Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci
Abstract
:1. Introduction
2. File, and Methods
2.1. Plant Material
2.2. Inoculation Test and Disease Evaluation
2.3. Genome-Wide Association Scans
3. Results and Discussion
3.1. Incidence of P. graminea Infection in Spring 2-Row Barley Cultivars
3.2. Genome Wide Association Scan
3.3. Identification of Putative Candidate Genes
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platenkamp, R. Investigations on the infection pathway of Drechslera graminea in germinating barley. R. Vet. Agric. Univ. Yearb. 1976, 49–64. [Google Scholar]
- Tekauz, A.; Chiko, A.W. Leaf stripe of barley caused by Pyrenophora graminea: Occurrence in Canada and comparisons with barley stripe mosaic. Can. J. Plant Pathol. 1980, 2, 152–158. [Google Scholar] [CrossRef]
- Zad, J.; Aghakhani, M.; Etebarian, R.; Okhovat, M. Barley leaf stripe disease. Mededelingen 2002, 67, 279–281. [Google Scholar]
- Porta-Puglia, A.; Delogu, G.; Vanacci, G. Pyrenophora graminea on winter barley seed: Effect on disease incidence and yield loss. J. Phytopathol. 1986, 117, 26–33. [Google Scholar] [CrossRef]
- Gatti, A.; Rizza, F.; Delogu, G.; Terzi, V.; Porta-Puglia, A.; Vannacci, G. Physiological and biochemical variability in a population of Drechslera graminea. J. Genet. Breed. 1992, 46, 179–186. [Google Scholar]
- Mueller, K.J.; Valè, G.; Enneking, D. Selection of resistant spring barley accessions after natural infection with leaf stripe (Pyrenophora graminea) under organic farming conditions in Germany and by sandwich test. J. Plant Pathol. 2003, 85, 9–14. [Google Scholar]
- Karakaya, A.; Mert, Z.; Çelik Oğuz, A.; Çetin, L. Distribution of barley stripe disease in Central Anatolia, Turkey. Selcuk J. Agric. Food Sci. 2016, 30, 59–61. [Google Scholar]
- Thomsen, S.B.; Jensen, H.P.; Jensen, J.; Skou, J.P.; Jørgensen, J.H. Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breed. 1997, 116, 455–459. [Google Scholar] [CrossRef]
- Tacconi, G.; Cattivelli, L.; Faccini, N.; Pecchioni, N.; Stanca, A.M.; Valé, G. Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2001, 102, 1286–1291. [Google Scholar] [CrossRef]
- Pecchioni, N.; Faccioli, P.; Toubia-Rahme, H.; Valè, G.; Terzi, V. Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor. Appl. Genet. 1996, 93, 97–101. [Google Scholar] [CrossRef]
- Arru, L.; Nicks, R.E.; Lindhout, P.; Valè, G.; Francia, E.; Pecchioni, N. Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome 2002, 45, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Arru, L.; Francia, E.; Pecchioni, N. Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the Steptoe × Morex spring barley cross. Theor. Appl. Genet. 2003, 106, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Skou, J.P.; Haahr, V. Screening for and Inheritance of Resistance to Barley Leaf Stripe (Drechslera graminea); Risø report 554; Risø National Laboratory: Roskilde, Denmark, 1987. [Google Scholar]
- Giese, H.; Holm-Jensen, A.G.; Jensen, H.P.; Jensen, J. Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2H by the use of RFLP markers. Theor. Appl. Genet. 1993, 85, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Biselli, C.; Urso, S.; Bernardo, L.; Tondelli, A.; Tacconi, G.; Martino, V.; Grando, S.; Valè, G. Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor. Appl. Genet. 2010, 120, 1207–1218. [Google Scholar] [CrossRef]
- Skou, J.P.; Nielsen, B.J.; Haahr, V. Evaluation and importance of genetic resistance to leaf stripe in western European barleys. Acta Agric. Scand. Sect B Plant Soil Sci. 1994, 44, 98–106. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Collins, N.C.; Tacconi, G.; Dellaglio, E.; Brueggeman, R.; Kleinhofs, A.; Stanca, A.M.; Valè, G. High resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theor. Appl. Genet. 2004, 108, 1401–1408. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Biselli, C.; Collins, N.C.; Consonni, G.; Stanca, A.M.; Schulze-Lefert, P.; Vale, G. The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. PLoS ONE 2010, 5, e12599. [Google Scholar] [CrossRef] [Green Version]
- Tondelli, A.; Xu, X.; Moragues, M. Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 2013, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Comadran, J.; Kilian, B.; Russell, J.; Ramsay, L.; Stein, N.; Ganal, M.; Shaw, P.; Bayer, M.; Thomas, W.; Marshall, D.; et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 2012, 44, 13881392. [Google Scholar] [CrossRef]
- Monat, C.; Padmarasu, S.; Lux, T. TRITEX: Chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019, 20, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradbury, P.J. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Fischbeck, G. Barley cultivar development in Europe—Success in the past and possible changes in the future. In Proceedings of the Sixth International Barley Genetics Symposium, Helsingborg, Sweden, 22–27 July 1991; Munck, L., Kirkegaard, K., Jensen, B., Eds.; Munksgaard International Publishers: Copenhagen, Demark, 1991; Volume 2, pp. 885–901. [Google Scholar]
- Bustos-Korts, D.; Dawson, I.K.; Russell, J.; Tondelli, A.; Guerra, D.; Ferrandi, C.; Strozzi, F.; Nicolazzi, E.L.; Molnar-Lang, M.; Ozkan, H.; et al. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 2019, 99, 1172–1191. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.A.; Kohorn, B. Wall associated kinases, WAKs, are expressed throughout plant development and are required for cell expansion. Plant Cell. 2001, 13, 303–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, Y.; Dinneny, J.R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol. 2020, 225, 1428–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amsbury, S. Sensing attack: The role of wall-associated kinases in plant pathogen responses. Plant Physiol. 2020, 183, 1420. [Google Scholar] [CrossRef] [PubMed]
- Saintenac, C.; Lee, W.-S.; Cambon, F.; Rudd, J.J.; King, R.C.; Marande, W.; Powers, S.J.; Bergès, H.; Phillips, A.L.; Uauy, C.; et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 2018, 50, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.M.; Cao, J.B.; Zhang, J.; Xia, F.; Ke, Y.G.; Zhang, H.T.; Xie, W.Y.; Liu, H.B.; Cui, Y.; Cao, Y.L.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Praz, C.; Li, B.; Singla, J.; Robert, C.A.M.; Kessel, B.; Scheuermann, D.; Lüthi, L.; Ouzunova, M.; Erb, M.; et al. Fungal resistance mediated by maize wall-associated kinase ZmWAK-RLK1 correlates with reduced benzoxazinoid content. New Phytol. 2019, 221, 976–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannam, A.; Alek, H.; Doumani, S.; Mansour, D.; Arabi, M.I.E. Deciphering the transcriptional regulation and spatiotemporal distribution of immunity response in barley to Pyrenophora graminea fungal invasion. BMC Genom. 2016, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haegi, A.; Bonardi, V.; Dall’Aglio, E.; Glissant, D.; Tumino, G.; Collins, N.; Bulgarelli, D.; Infantino, A.; Stanca, A.M.; Delledonne, M.; et al. Histological and molecular analysis of Rdg2a barley resistance to leaf stripe. Mol. Plant Pathol. 2008, 9, 463–478. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, Z.; Friesen, T.L.; Raats, D.; Fahima, T.; Brueggeman, R.S.; Lu, S.; Trick, H.N.; Liu, Z.; Chao, W.; et al. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Klymiuk, V.; Yaniv, E.; Huang, L.; Raats, D.; Fatiukha, A.; Chen, S.; Feng, L.; Frenkel, Z.; Krugman, T.; Lidzbarsky, G.; et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018, 9, 3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country of Origin | No. Genotypes | Mean Infection Incidence |
---|---|---|
STRUCTURE group 1 | ||
Austria | 1 | 20.3 |
Czech Republic | 12 | 37.0 |
Denmark | 21 | 41.5 |
Estonia | 1 | 7.0 |
France | 1 | 20.9 |
Germany | 21 | 42.9 |
Latvia | 1 | 94.8 |
Netherlands | 3 | 30.6 |
Slovak Republic | 2 | 43.4 |
United Kingdom | 15 | 56.5 |
Total | 78 | 43.4 |
STRUCTURE group admixed | ||
Austria | 2 | 43.3 |
Czech Republic | 13 | 34.3 |
Denmark | 8 | 40.1 |
Estonia | 2 | 59.1 |
Finland | 2 | 32.5 |
France | 4 | 39.3 |
Germany | 6 | 44.3 |
Italy | 1 | 73.4 |
Latvia | 7 | 35.0 |
Netherlands | 8 | 40.9 |
Slovak Republic | 1 | 37.4 |
Sweden | 4 | 40.9 |
United Kingdom | 8 | 28.3 |
Total | 66 | 38.4 |
STRUCTURE group 2 | ||
Denmark | 11 | 23.1 |
Finland | 6 | 56.5 |
France | 1 | 83.3 |
Italy | 2 | 33.7 |
Latvia | 5 | 18.0 |
Netherlands | 4 | 37.7 |
Norway | 1 | 48.4 |
Sweden | 27 | 34.0 |
United Kingdom | 5 | 30.3 |
Total | 62 | 33.9 |
Gene | Position_Start | Position_End | Annotation |
---|---|---|---|
HORVU.MOREX.r2.6HG0450940 | 9181207 | 9183058 | NBS-LRR resistance-like protein |
HORVU.MOREX.r2.6HG0450970 | 9287388 | 9289667 | Zinc finger with UFM1-specific peptidase domain protein |
HORVU.MOREX.r2.6HG0450990 | 9292853 | 9293407 | Heat shock protein 70 (Hsp 70) family protein |
HORVU.MOREX.r2.6HG0451000 | 9308835 | 9309251 | Serine/threonine protein phosphatase 7 long form isogeny |
HORVU.MOREX.r2.6HG0451010 | 9383225 | 9385148 | F-box domain containing protein |
HORVU.MOREX.r2.6HG0451040 | 9453725 | 9455308 | Kinase family protein |
HORVU.MOREX.r2.6HG0451050 | 9547723 | 9551610 | Transmembrane protein |
HORVU.MOREX.r2.6HG0451060 | 9552594 | 9554093 | Kinase family protein |
HORVU.MOREX.r2.6HG0451070 | 9704603 | 9712201 | U5 small nuclear ribonucleoprotein helicase |
HORVU.MOREX.r2.6HG0451080 | 9742211 | 9744382 | Protein kinase family protein |
HORVU.MOREX.r2.6HG0451090 | 9745927 | 9746731 | Wall-associated kinase-like protein |
HORVU.MOREX.r2.6HG0451100 | 9772601 | 9824626 | Receptor-like protein kinase |
HORVU.MOREX.r2.6HG0451110 | 9872022 | 9873296 | Protein kinase family protein |
HORVU.MOREX.r2.6HG0451160 | 9900818 | 9901225 | Wall-associated receptor kinase 5 |
HORVU.MOREX.r2.6HG0451170 | 9943083 | 9946721 | Protein kinase family protein |
HORVU.MOREX.r2.6HG0451210 | 9988000 | 9988962 | Wall-associated receptor kinase 5 |
HORVU.MOREX.r2.6HG0451220 | 10050772 | 10055369 | Protein kinase family protein |
HORVU.MOREX.r2.6HG0451270 | 10170204 | 10175665 | Protein kinase family protein |
HORVU.MOREX.r2.6HG0451280 | 10175679 | 10176481 | wall-associated receptor kinase-like protein |
HORVU.MOREX.r2.6HG0451290 | 10211221 | 10212693 | 3-ketoacyl-CoA synthase |
HORVU.MOREX.r2.6HG0451310 | 10236832 | 10238547 | Chloroplast stem-loop binding protein |
HORVU.MOREX.r2.6HG0451320 | 10270618 | 10272058 | F-box domain containing protein, expressed |
HORVU.MOREX.r2.6HG0451340 | 10297765 | 10299204 | Plant/F1M20-13 protein |
HORVU.MOREX.r2.6HG0451360 | 10421589 | 10427171 | Two-component response regulator |
HORVU.MOREX.r2.6HG0451370 | 10443935 | 10449495 | Two-component response regulator |
HORVU.MOREX.r2.6HG0451400 | 10462773 | 10466795 | Holliday junction ATP-dependent DNA helicase RuvB |
HORVU.MOREX.r2.6HG0451420 | 10470836 | 10480123 | Lysine-specific demethylase 3B |
HORVU.MOREX.r2.6HG0451430 | 10490144 | 10493431 | Protein kinesin light chain-related 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccini, N.; Delbono, S.; Çelik Oğuz, A.; Cattivelli, L.; Valè, G.; Tondelli, A. Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci. Agronomy 2021, 11, 374. https://doi.org/10.3390/agronomy11020374
Faccini N, Delbono S, Çelik Oğuz A, Cattivelli L, Valè G, Tondelli A. Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci. Agronomy. 2021; 11(2):374. https://doi.org/10.3390/agronomy11020374
Chicago/Turabian StyleFaccini, Nadia, Stefano Delbono, Arzu Çelik Oğuz, Luigi Cattivelli, Giampiero Valè, and Alessandro Tondelli. 2021. "Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci" Agronomy 11, no. 2: 374. https://doi.org/10.3390/agronomy11020374
APA StyleFaccini, N., Delbono, S., Çelik Oğuz, A., Cattivelli, L., Valè, G., & Tondelli, A. (2021). Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci. Agronomy, 11(2), 374. https://doi.org/10.3390/agronomy11020374