Quanti-Qualitative Response of Swiss Chard (Beta vulgaris L. var. cycla) to Soil Amendment with Biochar-Compost Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Growing Conditions
- (1)
- Without biochar and without compost as a control (B– C–);
- (2)
- With biochar and without compost (B+ C–);
- (3)
- Without biochar and with compost from olive pomace (B– COP+);
- (4)
- With biochar and with compost from olive pomace (B+ COP+);
- (5)
- Without biochar and with vermicompost (B– CW+);
- (6)
- With biochar and with vermicompost (B+ CW+);
- (7)
- Without biochar and with compost from cattle anaerobic digestate (B– CD+);
- (8)
- With biochar and with compost from cattle anaerobic digestate (B+ CD+).
2.2. Soil and Organic Amendments Analysis
2.3. Plant Growth Analysis
2.4. Pigment, Total Nitrogen, and Nitrate Leaf Content Analysis
2.5. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Pigment Leaf Content
3.3. Total Nitrogen and Nitrate Leaf Content
4. Discussion
4.1. Plant Growth
4.2. Pigment Leaf Content
4.3. Total Nitrogen and Nitrate Leaf Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Libutti, A.; Monteleone, M. Soil vs. Groundwater: The Quality Dilemma. Managing Nitrogen Leaching and Salinity Control Under Irrigated Agriculture in Mediterranean Conditions. Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; Lopez, G.; Kuikman, P.J.; Holden, N.M. Biochar, Compost and Biochar-Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting Circular Economy and Closing the Loop in Agriculture: Case Study of a Small-Scale Pyrolysis-Biochar Based System Integrated in an Olive Farm in Simbiosi with an Olive Mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Monlau, F.; Francavilla, M.; Sambusiti, C.; Antoniou, N.; Solhy, A.; Libutti, A.; Zabaniotou, A.; Barakat, A.; Monteleone, M. Toward a Functional Integration of Anaerobic Digestion and Pyrolysis for a Sustainable Resource Management. Comparison between Solid-Digestate and Its Derived Pyrochar as Soil Amendment. Appl. Energy 2016, 169, 652–662. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.K.; Francavilla, M.; Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Conceptual Vision of Bioenergy Sector Development in Mediterranean Regions Based on Decentralized Thermochemical Systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost Benefits for Agriculture Evaluated by Life Cycle Assessment: A Review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, M.J.; Campbell, S. Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Calderón, F.J.; Benjamin, J.; Merle, F.V. A Comparison of Corn (Zea Mays L.) Residue and Its Biochar on Soil c and Plant Growth. PLoS ONE 2015, 10, e0121006. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.; Glaser, B. Synergism between Compost and Biochar for Sustainable Soil Amelioration. Manag. Org. Waste 2012, 167–198. [Google Scholar]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of Biochar as Additive in Organic Waste Composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar-Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Gamba, M.; Raguindin, P.; Asllanaj, E.; Merlo, F.; Glisic, M.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Bioactive Compounds and Nutritional Composition of Swiss Chard (Beta Vulgaris l. Var. Cicla and Flavescens): A Systematic Review. Crit. Rev. Food Sci. Nutr. 2020, 4, 1–16. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A Survey of Nitrate and Oxalate Content in Fresh Vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrates in Fruits and Vegetables. Sci. Hort. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Engelbrecht, G.M.; Ceronio, G.M.; Motseki, P.C. Effect of Nitrogen Levels and Sources on Production of SWISS Chard (Beta Vulgaris Var. Cicla). S. Afr. J. Plant Soil 2010, 27, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Miceli, C. Effect of Nitrogen Fertilization on the Quality of Swiss Chard at Harvest and During Storage as Minimally Processed Produce. J. Food Qual. 2014, 37, 125–134. [Google Scholar] [CrossRef]
- Razgallah, N.; Chikh-Rouhou, H.; Boughattas, I.; Mhamdi, M. Nitrates Contents in Some Vegetables in Tunisia. Arch. Agron. Soil Sci. 2016, 62, 473–483. [Google Scholar] [CrossRef]
- Abbey, L.; Young, C.; Teitel-Payne, R.; Howe, K. Evaluation of Proportions of Vermicompost and Coir in a Medium for Container-Grown Swiss Chard. Int. J. Veg. Sci. 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Smith, D.C.; Beharee, V.; Hughes, J.C. The Effects of Compost Produced by a Simple Composting Procedure on the Yields of Swiss Chard (Beta Vulgaris l. Var. Flavescens) and Common Bean (Phaseolus Vulgaris l. Var. Nanus). Sci. Hortic. 2001, 91, 393–406. [Google Scholar] [CrossRef]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta Vulgaris l. Var. Cycla). Agronomy 2020, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate; USDA Circular 939; USDA: Washington, DC, USA, 1954; pp. 1–19.
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis Part 3, Chemical Methods; Sparks, D.L., Page, A.L., Johnston, C.T., Summ, M.E., Eds.; SSSA Book Ser. No. 5; SSSA: Madison, WI, USA, 1996; pp. 1058–1121. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen Inorganic Forms. In Methods of Soil Analysis Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of America Publisher: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Chan, K.Y.; Xu, K. Biochar: Nutrient Properties and Their Enhancement. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- EBC, European Biochar Certificate. Guidelines for a Sustainable Production of Biochar; European Biochar Certificate (EBC); European Biochar Certificate (EBC): Arbaz, Switzerland, 2012. [Google Scholar]
- IBI, International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; IBI-STD-2.0; IBI: Toronto, ON, Canada, 2014. [Google Scholar]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural Oxidation of Black Carbon in Soils: Changes in Molecular Form and Surface Charge along a Climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Glaser, B. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls A and B Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectrometry. Biochim. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls A and B, As Well As Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant-Tissue by Nitration of Salicylic-Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Lazcano, C.; Domínguez, J. The Use of Vermicompost in Sustainable Agriculture: Impact on Plant Growth and Soil Fertility; Miransari, M., Ed.; Soil Nutrients; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 211–233. [Google Scholar]
- Demir, Z. Effects of Vermicompost on Soil Physicochemical Properties and Lettuce (Lactuca Sativa Var. Crispa) Yield in Greenhouse under Different Soil Water Regimes. Commun. Soil Sci. Plant Anal. 2019, 50, 2151–2168. [Google Scholar] [CrossRef]
- Suvendu, D.; Seung, T.J.; Subhasis, D.; Pil, J.K. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front Microbiol. 2017, 8, 1702. [Google Scholar]
- Morra, L.; Bilotto, M.; Baiano, S.; Saviello, G.; Cerrato, D. Annual Effects of Different Organic Fertilisers in a Baby Leaf Crops System Under Tunnel in Southern Italy. Ital. J. Agron. 2015, 10, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, R.; Ochoa, V.; Gómez-Muñoz, B.; Alvarez de la Puente, J.M. Does the Composted Olive Mill Pomace Increase the Sustainable N Use Of Olive Oil Cropping? In Proceedings of the 16th Nitrogen Workshop on Connecting Different Scales of Nitrogen Use in Agriculture, Torino, Italy, 28 June–1 July 2009. [Google Scholar]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and Biochar-Compost as Soil Amendments: Effects on Peanut Yield, Soil Properties and Greenhouse Gas Emissions in Tropical North Queensland, Australia. Agric Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, P.F.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca Sativa l.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 3158207. [Google Scholar] [CrossRef] [Green Version]
- Seehausen, M.L.; Gale, N.V.; Dranga, S.; Hudson, V.; Liu, N.; Michener, J.; Thurston, E.; Williams, C.; Smith, S.M.; Thomas, S.C. Is There a Positive Synergistic Effect of Biochar and Compost Soil Amendments on Plant Growth and Physiological Performance? Agronomy 2017, 7, 13. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential Mechanisms for Achieving Agriculture Benefits from Biochar Application to Temperate Soils: A Review. Plant Soil 2010, 337, 11–18. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-Term CO2mineralization after Additions of Biochar and Switchgrass to aTypic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Ivanović, L.; Milaševic, I.; Topalovic, A.; Durovic, D.; Mugoša, B.; Kneževic, M.; Vrvic, M. Nutritional and Phytochemical Content of Swiss Chard from Montenegro, under Different Fertilization and Irrigation Treatments. Brit. Food J. 2018, 121, 411–425. [Google Scholar] [CrossRef]
- Reif, C.; Arrigoni, E.; Scharer, H.; Nystrom, L.; Hurrell, R.F. Carotenoid Database of Commonly Eaten Swiss Vegetables and Their Estimated Contribution to Carotenoid Intake. J. Food Compos. Anal. 2013, 29, 64–72. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and Chlorophyll Composition of Commonly Consumed Leafy Vegetables in Mediterranean Countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Hogan, K.P. Increases of Chlorophyll A/B Ratios during Acclimation of Tropical Woody Seedlings to Nitrogen Limitation and High Light. Plant Cell Environ. 2003, 26, 857–865. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A. Nitrogen Form and Ratio Impact Swiss Chard (Beta Vulgaris Subsp. Cicla) Shoot Tissue Carotenoid and Chlorophyll Concentrations. Sci. Hort. 2016, 204, 99–105. [Google Scholar] [CrossRef]
- Hernández, A.; Castillo, H.; Ojeda, D.; Arras, A.; López, J.; Sánchez, E. Effect of Vermicompost and Compost on Lettuce Production. Chil. J. Agric. Res. 2010, 70, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Helgason, B.; Larney, F.L.; Janzen, H.H.; Olson, B.M. Nitrogen Dynamics in Soil Amended with Composted Cattle Manure. Can. J. Soil Sci. 2007, 87, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-Term and Residual Availability of Nitrogen after Long-Term Application of Organic Amendments on Arable Land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Hartl, W.; Erhart, E. Crop Nitrogen Recovery and Soil Nitrogen Dynamics in a 10-Year Field Experiment with Biowaste Compost. J. Plant Nutr. Soil Sci. 2005, 168, 781–788. [Google Scholar] [CrossRef]
- EFSA, European Food Security Agency. Opinion of the Scientifi Panel on Contaminants in the Food Chain on a Request from the European Commission to Perform a Scientifi Risk Assessment on Nitrate in Vegetables. EFSA J. 2008, 689, 1–79. [Google Scholar]
- Herencia, J.F.; Ruiz-Porras, J.C.; Melero, S.; Garcia-Galavis, P.A.; Morillo, E.; Maqueda, C. Comparison between Organic and Mineral Fertilization for Soil Fertility Levels, Crop Macronutrient Concentration and Yield. Agron. J. 2007, 99, 973–983. [Google Scholar] [CrossRef]
- Raigon, M.D.; Gento, A.D.; Sierra, J.M.C.; Vidal, E. Comparacion de Parametros de Calida en Hortalizas de Hoja Ancha Bajo Sistemas de Produccion Ecologica Y Convencional. Agric. Vergel. 2002, 241, 26–32. [Google Scholar]
- Barcelos, C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Bryla, D.R. Effects of Substrate Type on Plant Growth and Nitrogen and Nitrate Concentration in Spinach. Int. J. Plant. Biol. 2016, 7, 6325. [Google Scholar] [CrossRef] [Green Version]
- Conesa, E.; Niñirola, D.; Vicente, M.J.; Ochoa, J.; Bañón, S.; Fernández, J.A. The Influence of Nitrate/Ammonium Ratio on Yield Quality and Nitrate, Oxalate and Vitamin C Content of Baby Leaf Spinach and Bladder Campion Plants Grown in a Floating System. Acta Hortic. 2008, 843, 269–273. [Google Scholar] [CrossRef]
- Buecker, J.; Kloss, S.; Wimmer, B.; Rempt, F.; Zehetner, F.; Soja, G. Leachate Composition of Temperate Agricultural Soils in Response to Biochar Application. Water Air Soil Poll. 2016, 227, 1–13. [Google Scholar] [CrossRef]
- Libutti, A.; Mucci, M.; Francavilla, M.; Monteleone, M. Effect of Biochar Amendment on Nitrate Retention in a Silty Clay Loam Soil. Ital. J. Agron. 2016, 11, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage Sludge Biochar: Nutrient Composition and Its Effect on The Leaching of Soil Nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar Reduced Nitrate Leaching and Improved Soil Moisture Content without Yield Improvements in a Four-Year Field Study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Demiraj, E.; Libutti, A.; Malltezi, J.; Rroço, E.; Brahushi, F.; Monteleone, M.; Sulçe, S. Effect of Organic Amendments on Nitrate Leaching Mitigation in a Sandy Loam Soil of Shkodra District, Albania. Ital. J. Agron. 2018, 13, 1136. [Google Scholar] [CrossRef] [Green Version]
- Libutti, A.; Cammerino, A.R.B.; Francavilla, M.; Massimo, M. Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Papiernik, S.K.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate Sorption and Desorption by Biochars Produced from Fast Pyrolysis. Micropor. Mesopor. Mater. 2013, 179, 250–257. [Google Scholar] [CrossRef]
Property | Unit | Value |
---|---|---|
Clay | % | 22.4 ± 0.7 |
Silt | % | 11.5 ± 0.8 |
Sand | % | 66.1 ± 0.8 |
pH | - | 7.5 ± 0.1 |
EC | dS m−1 | 0.4 ± 0.1 |
P2O5 | mg kg−1 | 28.0 ± 0.6 |
Corg | g kg−1 | 7.9 ± 0.7 |
OM | % | 1.4 ± 0.7 |
C/N | - | 7.2 ± 0.8 |
Total N | ‰ | 1.1 ± 0.5 |
NO3− | mg kg−1 | 48.0 ± 0.3 |
Na+ | mg kg−1 | 25.0 ± 0.4 |
Ca2+ | mg kg−1 | 3289.0 ± 0.9 |
Mg2+ | mg kg−1 | 215.0 ± 0.9 |
K+ | mg kg−1 | 368.0 ± 0.8 |
Property | Unit | Organic Amendment | |||
---|---|---|---|---|---|
B | COP | CW | CD | ||
pH | - | 11.3 ± 0.1 | 7.9 ± 0.0 | 7.6 ± 0.1 | 8.7 ± 0.0 |
EC | dS m−1 | 3.6 ± 0.2 | 2.4 ± 0.1 | 2.7 ± 0.0 | 2.0 ± 0.0 |
Fixed carbon | % | 69.8 ± 0.0 | 3.9 ± 0.1 | 0.5 ± 0.0 | 2.4 ± 0.0 |
Volatile solids | % | 17.0 ± 0.0 | 53.9 ± 0.0 | 32.34 ± 0.1 | 69.8 ± 0.0 |
Ash | % | 13.3 ± 0.0 | 42.2 ± 0.1 | 67.1 ± 0.1 | 27.9 ± 0.1 |
Moisture | % | 5.2 ± 0.0 | 28.8 ± 0.1 | 35.5 ± 0.1 | 34.0 ± 0.1 |
C | % | 67.7 ± 0.3 | 60.9 ± 1.2 | 25.2 ± 0.1 | 34.5 ± 0.3 |
H | % | 2.4 ± 0.1 | 4.6 ± 0.2 | 1.4 ± 0.2 | 4.4 ± 0.1 |
N | % | 1.5 ± 0.0 | 2.6 ± 0.1 | 1.6 ± 0.0 | 2.6 ± 0.0 |
Corg | % | 66.7 ± 0.0 | 56.3 ± 0.1 | 20.1 ± 0.2 | 26.6 ± 0.6 |
C/N | - | 45.1 ± 0.8 | 21.6 ± 0.8 | 12.4 ± 0.1 | 10.3 ± 0.3 |
S | % | 0.0 ± 0.0 | - | - | - |
H/Corg | - | 0.4 ± 0.0 | - | - | - |
O/Corg | - | 0.4 ± 0.0 | - | - | - |
Experimental Factor | First Cut | Second Cut | ||||
---|---|---|---|---|---|---|
H cm | LA cm2 | FW g | H cm | LA cm2 | FW g | |
Biochar (B) | ||||||
B– | 12.3 ± 0.3 a | 152.0 ± 8.0 a | 8.4 ± 0.4 a | 9.5 ± 0.3 | 74.0 ± 4.4 a | 4.1 ± 0.3 a |
B+ | 10.9 ± 0.4 b | 128.9 ± 7.8 b | 6.4 ± 0.5 b | 8.8 ± 0.3 | 63.8 ± 4.2 b | 3.1 ± 0.2 b |
Compost (C) | ||||||
C– | 10.1 ± 0.3 b | 110.2 ± 6.9 b | 5.9 ± 0.5 b | 8.5 ± 0.4 b | 57.2 ± 2.8 b | 2.9 ± 0.1 b |
COP+ | 11.0 ± 0.5 b | 128.9 ± 8.6 b | 6.6 ± 0.5 b | 8.5 ± 0.3 b | 65.3 ± 2.9 ab | 3.2 ± 0.2 b |
CW+ | 13.3 ± 0.3 a | 165.3 ± 7.5 a | 8.8 ± 0.6 a | 10.2 ± 0.4 a | 80.2 ± 6.1 a | 4.3 ± 0.3 a |
CD+ | 12.0 ± 0.5 a | 157.4 ± 9.0 a | 8.3 ± 0.5 a | 9.3 ± 0.5 ab | 73.0 ± 5.6 a | 4.1 ± 0.3 a |
Biochar x Compost | ||||||
B– C– | 10.6 ± 0.3 | 120.3 ± 4.8 | 6.7 ± 0.6 | 8.4 ± 0.6 ab | 56.2 ± 4.7 | 3.0 ± 0.2 |
B+ C– | 9.7 ± 0.4 | 100.0 ± 11.5 | 5.1 ± 0.4 | 8.6 ± 0.4 ab | 58.3 ± 3.5 | 2.7 ± 0.2 |
B– COP+ | 12.1 ± 0.6 | 140.8 ± 4.5 | 7.6 ± 0.6 | 8.8 ± 0.7 ab | 67.2 ± 5.0 | 3.5 ± 0.2 |
B+ COP+ | 9.8 ± 0.6 | 117.1 ± 9.0 | 5.5 ± 0.5 | 8.2 ± 0.3 b | 63.3 ± 2.4 | 2.8 ± 0.2 |
B– CW+ | 13.7 ± 0.6 | 178.9 ± 7.7 | 10.1 ± 0.7 | 10.1 ± 0.3 ab | 86.6 ± 5.0 | 4.9 ± 0.2 |
B+ CW+ | 12.8 ± 0.8 | 151.6 ± 20.6 | 7.6 ± 1.0 | 10.3 ± 0.5 ab | 73.7 ± 4.3 | 3.6 ± 0.3 |
B– CD+ | 12.7 ± 0.4 | 168.0 ± 10.7 | 9.2 ± 0.4 | 10.5 ± 0.3 a | 86.0 ± 3.3 | 4.8 ± 0.2 |
B+ CD+ | 11.4 ± 0.7 | 146.9 ± 16.5 | 7.4 ± 0.7 | 8.1 ± 0.5 b | 59.9 ± 4.0 | 3.3 ± 0.3 |
Significance | ||||||
B | *** | ** | *** | ns | * | *** |
C | *** | *** | *** | ** | ** | *** |
B x C | ns | ns | ns | * | ns | ns |
Experimental Factor | CA | CHLa | CHLb | CHL | CHLa/CHLb | CHL/CA |
---|---|---|---|---|---|---|
mg 100 g Fw−1 | (-) | |||||
Biochar (B) | ||||||
B– | 17.4 ± 0.9 | 72.3 ± 4.3 | 18.4 ± 1.1 | 90.8 ± 5.3 | 3.9 ± 0.0 b | 5.2 ± 0.1 |
B+ | 16.3 ± 0.9 | 66.1 ± 4.4 | 16.2 ± 1.1 | 82.4 ± 5.5 | 4.1 ± 0.0 a | 5.0 ± 0.1 |
Compost (C) | ||||||
C– | 14.9 ± 0.5 b | 57.9 ± 1.5 b | 14.6 ± 0.2 b | 72.5 ± 1.6 b | 4.0 ± 0.1 | 4.9 ± 0.1 b |
COP+ | 15.7 ± 0.5 ab | 65.6 ± 2.9 ab | 16.5 ± 0.6 ab | 82.1 ± 3.5 ab | 4.0 ± 0.0 | 5.2 ± 0.1 a |
CW+ | 17.7 ± 1.4 ab | 73.8 ± 6.2 ab | 18.6 ± 1.7 ab | 92.3 ± 7.9 ab | 4.0 ± 0.0 | 5.1 ± 0.1 ab |
CD+ | 19.1 ± 1.2 a | 79.5 ± 5.8 a | 19.7 ± 1.5 a | 99.3 ± 7.4 a | 4.0 ± 0.0 | 5.1 ± 0.1 ab |
Biochar x Compost | ||||||
B– C– | 14.1 ± 0.7 | 55.9 ± 2.5 | 14.5 ± 0.3 | 70.4 ± 2.7 | 3.8 ± 0.1 | 5.0 ± 0.1 |
B+ C– | 15.7 ± 0.3 | 60.0 ± 1.0 | 14.6 ± 0.3 | 74.7 ± 1.1 | 4.1 ± 0.1 | 4.8 ± 0.0 |
B– COP+ | 15.1 ± 0.4 | 63.8 ± 1.0 | 16.4 ± 0.2 | 80.2 ± 1.1 | 3.9 ± 0.1 | 5.3 ± 0.1 |
B+ COP+ | 16.3 ± 0.4 | 67.5 ± 1.2 | 16.6 ± 0.3 | 84.0 ± 1.2 | 4.1 ± 0.1 | 5.1 ± 0.1 |
B– CW+ | 19.6 ± 0.4 | 81.0 ± 1.0 | 20.9 ± 0.3 | 102.0 ± 1.1 | 3.9 ± 0.1 | 5.2 ± 0.1 |
B+ CW+ | 15.9 ± 0.4 | 66.5 ± 2.1 | 16.2 ± 0.5 | 82.7 ± 2.5 | 4.1 ± 0.1 | 5.2 ± 0.2 |
B– CD+ | 21.0 ± 0.5 | 88.6 ± 1.4 | 21.9 ± 0.3 | 110.5 ± 1.5 | 4.1 ± 0.1 | 5.2 ± 0.1 |
B+ CD+ | 17.2 ± 0.3 | 70.5 ± 2.4 | 17.6 ± 0.6 | 88.0 ± 3.0 | 4.0 ± 0.1 | 5.1 ± 0.2 |
Significance | ||||||
B | ns | ns | ns | ns | ** | ns |
C | ** | ** | * | ** | ns | * |
B x C | ns | ns | ns | ns | ns | ns |
Experimental Factor | First Cut | Second Cut | ||
---|---|---|---|---|
SPADleaf | SPADplant | SPADleaf | SPADplant | |
(-) | (-) | |||
Biochar (B) | ||||
B– | 38.4 ± 1.7 | 29.1 ± 1.0 | 39.5 ± 1.1 | 36.0 ± 0.9 |
B+ | 36.4 ± 1.5 | 29.0 ± 0.9 | 37.7 ± 0.9 | 35.0 ± 0.8 |
Compost (C) | ||||
C– | 32.8 ± 1.7 b | 26.2 ± 1.4 | 35.6 ± 1.7 b | 32.5 ± 1.3 b |
COP+ | 36.9 ± 1.7 ab | 29.2 ± 1.0 | 38.2 ± 1.0 ab | 35.2 ± 0.6 ab |
CW+ | 40.4 ± 1.6 a | 30.7 ± 0.8 | 39.4 ± 0.6 ab | 35.9 ± 0.7 ab |
CD+ | 39.4 ± 2.2 ab | 30.2 ± 1.0 | 41.3 ± 1.2 a | 38.1 ± 1.1 a |
Biochar x Compost | ||||
B– C– | 32.8 ± 2.9 | 25.9 ± 2.6 | 36.0 ± 3.5 | 32.8 ± 2.6 |
B+ C– | 32.9 ± 2.4 | 26.6 ± 1.5 | 35.3 ± 1.1 | 32.1 ± 0.9 |
B– COP+ | 40.0 ± 2.2 | 29.4 ± 2.2 | 39.3 ± 2.5 | 35.6 ± 1.8 |
B+ COP+ | 33.7 ± 1.7 | 28.9 ± 1.3 | 37.1 ± 0.7 | 34.8 ± 0.9 |
B– CW+ | 39.4 ± 2.3 | 30.6 ± 1.8 | 39.8 ± 2.5 | 35.9 ± 2.0 |
B+ CW+ | 41.4 ± 0.9 | 30.8 ± 1.1 | 39.1 ± 1.7 | 35.9 ± 1.3 |
B– CD+ | 41.2 ± 2.1 | 30.6 ± 1.5 | 43.0 ± 2.5 | 39.5 ± 2.0 |
B+ CD+ | 37.7 ± 2.5 | 29.8 ± 2.0 | 39.5 ± 1.6 | 36.7 ± 1.4 |
Significance | ||||
B | ns | ns | ns | ns |
C | * | ns | * | ** |
B x C | ns | ns | ns | ns |
Experimental Factor | First Cut | Second Cut | ||
---|---|---|---|---|
Total N % of Dw | NO3− mg kg −1 Fw | Total N % of Dw | NO3− mg kg −1 Fw | |
Biochar (B) | ||||
B– | 1.9 ± 0.2 b | 249.5 ± 18.8 a | 1.6 ± 0.1 b | 261.0 ± 17.3 a |
B+ | 2.0 ± 0.1 a | 199.0 ± 17.8 b | 1.7 ± 0.1 a | 225.1 ± 16.1 b |
Compost (C) | ||||
C– | 1.6 ± 0.2 d | 206.2 ± 16.9 b | 1.3 ± 0.2 d | 218.1 ± 21.1 c |
COP+ | 2.0 ± 0.1 b | 273.7 ± 33.3 a | 1.7 ± 0.0 b | 274.4 ± 27.9 a |
CW+ | 2.5 ± 0.2 a | 215.2 ± 9.6 b | 1.9 ± 0.0 a | 242.2 ± 7.3 b |
CD+ | 1.9 ± 0.0 c | 201.9 ± 13.4 b | 1.6 ± 0.1 c | 237.4 ± 15.1 b |
Biochar x Compost | ||||
B– C– | 1.1 ± 0.0 f | 163.1 ± 8.5 c | 0.9 ± 0.0 f | 163.8 ± 9.8 e |
B+ C– | 2.1 ± 0.0 c | 249.2 ± 4.6 b | 1.7 ± 0.0 d | 272.5 ± 2.2 b |
B– COP+ | 1.8 ± 0.2 e | 360.9 ± 19.3 a | 1.7 ± 0.2 d | 347.6 ± 28.8 a |
B+ COP+ | 2.2 ± 0.1 b | 186.6 ± 24.1 c | 1.8 ± 0.0 c | 201.2 ± 15.6 d |
B– CW+ | 2.9 ± 0.3 a | 238.6 ± 25.7 b | 1.9 ± 0.2 b | 257.3 ± 33.9 b |
B+ CW+ | 2.1 ± 0.1 c | 191.9 ± 32.6 c | 2.0 ± 0.0 a | 227.2 ± 19.1 cd |
B– CD+ | 2.0 ± 0.2 c | 235.3 ± 23.6 b | 1.9 ± 0.2 b | 275.2 ± 32.2 b |
B+ CD+ | 1.9 ± 0.1 d | 168.5 ± 25.3 c | 1.3 ± 0.0 e | 199.5 ± 17.1 d |
Significance | ||||
B | *** | *** | *** | *** |
C | *** | *** | *** | *** |
B x C | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libutti, A.; Rivelli, A.R. Quanti-Qualitative Response of Swiss Chard (Beta vulgaris L. var. cycla) to Soil Amendment with Biochar-Compost Mixtures. Agronomy 2021, 11, 307. https://doi.org/10.3390/agronomy11020307
Libutti A, Rivelli AR. Quanti-Qualitative Response of Swiss Chard (Beta vulgaris L. var. cycla) to Soil Amendment with Biochar-Compost Mixtures. Agronomy. 2021; 11(2):307. https://doi.org/10.3390/agronomy11020307
Chicago/Turabian StyleLibutti, Angela, and Anna Rita Rivelli. 2021. "Quanti-Qualitative Response of Swiss Chard (Beta vulgaris L. var. cycla) to Soil Amendment with Biochar-Compost Mixtures" Agronomy 11, no. 2: 307. https://doi.org/10.3390/agronomy11020307
APA StyleLibutti, A., & Rivelli, A. R. (2021). Quanti-Qualitative Response of Swiss Chard (Beta vulgaris L. var. cycla) to Soil Amendment with Biochar-Compost Mixtures. Agronomy, 11(2), 307. https://doi.org/10.3390/agronomy11020307