Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digestate Treatment and Analysis
2.2. Experimental Design of the Pot Experiment
2.3. Plant Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Statistics
3. Results
3.1. Effects of Acidification on BGR Composition
3.2. Effects of the Fertilizers on Soil pH and Soluble Mn and P
3.3. Plant Biomass
3.4. Maize Tissue Nutrient Concentrations
3.5. Nutrient Uptake and Relative Effectiveness of P Fertilization
4. Discussion
4.1. Effects of Acidification on BGR Composition
4.2. Acid Demand and Effects of the Fertilizers on Soil
4.3. Effects on Plant Growth, Nutrient Concentration, and Nutrient Uptake
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Husted, S.; Jensen, L.S.; Jørgensen, S.S. Reducing ammonia loss from cattle slurry by the use of acidifying additives: The role of the buffer system. J. Sci. Food Agric. 1991, 57, 335–349. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Hristov, A.N.; Arogo, J.; Sheffield, R.E. A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosyst. Eng. 2008, 100, 453–469. [Google Scholar] [CrossRef]
- IRECTIVE (EU) 2016/2284 of the European Parliament and of the Council—Of 14 December 2016—On the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. DIRECTIVE (EU) 2016/2284; European Parliament: Strasbourg, France, 2016.
- Commission Implementing DECISION (EU) 2017/302 of 15 February 2017 Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the Intensive Rearing of Poultry or Pigs. Directive 2010/75/EU; European Parliament: Strasbourg, France, 2017.
- Eriksen, J.; Sørensen, P.; Elsgaard, L. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil. J. Environ. Qual. 2008, 37, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, I.F.; Rubæk, G.H.; Nyord, T.; Sørensen, P. Row-injected cattle slurry can replace mineral P starter fertiliser and reduce P surpluses without compromising final yields of silage maize. Eur. J. Agron. 2020, 116, 126057. [Google Scholar] [CrossRef]
- Seidel, A.; Pacholski, A.; Nyord, T.; Vestergaard, A.; Pahlmann, I.; Herrmann, A.; Kage, H. Effects of acidification and injection of pasture applied cattle slurry on ammonia losses, N2O emissions and crop N uptake. Agric. Ecosyst. Environ. 2017, 247, 23–32. [Google Scholar] [CrossRef]
- Regueiro, I.; Coutinho, J.; Balsari, P.; Popovic, O.; Fangueiro, D. Acidification of pig slurry before separation to improve slurry management on farms. Environ. Technol. 2016, 37, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, M.; Cocolo, G.; Jonassen, K.; Abildgaard, L.; Sommer, S.G. Continuous in-house acidification affecting animal slurry composition. Biosyst. Eng. 2015, 132, 56–60. [Google Scholar] [CrossRef]
- Fangueiro, D.; Pereira, J.L.S.; Fraga, I.; Surgy, S.; Vasconcelos, E.; Coutinho, J. Band application of acidified slurry as an alternative to slurry injection in a Mediterranean double cropping system: Agronomic effect and gaseous emissions. Agric. Ecosyst. Environ. 2018, 267, 87–99. [Google Scholar] [CrossRef]
- Pedersen, I.F.; Rubæk, G.H.; Sørensen, P. Cattle slurry acidification and application method can improve initial phosphorus availability for maize. Plant Soil 2017, 414, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Güngör, K.; Jürgensen, A.; Karthikeyan, K.G. Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J. Environ. Qual. 2007, 36, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Muster, T.H.; Douglas, G.B.; Sherman, N.; Seeber, A.; Wright, N.; Güzükara, Y. Towards effective phosphorus recycling from wastewater: Quantity and quality. Chemosphere 2013, 91, 676–684. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J.; Frost, J.P. Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries. J. Agric. Sci. 1989, 113, 389–395. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. The chemical buffer system in raw and digested animal slurry. J. Agric. Sci. 1995, 124, 45–53. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Galligan, D.T.; Ramberg, C.F.; Ferguson, J.D. Laboratory Procedures for Characterizing Manure Phosphorus. J. Environ. Qual. 2000, 29, 508. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Schüller, H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. Pflanz. Bodenkde 1969, 123, 48–63. [Google Scholar] [CrossRef]
- Blume, H.-P. (Ed.) Handbuch der Bodenuntersuchung. Terminologie, Verfahrensvorschriften und Datenblätter; Physikalische, Chemische, Biologische Untersuchungsverfahren; Gesetzliche Regelwerke; Wiley-VCH, Beuth: Weinheim/Berlin, Germany; Wien, Austria; Zürich, Switzerland, 2000; ISBN 978-3-527-19080-5. [Google Scholar]
- Barry, D.A.J.; Miller, M.H. Phosphorus Nutritional Requirement of Maize Seedlings for Maximum Yield. Agron. J. 1989, 81, 95–99. [Google Scholar] [CrossRef]
- Bachmann, S. Phosphor-Düngewirkung von Biogasgüllen: Ein Beitrag zur Sicherung Einer Nachhaltigen Bioenergieproduktion. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2012. [Google Scholar]
- Schiemenz, K.; Eichler-Löbermann, B. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosyst. 2010, 87, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Vogel, T.; Nelles, M.; Eichler-Löbermann, B. Phosphorus application with recycled products from municipal waste water to different crop species. Ecol. Eng. 2015, 83, 466–475. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Novozamsky, I.; Huybregts, A.W.M.; van der Lee, J.J. Comparison of soil extractions by 0.01 M CaCl2, by EUF and by some conventional extraction procedures. Plant Soil 1986, 96, 433–437. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Laird, N.M.; Ware, J.H. Random-Effects Models for Longitudinal Data. Biometrics 1982, 38, 963. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, G.; Molenberghs, G. Linear Mixed Models for Longitudinal Data; Springer: New York, NY, USA, 2000; ISBN 978-1-4419-0300-6. [Google Scholar]
- Nakagawa, S.; Schielzeth, H.; O’Hara, R.B. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Bretz, F.; Hothorn, T.; Westfall, P.H. Multiple Comparisons Using R; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781584885740. [Google Scholar]
- Münch, E.V.; Barr, K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res. 2001, 35, 151–159. [Google Scholar] [CrossRef]
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. J. Clean. Prod. 2016, 131, 296–307. [Google Scholar] [CrossRef]
- Popovic, O.; Hjorth, M.; Jensen, L.S. Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry. Environ. Technol. 2012, 33, 2119–2131. [Google Scholar] [CrossRef]
- Cocolo, G.; Hjorth, M.; Zarebska, A.; Provolo, G. Effect of acidification on solid–liquid separation of pig slurry. Biosyst. Eng. 2016, 143, 20–27. [Google Scholar] [CrossRef]
- Marcato, C.E.; Pinelli, E.; Pouech, P.; Winterton, P.; Guiresse, M. Particle size and metal distributions in anaerobically digested pig slurry. Bioresour. Technol. 2008, 99, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Sigurnjak, I.; Michels, E.; Crappé, S.; Buysens, S.; Biswas, J.K.; Tack, F.M.G.; Neve, S.D.; Meers, E. Does acidification increase the nitrogen fertilizer replacement value of bio-based fertilizers? J. Plant Nutr. Soil Sci. 2017, 180, 800–810. [Google Scholar] [CrossRef]
- Bachmann, S.; Wentzel, S.; Eichler-Löbermann, B. Codigested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. Z. Pflanz. Bodenk. 2011, 174, 908–915. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Bai, F.; Wang, J. Effect of two biogas residues’ application on copper and zinc fractionation and release in different soils. J. Environ. Sci. 2013, 25, 1865–1873. [Google Scholar] [CrossRef]
- Prays, N.; Kaupenjohann, M. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation. PLoS ONE 2016, 11, e0154232. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.; Hörnig, G.; Türk, M. Güllebehandlung mit Milchsäure. Landtechnik 1998, 53, 378–379. [Google Scholar]
- Rengel, Z. Handbook of Plant Growth pH as the Master Variable, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-367-44707-6. [Google Scholar]
- Husted, S.; Thomsen, M.U.; Mattsson, M.; Schjoerring, J.K. Influence of nitrogen and sulphur form on manganese acquisition by barley (shape Hordeum vulgare). Plant Soil 2005, 268, 309–317. [Google Scholar] [CrossRef]
- Olsen, S.R.; Kemper, W.D.; Jackson, R.D. Phosphate Diffusion to Plant Roots. Soil Sci. Soc. Am. J. 1962, 26, 222–227. [Google Scholar]
- Mollier, A.; Pellerin, S. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 1999, 50, 487–497. [Google Scholar] [CrossRef]
- Vogel, T.; Nelles, M.; Eichler-Löbermann, B. Phosphorus effects of recycled products from municipal wastewater on crops in a field experiment. Plant Soil Environ. 2017, 63, 475–482. [Google Scholar] [CrossRef] [Green Version]
Treatment Code | Total P | FM BGR or ABGR | DAP | NH4SO4 | KCl | K2SO4 |
---|---|---|---|---|---|---|
(mg·pot−1) | (g·pot−1) | |||||
NK | 0 | 0 | 0 | 4.76 | 2.29 | 2.48 |
NPK200 | 200 | 0 | 1 | 3.92 | 2.29 | 2.29 |
BGR200 | 200 | 155 | 0 | 2.38 | 1.77 | 2.07 |
ABGR200 | 200 | 155 | 0 | 2.38 | 1.77 | 2.07 |
NPK400 | 400 | 0 | 2 | 3.07 | 2.29 | 2.29 |
BGR400 | 400 | 310 | 0 | 0.00 | 1.25 | 1.25 |
ABGR400 | 400 | 310 | 0 | 0.00 | 1.25 | 1.25 |
Parameter | BGR Total Nutrient Content | BGR | ABGR |
---|---|---|---|
H2O-Soluble Nutrient Content | |||
DM (%) | 8.13 | n.d | n.d |
pH | 8.3 | 8.3 | 5.5 |
Total N (g·kg DM−1) | 82 | n.d | n.d |
NH4-N (g·kg DM−1) | 51.7 | n.d | n.d |
P (g·kg DM−1) | 15.9 | 2.4 (15) | 7.1 (44) *** |
K (g·kg DM−1) | 42.75 | 40.33 (94) | 36.84 (86) n.s |
S (g·kg DM−1) | 6.06 | n.d | n.d |
Ca (g·kg DM−1) | 52.52 | 3.23 (6) | 31.21 (59) *** |
Mg (g·kg DM−1) | 5.87 | 0.39 (7) | 2.16 (37) *** |
Cu (µg·g DM−1) | 115.6 | 47.24 (41) | 10.99 (10) *** |
Fe (µg·g DM−1) | 2637 | 324 (12) | 29 (1) *** |
Mn (µg·g DM−1) | 405.46 | 6.5 (2) | 60.19 (15) *** |
Zn (µg·g DM−1) | 353.43 | 41.49 (12) | 9.54 (3) *** |
Treatment | Macronutrient Uptake | Micronutrient Uptake | |||||||
---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | S | Mg | Mn | Fe | Zn | |
(mg·pot−1) | (µg·pot−1) | ||||||||
NK | 113.8 a | 8.3 a | 282.2 a | 48.4 a | 7.8 a | 8.9 a | 334.9 a | 286.5 a | 69.8 a |
NPK200 | 269.7 b | 26.9 b | 788.7 b | 105.6 bc | 18.7 b | 22.6 b | 906.1 c | 572.5 ab | 123.6 b |
BGR200 | 320.5 bc | 29.6 bc | 973.8 bc | 105.3 bc | 24.6 bc | 30.6 bc | 495.6 b | 1108.9 c | 74.4 a |
ABGR200 | 413.3 cd | 47.8 d | 1042 bc | 146.3 cd | 31.8 c | 35.9 c | 1311.8 cd | 1100.8 bcd | 209.8 c |
NPK400 | 370.0 bc | 38.5 bcd | 846.4 b | 115.7 c | 28.6 c | 28.5 bc | 1338.3 d | 987.3 c | 94.3 ab |
BGR400 | 380.2 bc | 42.5 cd | 1018.5 bc | 85.3 b | 29.0 bc | 36.4 bc | 262.8 a | 1146.7 bcd | 105.9 ab |
ABGR400 | 563.5 d | 52.4 d | 1526.7 c | 172.4 d | 45.0 d | 58.4 d | 2625.9 e | 1729.2 d | 312.1 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackens, J.T.; Görlach, B.M.; Mühling, K.-H. Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize. Agronomy 2021, 11, 344. https://doi.org/10.3390/agronomy11020344
Mackens JT, Görlach BM, Mühling K-H. Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize. Agronomy. 2021; 11(2):344. https://doi.org/10.3390/agronomy11020344
Chicago/Turabian StyleMackens, Jens Torsten, Bruno Maximilian Görlach, and Karl-Hermann Mühling. 2021. "Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize" Agronomy 11, no. 2: 344. https://doi.org/10.3390/agronomy11020344
APA StyleMackens, J. T., Görlach, B. M., & Mühling, K. -H. (2021). Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize. Agronomy, 11(2), 344. https://doi.org/10.3390/agronomy11020344