.H. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J. Exp. Bot. 2003, 54, 395–404. [Google Scholar] [CrossRef]
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Hunt, E.R.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Chang. 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Neve, P.; Vila-Aiub, M.; Roux, F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009, 184, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef] [Green Version]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Franks, S.J.; Weis, A.E. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. J. Evol. Biol. 2008, 21, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Buswell, J.M.; Moles, A.T.; Hartley, S. Is rapid evolution common in introduced plant species? J. Ecol. 2011, 99, 214–224. [Google Scholar] [CrossRef]
- Hernández, F.; Poverene, M.; Garayalde, A.; Presotto, A. Re-establishment of latitudinal clines and local adaptation within the invaded area suggest rapid evolution of seed traits in Argentinean sunflower (Helianthus annuus L.). Biol. Invasions 2019, 21, 2599–2612. [Google Scholar] [CrossRef]
- Sun, Y.; Roderick, G.K. Rapid evolution of invasive traits facilitates the invasion of common ragweed, Ambrosia artemisiifolia. J. Ecol. 2019, 107, 2673–2687. [Google Scholar] [CrossRef] [Green Version]
- Clements, D.R.; DiTommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 2011, 51, 227–240. [Google Scholar] [CrossRef]
- Ravet, K.; Patterson, E.L.; Krähmer, H.; Hamouzová, K.; Fan, L.; Jasieniuk, M.; Lawton-Rauh, A.; Malone, J.M.; McElroy, J.S.; Merotto, A., Jr.; et al. The power and potential of genomics in weed biology and management. Pest Manag. Sci. 2018, 74, 2216–2225. [Google Scholar] [CrossRef]
- Oduor, A.M.; Leimu, R.; van Kleunen, M. Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J. Ecol. 2016, 104, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Dalgleish, H.J.; Koons, D.N.; Adler, P.B. Can life-history traits predict the response of forb populations to changes in climate variability? J. Ecol. 2010, 98, 209–217. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.E.N.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Gu, X.Y.; Kianian, S.F.; Foley, M.E. Dormancy genes from weedy rice respond divergently to seed development environments. Genetics 2006, 172, 1199–1211. [Google Scholar] [CrossRef]
- Nadir, S.; Xiong, H.B.; Zhu, Q.; Zhang, X.L.; Xu, H.Y.; Li, J.; Dongchen, W.; Henry, D.; Guo, X.Q.; Khan, S.; et al. Weedy rice in sustainable rice production. A review. Agron. Sustain. Dev. 2017, 37, 46. [Google Scholar] [CrossRef]
- Thurber, C.S.; Hepler, P.K.; Caicedo, A.L. Timing is everything: Early degradation of abscission layer is associated with increased seed shattering in US weedy rice. BMC Plant Biol. 2011, 11, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua, C.B.; Basu, S.; Pereira, A.; Tseng, T.M.; Zimmer, P.D.; Burgos, N.R. Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PLoS ONE 2015, 10, e0132100. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lu, E.; Guo, Q.; Zan, Q.; Wei, P.; Jiang, L.; Xu, H.; Zhong, T. Evaluation of the controlling methods and strategies for Mikania micrantha H. B. K. Shengtai Xuebao/Acta Ecol. Sin. 2012, 32, 3240–3251. [Google Scholar]
- Liu, B.; Yan, J.; Li, W.; Yin, L.; Li, P.; Yu, H.; Xing, L.; Cai, M.; Wang, H.; Zhao, M.; et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grossman, J.D.; Rice, K.J. Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mojave Desert FACE site. Ecol. Lett. 2014, 17, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Franks, S.J.; Hamann, E.; Weis, A.E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl. 2018, 11, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H. Could recent increases in atmospheric CO2 have acted as a selection factor in Avena fatua populations? A case study of cultivated and wild oat competition. Weed Res. 2017, 57, 399–405. [Google Scholar] [CrossRef]
- Blossey, B.; Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants—A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Felker-Quinn, E.; Schweitzer, J.A.; Bailey, J.K. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol. Evol. 2013, 3, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, X.; Blumenthal, D.; van Kleunen, M.; Liu, M.; Li, B. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 2018, 99, 866–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Etten, M.L.; Conner, J.K.; Chang, S.M.; Baucom, R.S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 2017, 7, 2636–2642. [Google Scholar] [CrossRef]
- Barrett, S.C.; Colautti, R.I.; Eckert, C.G. Plant reproductive systems and evolution during biological invasion. Mol. Ecol. 2008, 17, 373–383. [Google Scholar] [CrossRef]
- Gillies, S.; Clements, D.R.; Grenz, J. Knotweed (Fallopia sp.) invasion of North America utilizes hybridization, epigenetics, seed dispersal (unexpectedly) and an arsenal of physiological tactics. Invasive Plant Sci. Manag. 2016, 9, 71–80. [Google Scholar] [CrossRef]
- Barrett, S.C.H.; Morgan, M.T.; Husband, B.C. The dissolution of a complex genetic polymorphism: The evolution of self-fertilization in tristylous Eichhornia paniculata. Evolution 1989, 43, 1398–1416. [Google Scholar] [CrossRef]
- Pannell, J.R. Evolution of the mating system in colonizing plants. Mol. Ecol. 2015, 24, 2018–2037. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Bajwa, A.A.; Navie, S.; O’donnell, C.; Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: The effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 2017, 24, 10727–10739. [Google Scholar] [CrossRef]
- Chahal, P.S.; Irmak, S.; Jugulam, M.; Jhala, A.J. Evaluating effect of degree of water stress on growth and fecundity of Palmer amaranth (Amaranthus palmeri) using soil moisture sensors. Weed Sci. 2018, 66, 738–745. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. Growth and reproduction of junglerice (Echinochloa colona) in response to water stress. Weed Sci. 2010, 58, 132–135. [Google Scholar] [CrossRef]
- Roché, C.T.; Thill, D.C.; Shafii, B. Reproductive phenology in yellow starthistle (Centaurea solstitialis). Weed Sci. 1997, 45, 763–770. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Young, S.L.; Clements, D.R.; DiTommaso, A. Climate dynamics, invader fitness, and ecosystem resistance in an invasion-factor framework. Invasive Plant Sci. Manag. 2017, 10, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Dlugosch, K.M.; Cang, F.A.; Barker, B.S.; Andonian, K.; Swope, S.M.; Rieseberg, L.H. Evolution of invasiveness through increased resource use in a vacant niche. Nat. Plants 2015, 1, 5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Peng, S.; Chen, B.; Liao, H.; Huang, Q.; Lin, Z.; Liu, G. Rapid evolution of dispersal-related traits during range expansion of an invasive vine Mikania micrantha. Oikos 2015, 124, 1023–1030. [Google Scholar] [CrossRef]
- Tabassum, S.; Leishman, M.R. Have your cake and eat it too: Greater dispersal ability and faster germination towards range edges of an invasive plant species in eastern Australia. Biol. Invasions 2018, 20, 1199–1210. [Google Scholar] [CrossRef]
- Tabassum, S.; Leishman, M.R. It doesn’t take two to tango: Increased capacity for self-fertilization towards range edges of two coastal invasive plant species in eastern Australia. Biol. Invasions 2019, 21, 2489–2501. [Google Scholar] [CrossRef]
- Hargreaves, A.L.; Eckert, C.G. Evolution of dispersal and mating systems along geographic gradients: Implications for shifting ranges. Funct. Ecol. 2014, 28, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Hamaoui-Laguel, L.; Vautard, R.; Liu, L.; Solmon, F.; Viovy, N.; Khvorostyanov, D.; Essl, F.; Chuine, I.; Colette, A.; Semenov, M.A.; et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat. Clim. Chang. 2015, 5, 766–771. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Asensi-Fabado, M.A.; Amtmann, A.; Perrella, G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. Biochim. Biophys. Acta Gene. Regul. Mech. 2017, 1860, 106–122. [Google Scholar] [CrossRef] [Green Version]
- Rutowicz, K.; Puzio, M.; Halibart-Puzio, J. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol. 2015, 169, 2080–2101. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; To, T.K.; Ishida, J.; Matsui, A.; Kimura, H.; Seki, M. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol. 2012, 53, 847–856. [Google Scholar] [CrossRef]
- Dubin, M.J.; Zhang, P.; Meng, D.; Remigereau, M.S.; Osborne, E.J.; Casale, P.; Drewe, P.; Kahles, A.; Jean, G.; Vilhjálmsson, B.; et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 2015, 4, e05255. [Google Scholar] [CrossRef] [PubMed]
- Steward, N.; Ito, M.; Yamaguchi, Y.; Koizumi, N.; Sano, H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem. 2002, 277, 37741–37746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibowo, A.; Becker, C.; Marconi, G.; Durr, J.; Price, J.; Hagmann, J.; Papareddy, R.; Putra, H.; Kageyama, J.; Becker, J.; et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 2016, 5, e13546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labra, M.; Vannini, C.; Bracale, M.; Sala, F. Methylation changes in specific sequences in response to water deficit. Plant Biosyst. 2002, 136, 269–275. [Google Scholar] [CrossRef]
- Aina, R.; Sgorbati, S.; Santagostino, A.; Labra, M.; Ghiani, A.; Citterio, S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol. Plantarum 2004, 121, 472–480. [Google Scholar] [CrossRef]
- Shi, W.; Hu, X.; Chen, X.; Ou, X.; Yang, J.; Geng, Y. Increased population epigenetic diversity of the clonal invasive species Alternanthera philoxeroides in response to salinity stress. Genes Genet. Syst. 2018, 93, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Richards, C.L.; Schrey, A.W.; Pigliucci, M.; Vellend, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 2012, 15, 1016–1025. [Google Scholar] [CrossRef]
- Shi, W.; Chen, X.; Gao, L.; Xu, C.Y.L.; Ou, X.; Bossdorf, O.; Yang, J.; Geng, Y. Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. 2019, 9, 1851. [Google Scholar] [CrossRef] [Green Version]
- Pecinka, A.; Scheid, O.M. Stress-induced chromatin changes: A critical view on their heritability. Plant Cell Physiol. 2012, 53, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Buhk, C.; Thielsch, A. Hybridisation boosts the invasion of an alien species complex: Insights into future invasiveness. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 274–283. [Google Scholar] [CrossRef]
- Gaskin, J.; Schwarzländer, M.; Grevstad, F.; Haverhals, M.; Bourchier, R.; Miller, T. Extreme differences in population structure and genetic diversity for three invasive congeners: Knotweeds in western North America. Biol. Invasions 2014, 16, 2127–2136. [Google Scholar] [CrossRef]
- Parepa, M.; Fischer, M.; Krebs, C.; Bossdorf, O. Hybridization increases invasive knotweed success. Evol. Appl. 2014, 7, 413. [Google Scholar] [CrossRef] [PubMed]
- Prentis, P.J.; Wilson, J.R.U.; Dormontt, E.E.; Richardson, D.M. Adaptive evolution in invasive species. Trends Plant Sci. 2008, 13, 288–294. [Google Scholar] [CrossRef] [PubMed]
- McCartney, K.R.; Kumar, S.; Sing, S.E.; Ward, S.M. Using invaded-range species distribution modeling to estimate the potential distribution of Linaria species and their hybrids in the U.S. northern Rockies. Invasive Plant Sci. Manag. 2019, 12, 97–111. [Google Scholar] [CrossRef]
- Turner, M. Viability and invasive potential of hybrids between yellow toadflax (Linaria vulgaris) and Dalmation toadflax (Linaria dalmatica). Fort Collins CO Colo. State Univ. Dep. Soil Crop Sci. Diss. 2012, 1–149. [Google Scholar]
- Zelaya, I.A.; Owen, M.D.K.; VanGessel, M.J. Transfer of glyphosate resistance: Evidence of hybridization in Conyza (Asteraceae). Am. J. Botany 2007, 94, 660–673. [Google Scholar] [CrossRef] [Green Version]
- Mithila, J.; Hall, J.C. Transfer of auxinic herbicide resistance from Brassica kaber to Brassica juncea and Brassica rapa through embryo rescue. In Vitro Cell. Dev. Biol. Plant 2013, 49, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xia, H.; Yang, X.; Xu, T.; Si, H.J.; Cai, X.X.; Wang, F.; Su, J.; Snow, A.A.; Lu, B.R. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol. 2014, 202, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, N.; Guadagnuolo, R.; Lappe, S.; Pasche, S.; Parisod, C.; Felber, F. Gene flow between wheat and wild relatives: Empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis. Evol. Appl. 2011, 4, 685–695. [Google Scholar] [CrossRef]
- Arnaud, J.F.; Cuguen, J.; Fénart, S. Metapopulation structure and fine-scaled genetic structuring in crop-wild hybrid weed beets. Heredity 2011, 107, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.T.; Inouye, D.W.; McKinney, A.M.; Colautti, R.I.; Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 2012, 279, 3843–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craufurd, P.Q.; Wheeler, T.R. Climate change and the flowering time of annual crops. J. Exp. Biol. 2009, 60, 2529–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WSSA (Weed Science Society of America). Available online: http://www.weedscience.org/Home.aspx (accessed on 14 December 2020).
- Hicks, H.L.; Comont, D.; Coutts, S.R.; Crook, L.; Hull, R.; Norris, K.; Neve, P.; Childs, D.Z.; Freckleton, R.P. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2018, 2, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, J.P.; Klimešová, J.; and Hartnett, D.C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 2019, 123, 1099–1118. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Clements, D.R.; DiTommaso, A.; Hyvönen, T. Ecology and management of weeds in a changing climate. In Recent Advances in Weed Management; Springer: New York, NY, USA, 2014; pp. 13–37. [Google Scholar]
- Chen, J.; Burns, E.; Fleming, M.; Patterson, E. Impact of climate change on population dynamics and herbicide resistance in kochia (Bassia scoparia (L.) AJ Scott). Agronomy 2020, 10, 1700. [Google Scholar] [CrossRef]
- Beckie, H.J.; Gulden, R.H.; Shaikh, N.; Johnson, E.N.; Willenborg, C.J.; Brenzil, C.A.; Shirriff, S.W.; Lozinski, C.; Ford, G. Glyphosate-resistant kochia (Kochia scoparia L. Schrad.) in Saskatchewan and Manitoba. Can. J. Plant Sci. 2015, 95, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Beckie, H.J.; Hall, L.M.; Shirriff, S.W.; Martin, E.; Leeson, J.Y. Triple-resistant kochia [Kochia scoparia (L.) Schrad.] in Alberta. Can. J. Plant Sci. 2019, 99, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, A.; Prasad, P.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 2019, 75, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kells, J.J.; Meggitt, W.F.; Penner, D. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 1984, 32, 143–149. [Google Scholar] [CrossRef]
- Atienza, J.; Tabernero, M.T.; Álvarez-Benedí, J.; Sanz, M. Volatilisation of triallate as affected by soil texture and air velocity. Chemosphere 2001, 42, 257–261. [Google Scholar] [CrossRef]
- Johnson, B.C.; Young, B.G. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci. 2002, 50, 157–161. [Google Scholar] [CrossRef]
- Benedetti, L.; Rangani, G.; Ebeling Viana, V.; Carvalho-Moore, P.; Rabaioli Camargo, E.; Avila, L.A.D.; Roma-Burgos, N. Recurrent selection by herbicide sublethal dose and heat stress results in rapid reduction of herbicide sensitivity in junglerice. Agronomy 2020, 10, 1619. [Google Scholar] [CrossRef]
- IPCC. Climate Change. 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 3 February 2021).
- Patterson, D.T.; Westbrook, J.K.; Joyce, R.J.; Lingren, P.D.; Rogasik, J. Weeds, insects and diseases. Clim. Chang. 1999, 43, 711–727. [Google Scholar] [CrossRef]
- Ziska, L.H.; Faulkner, S.; Lydon, J. Changes in biomass and root: Shoot ratio of field grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: Implications for control with glyphosate. Weed Sci. 2004, 52, 584–588. [Google Scholar] [CrossRef]
- Ziska, L.H. Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crop Res. 2010, 199, 299–303. [Google Scholar] [CrossRef]
- Olson, B.L.; Al-Khatib, K.; Stahlman, P.; Isakson, P.J. Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci. 2000, 48, 541–548. [Google Scholar] [CrossRef]
- Skelton, J.J.; Ma, R.; Riechers, D.E. Waterhemp (Amaranthus tuberculatus) control under drought stress with 2, 4-dichlorophenoxyacetic acid and glyphosate. Weed Biol. Manag. 2016, 16, 34–41. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M. Climate change’s impacts on weeds and herbicide efficacy: A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2846–2853. [Google Scholar] [CrossRef]
- Waryszak, P.; Lenz, T.I.; Leishman, M.R.; Downey, P.O. Herbicide effectiveness in controlling invasive plants under elevated CO2: Sufficient evidence to rethink weeds management. J. Environ. Manag. 2018, 226, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Botero, C.A.; Weissing, F.J.; Wright, J.; Rubenstein, D.R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl. Acad. Sci. USA 2015, 112, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lontzek, T.S.; Cai, Y.; Judd, K.L.; Lenton, T.M. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat. Clim. Chang. 2015, 5, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Atlin, G.N.; Cairns, J.E.; Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Sec. 2017, 12, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Barzman, M.; Booij, K.; Boonekamp, P.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.; Ratnadass, A.; Ricci, P.; et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 2015, 35, 443–459. [Google Scholar] [CrossRef]
- Murrell, E.G. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Curr. Opin. Insect Sci. 2017, 23, 81–88. [Google Scholar] [CrossRef]
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F. Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China. Eur. J. Agron. 2016, 78, 60–72. [Google Scholar] [CrossRef]
- Ziska, L.H. The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob. Chang. Biol. 2000, 6, 899–905. [Google Scholar] [CrossRef]
- McDonald, A.; Riha, S.; DiTommaso, A.; DeGaetano, A. Climate change and the geography of weed damage: Analysis of US maize systems suggests the potential for significant range transformations. Agric. Ecos. Environ. 2001, 130, 131–140. [Google Scholar] [CrossRef]
- Broennimann, O.; Treier, U.A.; Müller-Shärer, H.; Thuiller, W.; Peterson, A.T.; Guisan, A. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 2007, 10, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Kistner, E.J.; Hatfield, J.L. Potential geographic distribution of Palmeramaranth under current and future climates. Agric. Environ. Lett. 2018, 3, 1–5. [Google Scholar] [CrossRef]
- Kollmann, J.; Bañuelos, M.J. Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceace). Divers. Distrib. 2004, 10, 377–385. [Google Scholar] [CrossRef]
- Hyvönen, T.; Luoto, M.; Uotila, P. Assessment of weed establishment risk in a changing European climate. Agric. Food Sci. 2012, 21, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, R.V.; Duursma, D.E.; O’Donnell, J.; Wilson, P.D.; Downey, P.O.; Hughes, L.; Leishman, M.R. The grass may not always be greener: Projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol. Invasions 2013, 15, 961–975. [Google Scholar] [CrossRef]
- Hulme, P.E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 2017, 92, 1297–1313. [Google Scholar] [CrossRef]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate change trends and impacts on California agriculture: A detailed review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Harper, J. The evolution of weeds in relation to resistance to herbicides. In Proceedings of the Third British Weed Control Conference, Brighton, UK; 1956; Volume 1, pp. 179–188. [Google Scholar]
- Dukes, J.S.; Mooney, H.A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 14, 135–139. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R.; et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 2016, 36, 12. [Google Scholar] [CrossRef] [Green Version]
- Tamarin-Brodsky, T.; Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 2017, 10, 908–913. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colleran, B.P.; Goodall, K.E. Extending the timeframe for rapid response and best management practices of flood-dispersed Japanese knotweed (Fallopia japonica). Invasive Plant Sci. Manag. 2015, 8, 250–254. [Google Scholar] [CrossRef]
- Charbonneau, B.R.; Wootton, L.S.; Wnek, J.P.; Langley, J.A.; Posner, M.A. A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J. Appl. Ecol. 2017, 54, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Otto, S.P. Adaptation, speciation and extinction in the Anthropocene. Proc. Royal Soc. B 2018, 285, 2047. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.L.; Shine, R.; Tingley, R. The genetic backburn: Using rapid evolution to halt invasions. Proc. R. Soc. B 2016, 283, 20153037. [Google Scholar] [CrossRef]
- Mahaut, L.; Cheptou, P.O.; Fried, G.; Munoz, F.; Storkey, J.; Vasseur, F.; Violle, C.; Bretagnolle, F. Weeds: Against the rules? Trends Plant. Sci. 2020, 25, 1107–1116. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary plant breeding as a response to the complexity of climate change. Iscience 2020, 23, 101815. [Google Scholar] [CrossRef] [PubMed]
- Sezen, U.U.; Barney, J.N.; Atwater, D.Z.; Pederson, G.A.; Pederson, J.F.; Chandler, J.M.; Cox, T.S.; Cox, S.; Dotray, P.; Kopec, D.; et al. Multi-phase US spread and habitat switching of a post-Columbian invasive, Sorghum halepense. PLoS ONE 2016, 11, e0164584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, F.A.; Raizada, M.N. Mitigating dry season food insecurity in the subtropics by prospecting drought-tolerant, nitrogen-fixing weeds. Agric. Food Sec. 2017, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ruttledge, A.; Chauhan, B.S. Climate change and weeds of cropping systems. In Crop Protection under Changing Climate; Jabran, K., Florentine, S., Chauhan, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
Trait Category | Ideal Weed Characteristic (Number from Baker [13]) |
---|---|
Germination | Germination requirements fulfilled in many environments (1) |
Discontinuous germination and great longevity of seed (2) | |
Growth | Rapid growth through vegetative phase to flowering (3) |
Competitive | The ability to compete interspecifically by special means, ability, e.g., rosette, choking growth, allelochemicals (10) |
Breeding system | Self-compatible but not completely autogamous or apomictic (5) |
If cross-pollinated, unspecialized visitors or wind-utilized (6) | |
Seed production | Continuous seed production for as long as growing conditions permit (4) |
Very high seed output in favourable environmental circumstances (7) | |
Produces some seed under a wide range of environmental conditions, is tolerant and plastic (8) | |
Dispersal | Adaptations for short- and long-distance dispersal (9) |
Weed Evolution Element | Challenges to Human Management Amidst Climate Change |
---|---|
1. General-purpose Genotype | Difficult to account for weed phenotype variation as exacerbated by climate change |
2. Life History Strategies | Life history strategies subject to change under climate change so management must adjust |
3. Rapid Evolution | Many weed traits capable of evolving rapidly in response to climate change, requiring management to pivot |
4. Epigenetics | Difficult to predict weed phenotype variation even intra-generationally |
5. Hybridization | Abrupt genotype change on a large scale creating new weeds to manage |
6. Herbicide Resistance | Additional spread of herbicide resistant weeds likely under climate change |
7. Herbicide Tolerance | More climatic variation leading to more variable effectiveness of herbicide applications |
8. Cropping Systems Vulnerability | Weed communities better adapted to respond to climate change than cropping systems |
9. Co-evolution with Human Management | Management of weeds tends to select for better adapted weeds more difficult to manage; climate change adds another selection factor |
10. Riding the Climate Change Storm | Weeds are well adapted for climate extremes which may help further spread them and increase their overall persistence amidst changing climates |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clements, D.R.; Jones, V.L. Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy 2021, 11, 284. https://doi.org/10.3390/agronomy11020284
Clements DR, Jones VL. Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy. 2021; 11(2):284. https://doi.org/10.3390/agronomy11020284
Chicago/Turabian StyleClements, David R., and Vanessa L. Jones. 2021. "Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate" Agronomy 11, no. 2: 284. https://doi.org/10.3390/agronomy11020284
APA StyleClements, D. R., & Jones, V. L. (2021). Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy, 11(2), 284. https://doi.org/10.3390/agronomy11020284