Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofilter Packing Materials
2.2. Lab-Scale Biofilter Setup
2.3. Data Analysis
3. Results and Discussion
3.1. Composition of the Biofilters
3.2. Nitrogen Emissions from Biofilters
3.2.1. Ammonia Emissions
3.2.2. Nitrous Oxide Emissions
3.3. Carbon Emissions from Biofilters
3.3.1. Carbon Dioxide Emissions
3.3.2. Methane Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: http://www.ipcc-nggip.iges.or.jp (accessed on 17 December 2020).
- Rodriguez, M.R.; Losada, E.; Besteiro, R.; Arango, T.; Velo, R.; Ortega, J.A.; Fernandez, M.D. Evolution of NH3 concentrations in weaner Pig buildings based on set point Temperature. Agronomy 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.; Zhang, G.; Bannink, A.; Chadwick, D.; Misselbrook, T.; Harrison, R.; Hutchings, N.; Menzi, H.; Monteny, G.; Ni, J.; et al. Algorithms Determining Ammonia Emission from Buildings Housing Cattle and Pigs and from Manure Stores. Adv. Agron. 2006, 89, 261–335. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Ferreira, S.; Pinheiro, V.; Trindade, H. Ammonia, Nitrous Oxide, Carbon Dioxide and Methane Emissions from Commercial Broiler Houses in Mediterranean Portugal. Water Air Soil Pollut. 2018, 229, 377. [Google Scholar] [CrossRef]
- Van Der Heyden, C.; Demeyer, P.; Volcke, E.I. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Swanson, W.J.; Loehr, R.C. Biofiltration: Fundamentals, Design and Operations Principles, and Applications. J. Environ. Eng. 1997, 123, 538–546. [Google Scholar] [CrossRef]
- Melse, R.W.; Hol, J.M. Biofiltration of exhaust air from animal houses: Evaluation of removal efficiencies and practical experiences with biobeds at three field sites. Biosyst. Eng. 2017, 159, 59–69. [Google Scholar] [CrossRef]
- Nicolai, R.; Janni, K. Biofilter media mixture ratio of wood chips and compost treating swine odors. Water Sci. Technol. 2001, 44, 261–267. [Google Scholar] [CrossRef]
- Pagans, E.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 2005, 113, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hoff, S.J. Mitigating Odors from Agricultural Facilities: A Review of Literature Concerning Biofilters. Appl. Eng. Agric. 2009, 25, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Dumont, E.; Hamon, L.; Lagadec, S.; Landrain, P.; Landrain, B.; Andres, Y. NH3 biofiltration of piggery air. J. Environ. Manag. 2014, 140, 26–32. [Google Scholar] [CrossRef]
- Chen, L.; Hoff, S.; Cai, L.; Koziel, J.; Zelle, B. Evaluation of wood chip-based biofilters to reduce odor, hydrogen sulfide, and ammonia from swine barn ventilation air. J. Air Waste Manag. Assoc. 2009, 59, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Fangueiro, D.; Misselbrook, T.H.; Chadwick, D.R.; Coutinho, J.; Trindade, H. Ammonia and greenhouse gas emissions from slatted and solid floors in dairy cattle houses: A scale model study. Biosyst. Eng. 2011, 109, 148–157. [Google Scholar] [CrossRef]
- Pereira, J.; Misselbrook, T.H.; Chadwick, D.R.; Coutinho, J.; Trindade, H. Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosyst. Eng. 2012, 112, 138–150. [Google Scholar] [CrossRef]
- Grubecki, I. Airflow versus pressure drop for a mixture of bulk wood chips and bark at different moisture contents. Biosyst. Eng. 2015, 139, 100–110. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Lim, T.-T.; Jin, Y.; Ni, J.-Q.; Heber, A.J. Field evaluation of biofilters in reducing aerial pollutant emissions from a commercial pig finishing building. Biosyst. Eng. 2012, 112, 192–201. [Google Scholar] [CrossRef]
- Liu, T.; Dong, H.; Zhu, Z.; Shang, B.; Yin, F.; Zhang, W.; Zhou, T. Effects of biofilter media depth and moisture content on removal of gases from a swine barn. J. Air Waste Manag. Assoc. 2017, 67, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Kokkonen, A.; Esala, M.; Aura, E. Acceleration of N mineralization by release of enzymes and substrates from soil mineral particles with phosphates. Soil Biol. Biochem. 2006, 38, 504–508. [Google Scholar] [CrossRef]
- Rybarczyk, P.; Szulczyński, B.; Gebicki, J.; Hupka, J. Treatment of malodorous air in biotrickling filters: A review. Biochem. Eng. J. 2019, 41, 146–162. [Google Scholar] [CrossRef]
- Uenk, G.H.; Monteny, G.J.; Demmers, T.G.M.; Hissink, M.G. Reduction of Ammonia Emission from Pig Houses Using Biofilters (in Dutch); Report 93-28; DLO Instituut voor Milieu- en Agritechniek (IMAG-DLO): Wageningen, The Netherlands, 1993. [Google Scholar]
- Melse, R.W.; Hol, J.M.G.; Nijeboer, G.M. Measurements on a Bioscrubber System with Denitrification at a Fattening Pig House (in Dutch); Livestock Research; Report 554; Wageningen UR: Wageningen, The Netherlands, 2012. [Google Scholar]
- Melse, R.W.; Hol, J.M.G.; Nijeboer, G.M.; van Hattum, T.G. Measurements on a Biofilter for Treatment of Exhaust Air from a Fattening Pig House (in Dutch); Livestock Research; Report 802; Wageningen UR: Wageningen, The Netherlands, 2014. [Google Scholar]
- Akdeniz, N.; Janni, K.A.; Salnikov, I.A. Biofilter performance of pine nuggets and lava rock as media. Bioresour. Technol. 2011, 102, 4974–4980. [Google Scholar] [CrossRef] [PubMed]
- Hartung, E.; Jungbluth, T.; Bascher, W. Reduction of Ammonia and Odor Emissions from a Piggery with Biofilters. Trans. ASAE 2001, 44, 113–118. [Google Scholar] [CrossRef]
- Martinec, M.; Hartung, E.; Jungbluth, T.; Schneider, F.; Wieser, P. Reduction of Gas, Odor and Dust Emissions from Swine Operations with Biofilters. In Proceedings of the 2001 ASAE Annual International Meeting Sponsored by ASAE, Sacramento, CA, USA, 29 July–1 August 2001. [Google Scholar]
- Pereira, J.L.S.; Figueiredo, V.; Pinto, A.F.M.A.; Silva, M.E.F.; Brás, I.; Perdigão, A.; Wessel, D.F. Effects of Biochar and Clinoptilolite on Composition and Gaseous Emissions during the Storage of Separated Liquid Fraction of Pig Slurry. Appl. Sci. 2020, 10, 5652. [Google Scholar] [CrossRef]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wienke, C.; Fiencke, C.; Guo, J.; Dong, R.; Pfeiffer, E.M. Biofilter with mixture of pine bark and expanded clay as packing material for methane treatment in lab-scale experiment and field-scale implementation. Environ. Sci. Pollut. Res. 2018, 25, 31297–31306. [Google Scholar] [CrossRef] [PubMed]
- Melse, R.W.; Van Der Werf, A.W. Biofiltration for Mitigation of Methane Emission from Animal Husbandry. Environ. Sci. Technol. 2005, 39, 5460–5468. [Google Scholar] [CrossRef]
Wastes | pH | DM | TC | TN | NH4+ | NO3− | C/N | MD | PO |
---|---|---|---|---|---|---|---|---|---|
Tomato waste | 6.1 b | 853.3 b | 848.7 b | 31.0 b | 31.3 a | 5.7 a | 28 b | 90.6 e | 87 a |
Pine bark | 4.6 d | 750.0 c | 855.9 b | 2.2 c | 0.3 b | 0.1 b | 411 a | 276.0 c | 20 d |
Rice husk | 6.4 b | 895.6 a | 843.4 b | 3.3 c | 0.2 b | 4.3 a | 257 a | 149.3 d | 44 c |
Agricultural compost | 5.1 c | 363.3 d | 987.6 a | 12.7 b,c | 0.3 b | 1.9 a,b | 78 b | 434.3 b | 60 b |
Pig slurry | 7.3 a | 28.1 e | 685.2 c | 73.8 a | 57.3 a | 3.3 a,b | 10 b | 1000.0 a |
Treatments | Agricultural Wastes Added (g) | Additive Added (% w/w) | ||||
---|---|---|---|---|---|---|
Tomato Waste | Pine bark | Agricultural Compost | Rice Husk | Oxalic Acid | ||
Control | 0 | 0 | 0 | 0 | 0 | |
Tomato + Pine | 75 | 15 | 10 | 0 | 0 | |
Tomato + Pine + Acid | 75 | 15 | 10 | 0 | 4.5 | |
Tomato + Rice | 75 | 0 | 0 | 25 | 0 | |
Tomato + Rice + Acid | 75 | 0 | 0 | 25 | 4.5 | |
Tomato | 100 | 0 | 0 | 0 | 0 | |
Tomato + Acid | 100 | 0 | 0 | 0 | 4.5 |
Treatments | pH | DM | TC | TN | NH4+ | NO3− | C/N | MD | PO |
---|---|---|---|---|---|---|---|---|---|
0 days of experiment | |||||||||
Tomato + Pine | 6.1 d,e | 776.9 c,d | 844 b,c | 26.5 d | 28 bcd | 4 a | 32 a,b | 237 a,b | 86 a |
Tomato + Pine + Acid | 4.7 g | 606.7 e | 860 a,b | 28.3 b,c,d | 17 d | 8 a | 31 a,b,c | 153 b,c | 86 a |
Tomato + Rice | 6.3 c,d | 893.3 a | 823 c | 25.0 d | 24 d | 6 a | 33 a | 326 a | 81 a |
Tomato + Rice + Acid | 6.4 c,d | 804.4 b,c | 780 d | 30.7 a,b,c,d | 26 c,d | 7 a | 26 a,b,c,d | 105 c | 81 a |
Tomato | 5.7 f | 842.2 a,b,c | 780 d | 39.6 a,b | 15 d | 7 a | 20 b,c,d | 91 c | 87 a |
Tomato + Acid | 5.8 e,f | 862.2 a,b | 748 e | 38.1 a,b,c | 40 a,b,c,d | 8 a | 20 c,d | 91 c | 87 a |
14 days of experiment | |||||||||
Tomato + Pine | 6.6 b,c | 853.3 a,b | 882 a | 24.7 d | 41 a,b,c,d | 5 a | 37 a | 238 a | nd |
Tomato + Pine + Acid | 7.5 a | 711.1 d | 835 b,c | 30.3 a,b,c,d | 57 a,b,c | 7 a | 28 a,b,c,d | 153 a,b | nd |
Tomato + Rice | 6.5 b,c,d | 802.2 b,c | 828 c | 32.7 a,b,c,d | 69 a | 5 a | 25 a,b,c,d | 105 b,c | nd |
Tomato + Rice + Acid | 6.7 b,c | 824.4 a,b,c | 775 d | 32.0 a,b,c,d | 70 a | 5 a | 24 a,b,c,d | 105 c | nd |
Tomato | 6.8 b | 800.0 b,c | 776 d | 42.7 a | 62 a | 6 a | 18 d | 91 c | nd |
Tomato + Acid | 6.7 b,c | 802.2 b,c | 756 de | 41.7 a | 58 a,b | 5 a | 18 d | 91 c | nd |
p treatment (A) | *** | *** | *** | *** | ns | * | ns | *** | *** |
p day (B) | *** | ns | ns | ns | *** | * | *** | *** | |
A × B | *** | *** | *** | ns | * | ns | ns | *** |
Treatments | Days of Experiment | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–10 | 11–12 | 13–14 | 0–14 | |
NH3 concentrations | |||||||||
Control | 14.2 a | 22.8 a,b | 28.4 a | 31.2 a | 28.2 a | 21.9 a | 22.9 a | 20.7 a | 24.6 a |
Tomato + Pine | 1.8 b | 2.8 b | 4.2 c | 7.2 c | 11.0 b | 14.8 a,b | 17.8 a,b | 17.3 a,b | 14.9 b |
Tomato + Pine + Acid | 0.3 b | 0.7 b | 3.0 c | 6.7 c,d | 8.7 b,c | 6.8 b | 9.3 a,b | 8.1 a,b,c | 4.9 c |
Tomato + Rice | 4.3 b | 2.7 b | 3.5 c | 3.0 c,d | 2.9 c | 4.4 b | 8.0 a,b | 9.8 a,b,c | 5.0 c |
Tomato + Rice + Acid | 1.3 b | 8.5 a,b | 12.8 b | 11.7 b | 9.6 b,c | 3.2 b | 3.4 b | 4.2 b,c | 7.1 b,c |
Tomato | 19.1 a | 30.8 a | 4.2 c | 3.4 c,d | 3.3 c | 3.4 b | 4.0 b | 3.3 c | 6.7 b,c |
Tomato + Acid | 21.3 a | 8.6 a,b | 2.2 c | 2.6 d | 3.2 c | 4.0 b | 4.6 b | 3.5 c | 5.0 c |
N2O concentrations | |||||||||
Control | 0.5 cd | 0.5 b | 0.5 a | 0.5 c | 0.5 c | 0.5 d | 0.5 d | 0.5 d | 0.5 a |
Tomato + Pine | 0.6 b,c | 0.6 b | 0.6 a | 0.6 b,c | 0.6 b | 0.6 b | 0.6 b | 0.6 c | 0.6 a |
Tomato + Pine + Acid | 0.7 b,c | 0.7 a,b | 0.6 a | 0.6 b,c | 0.6 b | 0.6 b | 0.6 b | 0.6 c | 0.6 a |
Tomato + Rice | 0.6 b,c | 0.5 b | 0.6 a | 0.5 b,c | 0.5 c | 0.6 c | 0.5 c | 0.5 d | 0.6 a |
Tomato + Rice + Acid | 0.3 d | 0.7 a,b | 0.6 a | 0.6 a,b | 0.7 a | 0.8 a | 0.7 a | 0.6 c | 0.8 a |
Tomato | 0.8 ab | 1.2 a | 0.7 a | 0.8 a | 0.7 a | 0.7 a | 0.9 a | 0.8 b | 0.8 a |
Tomato + Acid | 0.9 a | 1.0 ab | 0.7 a | 0.8 a | 0.7 a | 0.8 a | 1.0 a | 0.9 a | 0.8 a |
Treatments | Gas Elimination Efficiency (EE) (%) | Pollutant Elimination Capacity (EC) (µg m−3 s−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
NH3 | N2O | CO2 | CH4 | NH3 | N2O | CO2 | CH4 | GWP | |
Control | 0 c | 0 a | 0 a | 0 a | 0 b | 0 a | 0 a | 0 b | 0 a,b,c |
Tomato + Pine | ↓51.4 b | ↑23.4 a,b,c | ↑8.8 a | ↓59.2 a | ↓644 a | ↑5 a,b,c | ↑2814 a | ↓216 a,b | ↓1807 a,b |
Tomato + Pine + Acid | ↓79.2 a | ↑21.9 a,b,c | ↑65.1 b | ↓72.2 a | ↓854 a | ↑5 a,b,c | ↑21425 b | ↓243 ab | ↑15978 c |
Tomato + Rice | ↓77.1 a,b | ↑10.2 a,b | ↓8.4 a | ↓68.8 a | ↓908 a | ↑2 a,b | ↓5542 a | ↓245 a | ↓11795 a |
Tomato + Rice + Acid | ↓72.4 a,b | ↑59.4 b,c | ↑1.0 a | ↑139.5 b | ↓809 a | ↑14 b,c | ↓1263 a | ↑320 c | ↑11347 b,c |
Tomato | ↓66.8 a,b | ↑60.5 c | ↑18.1 a | ↓28.9 a | ↓831 a | ↑15 c | ↑7169 a,b | ↓99 a,b | ↑8084 b,c |
Tomato + Acid | ↓72.9 a,b | ↑63.7 c | ↑19.1 a | ↓49.0 a | ↓908 a | ↑15 c | ↑7639 a,b | ↓232 a,b | ↑5015 a,b,c |
Type of Biofilter | NH3 (%) | N2O (%) | CO2 (%) | CH4 (%) | Country | Reference |
---|---|---|---|---|---|---|
Biofilter | 9 to 99 | Netherlands | [21] | |||
Biofilter | −60 to 93 | −167 to 37 | 5 to 21 | Netherlands | [22] | |
Woodchips | 64 to 78 | −19 to −13 | China | [18] | ||
Woodchips | −10 to 90 | France | [11] | |||
Woodchips | 7 to 83 | −400 to 13 | −43 to 41 | Netherlands | [23] | |
Pine bark and lava rock | 56 | 1 | 25 | [24] | ||
Coconut and peat | −9 to 81 | Netherlands | [25] | |||
Coconut and peat | 11 to 26 | −29 to −26 | −1 to 0 | −2 to 10 | USA | [26] |
Perlite and compost | 90 to 100 | 85 | Netherlands | [24] | ||
Tomato based | 51 to 77 | −61 to −10 | −18 to −9 | 29 to 69 | Portugal | This study |
Treatments | Days of Experiment | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–10 | 11–12 | 13–14 | 0–14 | |
CO2 concentrations | |||||||||
Control | 1114 c,d | 1023 b,c | 1014 b | 1046 b | 1104 a,b | 990 b,c | 934 b | 1402 a | 1080 a |
Tomato + Pine | 1182 c,d | 1132 b,c | 1057 b | 1068 b | 1033 a,b | 1165 a,b | 1184 a,b | 1220 a | 1141 a,b |
Tomato + Pine + Acid | 1365 a,b,c | 1599 a | 2206 a | 1555 a | 1278 a | 1334 a | 1460 a | 1475 a | 1716 a,b |
Tomato + Rice | 956 d | 968 c | 982 b | 948 b | 868 c | 903 c | 996 b | 1064 a | 961 b |
Tomato + Rice + Acid | 1314 b,c | 1112 b,c | 893 b | 1011 b | 1004 b,c | 1077 b,c | 1141 a,b | 1030 a | 1053 b |
Tomato | 1657 a | 1109 b,c | 1171 b | 1181 a,b | 1220 a | 1207 a,b | 1288 a,b | 1191 a | 1234 a,b |
Tomato + Acid | 1555 a,b | 1234 b | 1194 b | 1215 a,b | 1227 a | 1201 a,b | 1289 a,b | 1192 a | 1244 a,b |
CH4 concentrations | |||||||||
Control | 5.4 a | 7.8 a | 8.1 a | 4.8 a | 5.6 a | 8.5 a | 10.7 a | 9.8 a | 7.9 a |
Tomato + Pine | 2.5 a | 3.0 a | 3.2 a | 1.7 a | 2.2 a | 3.7 a,b | 5.0 a,b,c | 4.3 a,b | 3.3 a |
Tomato + Pine + Acid | 5.4 a | 1.0 a | 1.1 a | 1.1 a | 1.4 a | 2.6 b | 6.1 a,b | 3.4 b | 2.1 a |
Tomato + Rice | 2.6 a | 1.6 a | 1.7 a | 2.3 a | 1.5 a | 1.8 b | 4.3 b,c,d | 4.8 b | 2.6 a |
Tomato + Rice + Acid | 68.1 a | 49.4 a | 23.6 a | 9.3 a | 6.6 a | 2.6 b | 2.0 c,d | 0.8 b | 14.8 a |
Tomato | 27.2 a | 19.0 a | 4.1 a | 1.7 a | 1.0 a | 0.4 b | 0.2 c,d | 0.2 b | 4.4 a |
Tomato + Acid | 28.7 a | 4.9 a | 1.8 a | 0.9 a | 0.6 a | 0.1 b | 0.1 d | 0.1 b | 2.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.L.S.; Perdigão, A.; Marques, F.; Coelho, C.; Mota, M.; Fangueiro, D. Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study. Agronomy 2021, 11, 360. https://doi.org/10.3390/agronomy11020360
Pereira JLS, Perdigão A, Marques F, Coelho C, Mota M, Fangueiro D. Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study. Agronomy. 2021; 11(2):360. https://doi.org/10.3390/agronomy11020360
Chicago/Turabian StylePereira, José L. S., Adelaide Perdigão, Francisco Marques, Catarina Coelho, Mariana Mota, and David Fangueiro. 2021. "Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study" Agronomy 11, no. 2: 360. https://doi.org/10.3390/agronomy11020360
APA StylePereira, J. L. S., Perdigão, A., Marques, F., Coelho, C., Mota, M., & Fangueiro, D. (2021). Evaluation of Tomato-Based Packing Material for Retention of Ammonia, Nitrous Oxide, Carbon Dioxide and Methane in Gas Phase Biofilters: A Laboratory Study. Agronomy, 11(2), 360. https://doi.org/10.3390/agronomy11020360